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ABSTRACT. Significance: Quantitative phase imaging (QPI) offers a label-free approach to non-
invasively characterize cellular processes by exploiting their refractive index based
intrinsic contrast. QPI captures this contrast by translating refractive index associ-
ated phase shifts into intensity-based quantifiable data with nanoscale sensitivity.
It holds significant potential for advancing precision cancer medicine by providing
quantitative characterization of the biophysical properties of cells and tissue in their
natural states.

Aim: This perspective aims to discuss the potential of QPI to increase our under-
standing of cancer development and its response to therapeutics. It also explores
new developments in QPI methods towards advancing personalized cancer therapy
and early detection.

Approach: We begin by detailing the technical advancements of QPI, examining its
implementations across transmission and reflection geometries and phase retrieval
methods, both interferometric and non-interferometric. The focus then shifts to QPI’s
applications in cancer research, including dynamic cell mass imaging for drug
response assessment, cancer risk stratification, and in-vivo tissue imaging.

Results: QPI has emerged as a crucial tool in precision cancer medicine, offering
insights into tumor biology and treatment efficacy. Its sensitivity to detecting nano-
scale changes holds promise for enhancing cancer diagnostics, risk assessment,
and prognostication. The future of QPI is envisioned in its integration with artificial
intelligence, morpho-dynamics, and spatial biology, broadening its impact in cancer
research.

Conclusions: QPI presents significant potential in advancing precision cancer
medicine and redefining our approach to cancer diagnosis, monitoring, and treat-
ment. Future directions include harnessing high-throughput dynamic imaging, 3D
QPI for realistic tumor models, and combining artificial intelligence with multi-omics
data to extend QPI’s capabilities. As a result, QPI stands at the forefront of cancer
research and clinical application in cancer care.
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1 Introduction
Quantitative phase imaging (QPI) represents an important advancement in the field of microscopy,
offering a label-free technique that translates phase differences, or optical path length variations
introduced by a sample, into detectable intensity contrasts. This unique capability reveals the intrin-
sic contrast based on the refractive indices of the sample components. The origins of phase contrast
microscopy can be traced back to the pioneering work of Frits Zernike, awarded the Nobel Prize
in Physics in 1953,1 which heralded a new era in biological research by allowing the visualization
of transparent biological specimens without staining. This innovation has been instrumental in
enabling biologists to examine live cells in their natural, undisturbed states.

Although traditional phase microscopy opened new avenues for visualizing live cells, it
was initially confined to qualitative observations, lacking the sufficient precision for detailed
quantitative analyses of biological processes. The transition from qualitative to quantitative
phase imaging, pioneered by Popescu and others,2–5 marked a significant shift in this field.
QPI not only facilitates visualization but also enables accurate quantification of optical path
differences. Over the past two decades, this field has seen an explosion in the development of
various techniques aimed at extracting quantitative phase information. These methodologies
encompass both interferometric and non-interferometric strategies and are employed in diverse
configurations including transmission and reflection modes. These techniques have a wide
range of applications, extending from the study of thin, cultured cell monolayers and tissue
sections to the imaging of thick, three-dimensional embryos and whole organisms. They offer
high-speed, high-throughput, and high-resolution capabilities, serving diverse areas within
both basic and translational biomedical research.

Building upon these diverse applications, the potential of QPI extends significantly into
precision cancer medicine. This field synergizes the tailored approach of precision oncology—
where treatments are based on the genetic and molecular profiles of individual tumors—with
the proactive strategies of precision prevention, which aim to identify and mitigate risk factors
and detect cancer at its earliest stages in individual patients. In these critical domains, QPI’s
ability to non-invasively assess the biophysical properties of cancer cells in real time could
be important in identifying early indications of drug resistance or metastatic potential. The appli-
cation of QPI in monitoring cell mass dynamics provides insight into tumor growth and treatment
responses at the cellular level, which is essential for the development of personalized treatment
strategies. Moreover, the precision of QPI could enhance cancer surveillance programs by
detecting subtle changes in cellular behaviors that are indicative of treatment efficacy or early
signs of relapse. In the field of cancer prevention, QPI could play a significant role in identifying
early cellular alterations that precede malignancy, thereby contributing to prevention strategies
for individuals at high risk.

This perspective will outline the technical advancements and applications of QPI in the con-
text of cellular and tissue imaging, with a special emphasis on cancer research. We will discuss
existing challenges and explore strategies for the incorporation of QPI to significantly enhance
cancer precision medicine.

2 Technical Implementations of QPI

2.1 Configuration and Image Contrast of QPI Systems
QPI encompasses various technical implementations aimed at extracting quantitative phase infor-
mation from intensity images. The central mechanism in all phase imaging techniques involves
converting phase variations in the sample into detectable intensity variations at the camera sensor.
This section highlights key technical approaches in QPI, paving the way for our discussion on
future perspectives. A more exhaustive review can be found in the literature.2

QPI systems generally adopt one of two configurations. The first, transmission QPI, utilizes
a transmission mode where illumination light passes through the sample and the transmitted light
is captured by the sensor [Fig. 1(a)]. The second, reflection QPI, operates in a reflection con-
figuration [Figs. 1(b)–1(d)], where part of the illumination light reflects off surfaces with strong
refractive index mismatches, and the rest, transmitted into the sample, scatters due to internal
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refractive index variations within the sample. In both types, the wave at the detector is a
superposition of a reference wave (light in the absence of the sample) and the sample wave.
Systems typically use either monochromatic or broadband light sources. Partially coherent
light with nearly collimated illumination enhances interference contrast. The detected intensity
of superposed waves in either transmission or reflection QPI can be expressed as:
Iðx; yÞ ¼ jErðx; yÞj2 þ jEsðx; yÞj2 þ 2R½E�

rðx; yÞEsðx; yÞ�.6 The first two terms denote the DC
components from the reference and the sample intensity respectively, and the interference term
carries the phase information.

Quantitatively, phase measures the delay of the wavefront as light travels through the sam-
ple. In transmission QPI, light traverses the entire sample, accumulating phase shifts relative to
the reference wave. These shifts can be quantified and linked to the physical parameters of the
sample via the expression: φðx; yÞ ¼ ∫ 2π

λ ðnsðx; y; zÞ − nrÞdz, where λ is the wavelength of light,
ns and nr are the refractive indices of the sample and the homogeneous medium, respectively, and
z is the axial position. The pixel-wise value of the quantitative phase image, often expressed
as optical path length (OPL) map, is OPLðx; yÞ ¼ ðnsðx; yÞ − nrÞdðx; yÞ, where dðx; yÞ is the
physical thickness at each location ðx; yÞ for thin biological samples. This OPL, also referred
to as phase shift, couples the physical thickness with the refractive index difference between the
sample and the medium, potentially leading to ambiguity in interpreting cellular properties.

Reflection QPI differs significantly in principle from transmission QPI. Due to the near
reversal of axial directions between illumination and backscattered wave vectors, reflection
geometry covers higher spatial frequencies [or kz in K-space, or Fig. 2(a)]. However, reflection
microscopy lacks access to low kz ranges captured in the transmission mode [Fig. 2(a)], resulting
in its inability to capture the average refractive index detected in transmission geometry.7

In some cases, reflection QPI modalities, despite being in the physical configuration of
reflection mode, are designed to mimic double transmission [Fig. 1(b)], offering image contrasts
from cumulative phase shifts similar to transmission QPI. For example, when samples are on
highly reflective substrates, the predominant signal is from the substrate reflection, with back-
scattered light within the sample being negligible. This results in a quantitative phase image that
effectively doubles the OPL difference between the sample and surrounding medium, like
double-pass transmission. The image contrast from biological samples resembles that of

Fig. 1 Example of light path in (a) transmission phase imaging and (b-d) three different scenarios
in reflection phase imaging configurations, including (b) double-transmission case with a strong
reflective substrate, (c) a case of strong multi-layer reflections at interfaces with a large refractive
index mismatch, and (d) a case of weakly-varying refractive indices within the sample where the
reflection from the reflective surface serves as reference wave interferes with the weak backscat-
tered light from heterogenous refractive index changes within the sample.

Liu and Uttam: Perspective on quantitative phase imaging. . .

Journal of Biomedical Optics S22705-3 Vol. 29(S2)



transmission QPI and may even provide slightly enhanced contrast due to the doubled OPL
through the sample.8–10

In certain reflection QPI systems, strong backscattered light from internal interfaces enables
extraction of quantitative phase information at these interfaces [Fig. 1(c)], providing depth selec-
tivity. Broadband light sources used in this context resemble optical coherence tomography,
where the inherent coherence gate offers depth selectivity. Depending on the location of coher-
ence gate, the quantitative phase shift between the reference and sample wave can be measured
either at the sample surface11 [see Fig. 3(b) as an example] or within subsurface tissue layers with
strong refractive index mismatches.12

There are certain cases where the sample lacks strong reflective interfaces, and after surface
reflections have been redirected, the reflection QPI captures predominant signals from backscat-
tered light of weakly varying refractive index of the sample using a low-coherence white-light
source [Fig. 1(d)].13–15 This backscattered signal interferes with a reference signal and can be
used to extract quantitative phase information along the axial optical path length profile of the
sample. It has been shown both theoretically and computationally that such a depth-resolved
phase is most sensitive to the local variation of refractive index from its average value and the
spatial heterogeneity in these variations, which are captured through the spatial frequencies
inherent in the refractive index distribution of the sample.13–15 An example of transmission
QPI and reflection QPI from weakly varying refractive indices within samples is shown in
Fig. 3. While the image from the transmission QPI exhibits a high contrast [Fig. 3(a)], the image
from the reflection QPI shows local changes of refractive index variation [Figs. 3(c) and 3(d)] in
the depth-resolved manner.

2.2 Phase Retrieval
Phase retrieval techniques in QPI can be generally divided into two main categories: interfero-
metric and non-interferometric methods.

Fig. 2 Frequency domain support of QPI modalities. (a) Transmission and reflection mode QPI. In
the reflection mode, the spectral bandwidth of the light source provides axial (Kz ) frequency sup-
port resulting in its ability to perform depth-resolved QPI. In contrast, this frequency support col-
lapses to the origin in the transmission mode with Kz ¼ 0 for all source wavelengths. As a result,
the transmission mode does not perform depth-resolved QPI but is able to capture the average
quantitative phase with its frequency support centered around the origin. Reflection mode is unable
to capture the latter due to a lack of frequency support at the origin. Instead, it captures higher
frequency structures from the sample due to its frequency support away from the origin. Both pro-
vide similar, numerical aperture-dependent lateral resolution, as indicated by the lateral spread of
the frequency support. (b) Optical diffraction tomography. Missing cone in ODT frequency support
reduces axial resolution of ODT based 3D QPI imaging.
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2.2.1 Interferometric methods

Temporal and spatial phase modulations are the most common among the interferometric
methods. Temporal phase modulation, such as the phase shifting method, involves capturing
a series of images with phase shifts at an increment of π

2
for each image for a four-step phase-

shifting method. The sample-induced phase difference φðx; yÞ, is calculated using the following
equation:

EQ-TARGET;temp:intralink-;sec2.2.1;117;287φðx; yÞ ¼ a tan 2ðIðx; y; 0Þ − Iðx; y; πÞ; I
�
x; y;

3π

2

�
− I

�
x; y;

π

2

��
;

where a tan 2 represents the arctangent function that calculates phase angles across a full circle
range of ½−π; π�. Alternative phase-shifting methods using a smaller number of phase-shifting
steps16,17 are also possible for optimal balance between the accuracy of phase retrieval and im-
aging speed.

Spatial phase modulation is exemplified by off-axis holographic microscopy, often based on
the Mach-Zehnder interferometer. This approach superposes a sample wave and a reference wave
positioned at an off-axis angle θ, creating spatial interference fringes. The recorded intensity at
the detector can be expressed as

EQ-TARGET;temp:intralink-;sec2.2.1;117;154Iðx; yÞ ¼ jErðx; yÞj2 þ jEsðx; yÞj2 þ 2jErðx; yÞjjEsðx; yÞj cos½φðx; yÞ þ kxx�;
where kx is the spatial modulation frequency along the x axis, for example. This expression
includes the zeroth order (DC component) (the first two terms) and the first diffraction orders.
The off-axis configuration facilitates spatial separation of different diffraction orders in the
Fourier plane, where one of the diffraction orders can be selected via spatial filtering. The filtered
Fourier spectrum is then shifted to center at zero Fourier frequency to remove the modulation

Fig. 3 Representative images from (a) transmission QPI of cells embedded in resin-based sub-
strates, (b) reflection QPI of a USAF target in the presence of strong interfaces, and (c) and
(d) reflection QPI of weakly scattering objects (cells embedded in resin-based substrates) in
the absence of strong interfaces at different depths.
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frequency kx, and the phase induced by the object φðx; yÞ is then extracted using a simple inverse
tangent operation.

These two interferometric approaches have their individual advantages and limitations.
Temporal modulation method has a better spatial resolution but at a compromised temporal
resolution. While spatial modulation method allows a single snapshot image acquisition but
sacrificing spatial resolution due to the need for fringes with higher spatial noise.

2.2.2 Non-interferometric methods

Non-interferometric phase retrieval18 is a computational imaging approach, increasingly popular
in recent QPI applications. In contrast to interferometric techniques, non-interferometric methods
extract phase information directly from intensity measurements of transmitted light across multi-
ple axial planes, eliminating the need for separate reference waves. Typically, a nearly collimated
(partially coherent) illumination beam is used, to create an implicit interference between the
scattered waves from the sample and the background. Among different approaches for phase
retrieval directly from intensity measurements, the transport of intensity equation (TIE) is one
of the most used methods. For an in-depth tutorial on TIE’s principles and applications for QPI,
readers are directed to existing literature.19

The use of nearly coherent illumination inherently in non-interferometric phase retrieval
methods limits the spatial frequency range covered, thus reducing lateral spatial resolution.
However, this limitation can be mitigated through a synthetic aperture approach. Integrating
waves from varying illumination angles, combined with direct or iterative algorithms for image
reconstruction, it is possible to achieve an enhanced image resolution in the lateral direction.
Importantly, this approach achieves a high lateral resolution while utilizing a low NA objective,
thereby also expanding the field of view.20 Such a synthetic aperture approach is especially
beneficial in applications where both high resolution and a large field of view are critical such
as the detection of rare events in a large cell population.21

A major advantage of non-interferometric methods is their simple experimental setup, in a
similar form of bright-field microscope without introducing additional optical components.
In addition, unlike interferometric phase retrieval, these methods do not require phase
unwrapping. However, the TIE-based computational phase retrieval often suffers from cloud-like
low-frequency spatial noise, limiting its quantitative accuracy for recovered phase. As a result,
the interferometry-based QPI remains the most accurate approach compared to the non-interfero-
metric computational phase retrieval.19

2.3 Three-dimensional QPI
Traditionally, transmission QPI has predominantly focused on imaging 2D thin samples, where
the phase is from the focal plane, or the cumulative optical path length is obtained as light travels
through the sample. While 2D imaging provides valuable information on the cellular structure
and physical parameters, it often misses the rich details of the 3D internal structures of the cells.
With the emergence of 3D cell cultures and tissue models that more accurately recapitulate
in-vivo conditions of human diseases, there has been a significant increase in the demand for
methods that can visualize and analyze samples in their full 3D context while preserving their
functional integrity.

Optical sectioning is a crucial aspect of 3D microscopy. However, traditional phase micros-
copy, typically configured in a wide-field transmission mode, is limited by the spatial frequency
support of its optical transfer function (Fig. 2), resulting in poor axial resolution and suboptimal
optical sectioning capabilities.22 Despite this limitation, certain phase microscopy techniques do
offer some degree of depth sectioning, thanks to their use of phase-gradient–based image con-
trast. Techniques such as differential interference contrast (DIC) and various forms of oblique
field microscopy (e.g., Hoffman modulation contrast,23 differential phase contrast24) are some
notable examples. As the phase gradient is the highest at the focal plane, it provides some degree
of depth sectioning capability for 3D imaging of phase objects.

Using a high-NA objective, ideally of the immersion type, is crucial for achieving the high
axial resolution necessary for effective optical sectioning in 3D phase imaging. A simple and
straightforward way to realize 3D phase imaging is to take a series of 2D images by sequentially
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moving the sample or the objective along the axial direction. The methods for retrieving
quantitative phase information at each focal plane are like that used in 2D imaging. For
example, phase-shifting interferometry,25 when applied in conjunction with conventional phase
microscopies, such as Zernike phase contrast microscopy26 and differential interference micros-
copy,27 and paired with a high-NA objective, allows for reconstruction of high-resolution 3D
phase images.

The most popular technical implementation of 3D phase imaging is optical diffraction
tomography (ODT). The basic theoretical framework for reconstructing of 3D structure of a
weakly scattering semi-transparent object via holograms was formulated by Emil Wolf in
1969.28 The 3D refractive index of the object can be retrieved from the complex amplitude dis-
tribution of the scattered fields, determined by measuring the intensity transmission functions of
holograms at multiple illumination angles. Under the first-order Born approximation, applicable
for weakly scattering objects, the 3D scattering potential of an object can be reconstructed from
the collection of all Fourier components (or spatial frequencies) of the scattering potential in the
K-space.29 The accuracy of this reconstruction depends on the accessible range in the 3D Fourier
space, which can be obtained mostly by varying direction of incidence and/or wavelength. Most
ODT setups, using a transmission configuration at a fixed wavelength, vary angles of illumina-
tion via rotation of samples or of illumination beam. By capturing the complex amplitude for all
accessible spatial frequencies, the 3D scattering potential or refractive index can be reconstructed
using methods like digital holography30–34 or computational phase retrieval.35 The resolution of
the resulting image depends on the extent of coverage in the 3D spatial frequency space, which
can potentially be limited by the “missing cone” problem [Fig. 2(b)]. There are limits to how
much one can vary the angle of illumination due to physical constraints, such as the NA of the
objective lens and potential blocking effects by the sample holder or the surrounding medium.
Nevertheless, a high-resolution reconstruction of the 3D scattering potential of a biological cell at
approximately 90 nm resolution, has been demonstrated by using two opposing high-NA
(NA~1.4) objectives and a large coverage of spatial frequencies.36

Besides the advantage of superior resolution and 3D mapping of the scattering object,
another important capability of ODT is its ability to measure the 3D refractive index (RI) dis-
tribution within cells. This feature distinguishes ODT from 2D QPI, where the measured phase
shift is a product of the refractive index contrast and the physical length through the specimen.
Thus, the phase shift inherently mixes information about the thickness and its refractive index of
the sample.

2.4 Phase Noise
Phase is inherently highly sensitive to minute changes in optical path length, even down to the
nanometer scale. This sensitivity, while enabling the detection of minute displacements in nano-
scale structures, also makes phase measurements highly prone to various sources of noise. Some
interferometry-based QPI systems require a separate reference and sample path, which is prone to
vibration and temporal noise that hamper our ability to measure nanoscale dynamic changes of
the cells.5 Moreover, the use of coherent laser introduces high speckle noise into the phase image
which can degrade image resolution.

To achieve the desired nanometer or sub-nanometer sensitivity in phase imaging systems, it
is crucial to minimize these sources of noise. A highly stable environment free from vibrations
and thermal fluctuations is highly desirable. In addition, the use of actively stabilizing feedback
loops is often necessary to minimize phase drift during image acquisition.5 By continuously
monitoring the phase and making real-time adjustments to the optical path lengths, stable and
accurate phase measurements can be achieved.

A significant advancement in the field of phase imaging to address the challenge of phase
noise came with the development of the near common-path configuration such as in Fourier
phase microscopy37,38 and diffraction phase microscopy.39 This setup, by making the reference
and sample waves share nearly the same path, inherently reduces the sensitivity to variations in
optical path length caused by external factors, such as vibrations and thermal fluctuations, effec-
tively minimizing phase noise. This simple yet powerful approach facilitates its implementation
in regular laboratory environments, making the near common-path configuration a popular
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choice for QPI systems, especially when high sensitivity is required for measuring nanoscale
changes in cellular dynamics.

The introduction of low-coherence light sources, such as light-emitting diodes (LEDs) or
lamps, has further contributed to a reduction in speckle and spatial phase noise25 and improved
spatial resolution in imaging cells and tissue. Examples include use of a lamp in spatial light
interference microscopy25 and quadriwave lateral shearing interferometry,40 use of low-
coherence laser illumination in DHM,41 and use of LED in off-axis digital holography.42 In addi-
tion, a rotating diffuser43,44 coupled with the laser source has also been shown to reduce the
spatial phase noise, while providing high-contrast interference fringes in an off-axis holographic
interferometry system.

Alongside the strategies outlined previously to reduce phase noise, two additional crucial
factors play crucial roles in further enhancing phase sensitivity. The first is maximizing the num-
ber of photons collected by the detector. This aspect is directly related to the characteristics of
photon shot noise, which is governed by Poisson statistics and scales with the square root of the
number of detected photons

ffiffiffiffi
N

p
. By employing a strong light interference signal and pairing it

with a camera that boasts a large full well capacity,45 it is possible to maximize the number of
photons collected. This, in turn, serves to minimize the phase noise. The second critical factor
involves the process of averaging multiple phase images. Remarkably, even averaging less than
10 frames can lead to a dramatic reduction in phase noise, often by a factor of around 2 to 3.45

Phase averaging is especially beneficial in applications that demand high phase sensitivity, such
as measurement of the dynamics of neural deformation during the action potential.46 This
approach is routinely used across various applications to achieve superior precision in phase
measurements.

3 Applications of QPI for Precision Cancer Medicine
QPI is increasingly being recognized as a powerful quantitative imaging technology for basic
biomedical research and clinical applications. While fluorescence microscopy continues to be a
predominant microscopy technique in the biomedical community, QPI distinguishes itself with
two primary attributes: its capability for label-free and non-invasive imaging of cells over
extended periods and its exceptional nanoscale sensitivity to detect minute cellular and sub-
cellular structure and dynamics.

In contrast to fluorescence imaging techniques that often requires fluorophores for visual-
izing specific targets, QPI offers intrinsic morphological contrast derived from the refractive
index profile and physical thickness of weakly scattered cells and tissues. This label-free
approach reveals detailed aspects of cell size, shape, volume, and refractive index in their native
states. Importantly, QPI overcomes the issue of photobleaching, a common limitation in fluo-
rescence imaging, enabling continuous observation of cells and tissues without the interference
or potential toxicity of external labels or dyes. This feature is especially valuable for long-term
studies, as it allows researchers to monitor cellular processes and morphological changes over
a long period of time, from days to weeks.

Furthermore, the ability of QPI to detect changes in optical path length and refractive index
at the nanoscale, even below the diffraction limit of the optical imaging system, is a simple label-
free alternative to detect structural changes below the resolution limit. This nanoscale sensitivity
facilitates the measurement of subtle changes in cells and tissues for a long time with millisecond
temporal resolution, such as monitoring minute cell membrane fluctuations,39 tracking biomass
changes during cell growth47 and observing neural signaling,46 all achievable without the need
for labeling or using super-resolution imaging techniques. Additionally, its ability to detect subtle
nanoscale structural changes on clinically prepared tissue section has shown promise in appli-
cations for cancer risk stratification14,48,49 and prognosis.50,51

The wide-ranging applications of QPI extend from fundamental cell and developmental
biology to neuroscience and clinical diagnosis. The extensive implications and diverse applica-
tions of QPI in biomedicine have been thoroughly reviewed in recent literature.52,53 This section,
however, will specifically focus on the potential role of QPI in enhancing cancer detection,
prevention, and treatment.
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3.1 Precision Oncology
Precision oncology represents a paradigm shift in cancer treatment, moving away from one-size-
fits-all approaches to tailored treatments based on individual patient’s characteristics. Central to
this approach is the goal of identifying the most effective treatment for each patient. This process
necessitates a comprehensive understanding of unique characteristics (e.g., molecular profiles
and biophysical properties) of a patient’s tumor, as well as its responsiveness to a diverse array
of therapeutic agents. The emergence of patient-derived primary cell cultures and organoids has
opened new avenues for personalized treatment selection by enabling the testing of a broad spec-
trum of therapeutic agents directly on the patient’s own tumor cells. In this context, there is a
growing need for non-invasive technologies capable of precisely assessing treatment responses.

Ideally, these technologies should provide precise and undisturbed measurements to assess
how a patient’s tumor cells respond to various treatments without the need for additional dyes or
markers that might otherwise influence the drug’s action. While fluorescence imaging has proven
effective in such applications,54 the use of common fluorescent labels can present its own chal-
lenges. Notably, these labels can induce DNA damage, which is also a mechanism employed by
many chemotherapy drugs, thereby complicating the distinction between the cytotoxic effects of
the treatment and potential artifacts introduced by the labels.55 Although many fluorophores are
designed to minimally perturb biological functions, considerable effort is often necessary to rule
out their cytotoxic effects. QPI has the potential to address this challenge by providing a direct
view of cellular responses to cancer therapies in their native state, which allows for a more accu-
rate assessment of the actual effects of treatments on tumor cells. Concurrently, fluorescence
imaging is highly effective for uncovering the underlying molecular mechanisms behind diverse
treatment responses and for identifying novel targets for more effective therapies.

Cancer is characterized by uncontrolled cell proliferation, a primary target of many cancer
therapies. QPI offers a non-invasive, label-free, and precise method to quantify cell mass, a key
biophysical parameter for assessing cell growth and death. Real-time monitoring of cell mass
dynamics in response to pharmacological agents over extended periods provides essential
insights for the action of drugs and evaluating cancer treatments.56–58 Quantitative assessment
of cell dry mass using phase microscopy can be traced back by the foundational work by Barer.59

The total dry mass (m) of a cell can be estimated using the measured phase of the cell as follows:
m ¼ 1

α

RR
SOPLðx; yÞdx dy. Here, S represents the area of the cell and α denotes a constant known

as the specific refraction increment. For most biological cells, α typically lies between 0.18 to
0.21 mg∕ml. Therefore, dry mass can be determined through the quantifiable phase and cell area.
QPI also enables the measurement of other cellular and subcellular attributes like volume, surface
area, thickness, and refractive index in a non-invasive manner.60,61

A key function of cytotoxic drugs in cancer treatment is to inhibit cell growth. Monitoring
dynamic changes in cell dry mass through QPI provides a straightforward method to assess the
cytotoxic responses elicited by various drugs and nanomaterials.58,62,63 Typically, an increase in
cell mass before cell division is indicative of cell growth. However, when exposed to cytotoxic
drugs at effective concentrations, a stagnation or even reduction in cell dry mass can often be
observed over the treatment period, which can span several days58 [Fig. 4(a)]. Similar approaches
with QPI can also be used to evaluate cell viability63 [Fig. 4(b)], distinguishing between live and
dead cells.64

This capability of QPI is particularly valuable in the context of drug screening. It enables
researchers to quantitatively determine the effects of new treatments on cancer cells. Frequently,
QPI systems are integrated with multi-well plates, a standard format in drug screening, allowing
simultaneous evaluation of various drugs at different concentrations in a single experimental
setup. Continuous monitoring of cell mass through QPI provides immediate insights into cellular
responses to diverse drug concentrations and combinations, helping to identify different drug
mechanisms of action. For instance, cytostatic drugs, which disrupt cell signaling and replication
without immediately reducing tumor burden,65 demonstrate a slower increase in cell mass, in
contrast to the static or diminishing cell mass dynamics typically induced by cytotoxic drugs58

[Fig. 4(a)]. Moreover, 3D refractive index tomography combined with other label-free imaging
techniques has been used to explore therapy-induced senescence, which holds immense potential
for identifying the most effective anti-cancer treatments in the future.61
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3.2 Precision Cancer Prevention, Diagnosis, and Prognosis
Alongside its applications in dynamic cellular imaging, QPI has emerged as a promising tech-
nique for cancer detection and prognosis. This is largely attributed to its ability to detect nano-
scale structural changes in clinically prepared tissue sections or cytology samples. Historically,
cancer diagnosis has relied on the microscopic examination of tissue architecture and nuclear
features, typically visualized on hematoxylin and eosin (H&E)-stained slides through conven-
tional bright-field microscopy. Despite its long-standing application, this method faces limita-
tions due to its diffraction-limited resolution and dependence on absorption-based contrast.
These limitations can result in missing subtle cellular abnormalities that emerge in the early
stages of carcinogenesis or in cells with a high risk of progressing to cancer. In contrast,

Fig. 4 Examples for the applications of QPI in assessing drug response. (a) The fold change of
average cell dry mass in MCF-7 cells over 72 h of treatment with 20 μM doxorubicin (cytotoxic
response, slow decrease in dry mass) and 20 μM fulvestrant (cytostatic response, gradual
increase in dry mass) in comparison with the control (DMSO), adapted with permission from
Ref. 58. (b) Temporal changes of cell dry mass in macrophages (RAW 264.7) treated with different
concentrations of lipid-based nanoparticles (LipImage 815), compared to cytotoxicity and medium
controls. The results suggest LipImage 815 as low-toxic. The figure is adapted from Ref. 63.
(c) The 3D refractive index maps in cells undergoing regular proliferation (control) and senescent
cells. Senescent cells showed more lipid droplet accumulation compared to controls (those with
the highest refractive index). The figure is adapted with permission from Ref. 61.
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QPI provides detailed quantitative phase information related to cell mass or nanoscopic structural
changes, thereby offering sensitive measures for detecting malignant transformation or progres-
sion, significantly enhancing early cancer detection and prognosis.

Transmission QPI produces high-contrast images of tissue architecture, resulting from the
cumulative phase shift across a sample’s thickness. Regions with high density or refractive index,
such as the extracellular matrix, often contribute to this high contrast. For example, QPI-derived
metrics of light scattering anisotropy in stromal areas adjacent to cancerous prostate glands have
been successful in stratifying patients by recurrence risk of prostate cancer.50 The use of quan-
titative image analysis, like fiber tracking algorithms, to evaluate the structural composition of
the extracellular matrix in pancreatic adenocarcinoma, has demonstrated significant prognostic
implications. Variance in tissue refractive index has also emerged as a promising marker for
distinguishing between tumor and normal tissues.66 Importantly, the recent emergence of con-
volutional neural networks has further empowered the application of QPI in histopathology, ena-
bling the classification of benign versus cancerous tissue with high accuracy directly from phase
images.67 This AI-enhanced analysis of QPI provides a unique physical contrast and diagnostic
information that complements traditional H&E staining, introducing an additional, powerful
modality to digital pathology.68

At the cytology level, transmission QPI enables precise measurements of nuclear or cellular
dry mass. The nuclear dry mass has shown strong correlation with urine cytological diagnoses,
where increased average nuclear dry mass and increased entropy of dry mass in the nuclei were
consistently observed in cancer cells69 [Figs. 5(a) and 5(b)]. These characteristics reflect the
enlarged nuclei size and increased cell proliferation typical in cancer. The QPI-based assessment
offers the potential to significantly reduce inter-observer variability and enhance diagnostic
accuracy in pathology. Moreover, computational imaging-based QPI facilitates the reconstruc-
tion of quantitative phase images over a large field of view without the need for mechanical
scanning.70–72 Such computational approaches are particularly advantageous as they enable in-
focus imaging through numerical refocusing, a critical feature for cytology samples where cell
clusters can complicate accurate focusing.73 The simplicity of computational imaging-based

Fig. 5 Examples for the applications of QPI for quantitative diagnosis and precision prevention.
(a) Transmission quantitative phase images for urine cytology samples (negative, atypical, suspi-
cious, and positive classified by an expert cytopathologist). (b) The average nuclear dry mass for
each patient group. (c)–(f) Application of reflection QPI for assessing 3D nanoscale nuclear archi-
tecture for cancer risk stratification in patients with ulcerative colitis. The figures were adapted from
Ref. 69. (c) and (d) 3D-nanoNAM from a low-risk and a high-risk patient. (e) The 3D-nanoNAM
derived properties projected onto a unit 2-sphere, where most of the low- and high-risk patients lie
on two separate hemispheres. (f) The area under receiving operating curve (ROC) for distinguish-
ing the low- from high-risk patients is 0.87� 0.04. The figures were adapted from Ref. 48.
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QPI also allows for its integration into mobile phones or chip-based devices,70,74 showing its
potential as a low-cost, point-of-care solution for cytological diagnosis. This adaptability makes
QPI a versatile tool, capable of bringing high-quality, diagnostic imaging capabilities to remote
or resource-limited settings, thus broadening the accessibility and impact of advanced diagnos-
tic technologies.

QPI-based imaging cytometry also emerges as a novel solution for point-of-care and
high-throughput diagnostics.70,73 This technique integrates microfluidic chips with QPI, enabling
ultrahigh-throughput, label-free analysis that generates detailed refractive index maps at the sin-
gle-cell level even with some subcellular details, analyzing thousands to hundreds of thousands
of cells per minute.75–77 This approach is particularly effective for analyzing non-adherent cells,
such as those from bodily fluids or fine needle aspirations, eliminating the need for monolayer
cell preparation on coverslips. For example, holographic cytometry has significantly advanced
single-cell analysis by allowing for the detailed profiling of biophysical phenotypes or
AI-assisted analysis across large populations to distinguish different cell types and pinpointing
early-stage cancers78 and identify drug-resistant cancer cells.79

Another significant area of clinical application lies in the use of reflection QPI for detecting
local refractive index variations, which serve as sensitive markers for cancer risk. Cells in the
early stages of carcinogenesis, despite having an increased risk of developing cancer, often do not
display microscopically discernible structural changes and are thus categorized as having the
same pathological phenotype (e.g., normal-appearing or as similar types of precursors).
However, these cells may exhibit distinct molecular characteristics, such as more disrupted
chromatin compaction, indicative of a higher level of genomic instability that can drive
carcinogenesis.80 The detection of such molecular-scale changes in nuclear architecture neces-
sitates a technique capable of identifying local variations in refractive index, which could be
sensitive indicators of changes in chromatin compaction.

Reflection QPI is well suited for this task, particularly in the weakly varying scattering
medium without a strong interface. While it may not capture information about the average
refractive index and might not offer as high an image contrast as transmission QPI, reflection
QPI excels in detecting local variations in the refractive index profile of the sample as a function
of its depth-resolved spatial frequencies.15 Its depth-resolved nature and sensitivity to nanoscale
changes enable the examination of local structural heterogeneity, independent of sample
thickness.13,14 When this method is combined with high-contrast image from transmission
QPI and standard histology, the resulting approach—termed nanoscale nuclear architecture
mapping (nanoNAM)—has demonstrated its ability to distinguish low-risk from high-risk
patients with ulcerative colitis14,48 and Barrett’s esophagus,49 even from normal-appearing or
non-neoplastic tissue, highlighting its potential as a tool for risk stratification and precision
surveillance in a large patient population at increased risk for developing cancer.

Besides the static structural characteristics, measuring cellular dynamics as cancer bio-
markers offers a novel and highly sensitive approach to understanding and assessing cancer cells.
QPI captures the spatial and temporal fluctuation of optical path length and cell mechanical
signatures such as shear modulus and stiffness, which were shown to distinguish cancer cells
with different malignant potential.81–84 Cell deformation and migration, quantitatively assessed
through QPI, enable the measurement of matrix stiffness85 and viscosity,86 offering critical
insights into the dynamic behaviors of cancer cells. These measurements could assist grading
of metastatic potential and development of patient-specific therapeutic strategies. Collectively,
QPI assessment of pathological cells and tissue offers valuable insights in cancer prevention,
diagnosis, and prognosis, leveraging its precise quantitative imaging capabilities to inform
clinical decisions.

3.3 In-vivo Tissue Imaging
Transmission QPI has primarily been applied to cell imaging in samples that are only several
microns thick, largely due to its transmission configuration which optimally captures phase infor-
mation from thin specimens where the transmitted light can pass through with minimal multiple
scattering. However, transmission-like phase information can be obtained using reflection geom-
etry, which is highly advantageous in imaging thick tissue.
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Oblique back-illumination microscopy,87 a form of oblique-field microscopy,22 operates on
the principle that oblique illumination beam introduces asymmetry from the detection pupil,
resulting in phase-gradient image contrast. This light propagates inside the sample, undergoes
multiple scatterings by the tissue, and eventually returns to the detector. This process effectively
transforms what initially appears as back illumination into trans-illumination. This elegant
approach used in reflection geometry can provide information analogous to what one might
obtain with transmission QPI and generate high-contrast images based on the cumulative optical
path length, thus enabling effective phase imaging even in thick tissue samples. As discussed
earlier in the context of 3D QPI, the highest contrast in the phase gradient is achieved at the focal
plane, granting this method with a certain degree of optical sectioning capability. This approach
has been explored to provide histology-like contrast on surgically resected tissue,88 which holds
great potential for real-time tumor margin assessment. This adaptation of QPI for thicker tissue
imaging underscores its versatility and applicability in a range of clinical settings, particularly in
surgical oncology.

4 Challenges and new opportunities

4.1 Molecular specificity
QPI’s unparalleled ability to capture detailed cellular morphology, at nanoscale sensitivity below
the diffraction-limited resolution, in a non-invasive and label-free manner opens up possibilities
for observing phenomena that might not be possible using other techniques. But the lack of
molecular specificity is the most notable limitation of QPI and poses a substantial challenge
in correlating phase image features with its underlying molecular composition of the cells, spe-
cific biological structures, processes, and pathologies—a task that is more directly accomplished
by fluorescence microscopy with its targeted molecular imaging capabilities.

The quest for molecular specificity in QPI imaging has spurred researchers to seek out novel
methods that could bridge this gap. The advent of artificial intelligence (AI) offers a promising
solution to this challenge. By leveraging advanced computational algorithms and machine learn-
ing methods, it is possible to infer molecular information from the complex phase images. By
using training datasets that match fluorescence with quantitative phase images, AI models can
establish connections between QPI signatures and molecular markers. This approach has led to
the identification of specific structural attributes in QPI images that correspond to their fluores-
cent counterparts, effectively providing QPI with an element of molecular specificity.89–91 This
enhancement could significantly broaden the utility of QPI and increase its applicability in
molecular-focused biomedical research. Additionally, AI can convert label-free QPI images into
traditional H&E stained histology-like images,92,93 making the interpretation more intuitive for
pathologists.

However, the accuracy of predicting molecular structures from QPI images often depends on
their level of contrast. Features such as cell nuclei and lipid droplets, which are prominent in QPI,
benefit from this AI-enhanced virtual staining. This process introduces a level of molecular detail
to QPI’s morphological analysis. In contrast, molecular structures with variable contrast due to
cellular functional states may not be as precisely predicted. Therefore, while promising, this
technique must be applied with caution, especially when dealing with novel biological processes
not included in the training dataset or highly heterogeneous cellular states. Such cautious appli-
cation ensures that the AI-assisted phase staining technique remains a reliable augmentation of
QPI’s capabilities within its established biological contexts.

An emerging direction in the QPI field is moving beyond the simple correlation of specific
molecular structures with QPI-derived morphological features or converting QPI data into analo-
gous fluorescence images. The true strength of QPI lies in its unbiased presentation of cellular
and subcellular morphology, not limited by labeled targets. This can then be linked to the func-
tional states of individual cells. Noteworthy examples are the accurate classification of cell cycle
phases,94 the identification of apoptotic cells,95 and the detection of cell death.64 These advance-
ments underscore the QPI’s potential to reveal underlying biological processes in a non-invasive
and label-free manner.
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4.2 Bridging Dynamic QPI Imaging of Cell Morphology with Precision Cancer
Medicine

Cell morphology, the study of cell shape, size, and structure, plays an important role in all stages
of cancer development. Morphological changes in cells are increasingly recognized as a direct,
measurable reflection of the intricate molecular underpinnings of cancer, serving as a window
into the cellular behaviors and transformations that underlie malignancy.96 The dynamic nature of
cell morphology, therefore, becomes a powerful tool in both understanding and combating
cancer.

Building on the foundational importance of cell morphology in cancer development,
dynamic QPI is set to transform morpho-dynamic studies, leveraging its nanoscale precision
and quantitative capabilities. QPI’s ability to provide an unbiased view of cellular and subcellular
morphology at nanoscale sensitivity, when observed over extended periods, captures the complex
narratives of cellular evolution. This includes tracking growth, division, differentiation, malig-
nant transformation and in response to different environmental stimuli, all while preserving the
natural functions of cells. Future advancements in imaging throughput, resolution, and 3D capa-
bilities will further enable the observation of dynamic cellular events with high temporal and
spatial resolution across various spatial scales over a large cell population, allowing for the mon-
itoring of a vast array of cellular processes.

The next significant step is to correlate the rich spatial and temporal data derived from QPI
with the broader context of cellular behavior and ultimate cell fates. Analyzing dynamic mor-
phological characteristics across tens of thousands of cells presents a complex challenge, one that
traditional quantitative analysis using a limited set of morphological metrics may struggle to
address. This is where the emergence of artificial intelligence (AI) becomes instrumental.
The integration of QPI with computational models and machine learning is key in uncovering
cellular characteristics that predict complex behaviors and phenotypes. For example, melanoma
cells with different metastatic potential exhibit distinct dynamic behaviors of morphological
characteristics, which are too subtle for human observation but can be accurately identified
by AI algorithms.97

However, the information about dynamic cell morphology changes over time, while valu-
able, is not sufficient on its own. It is critical to rigorously connect morphological trajectories
with underlying molecular characteristics and phenotypic outcomes. This foundational step
requires integrating morphological data with corresponding spatial multi-omics and high-content
phenotyping for individual cells of the same cell population within their spatial context.
Combined with the analytical prowess of AI and systems biology, this integration offers powerful
capability to predict cell fate decision at various cancer stages and in response to therapeutic
agents.98 The conceptual framework is illustrated in Fig. 6. Once established, high-throughput
morpho-dynamic imaging of patient-derived cell models could find many clinical applications.
For example, it can used to identify early cellular alterations indicative of cancer progression that
precedes the manifestation of traditional biomarkers or guide personalized medicine by matching
therapeutic screening with precise cellular responses to tumors. Thus, integrating dynamic QPI
imaging with the principles of precision cancer medicine could dramatically reshape our
approach to diagnosing, monitoring, and treating cancer.99

4.3 Patient-derived Model Systems
Patient-relevant in-vitro tumor models have become increasingly essential in precision cancer
medicine, evolving significantly from immortalized cancer cell lines to sophisticated organoids.
Traditionally, cancer research relied on immortalized lines, which have been invaluable for study-
ing cancer biology, drug screening, and understanding molecular mechanisms due to their ease of
use and high reproducibility. However, their lack of genetic diversity and cellular heterogeneity
often limits the translatability of research findings to clinical applications.

Primary cancer cell lines, derived directly from patient tumors, retain more characteristics of
the original tumor, thereby enhancing the relevance of in-vitromodels for personalized medicine.
Moreover, the development of 3D models like tumor spheroids and organoids marked a signifi-
cant leap. Tumor spheroids, as 3D cell cultures, replicate the structural, microenvironmental, and
cell interaction complexities of tumors in the body, offering deeper insights into tumor growth,
invasion, and drug resistance mechanisms. In particular, patient-derived organoids, miniaturized
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versions of organs grown in vitro directly from patient tumor samples, stand out as the most
realistic in-vitro tumor models.100–103 They closely resemble the tissue architecture at various
stages of tumorigenesis, cellular environment, and genetic makeup, making them invaluable for
studying tumor biology,104 drug screening,105 and understanding patient-specific responses to
therapies.106–108

QPI has established its utility in assessing the physical properties of 2D cell lines, such as in
studying mass dynamics in response to drug treatments, as previously discussed. While its appli-
cation in imaging 3D spheroids and organoids is still emerging, several promising studies have
begun to showcase its potential. For instance, QPI-based mass dynamics, albeit at a single orga-
noid resolution, have been recently used in bio-printed 3D organoid models of cancer to evaluate
drug efficacy.109 Techniques like gradient light interference microscopy27 and its deep-learning
assisted artificial confocal microscopy110 have demonstrated significant promise in imaging 3D
spheroids. Additionally, ODT has been effective for long-term high-resolution imaging of
3D intestinal organoids.111

The development of high-throughput QPI systems that can achieve long-term, in-depth im-
aging of 3D organoids with sub-cellular resolution and contrast is a critical need in the field. The
semi-transparent, thick 3D organoids introduce technical challenges, as multiple scattering and
refractive index heterogeneity can cause aberrations and degrade image resolution. This com-
plicates the acquisition of high-resolution 3D refractive index maps. To address these challenges,
innovative theoretical models, computational image reconstruction algorithms, and experimental
techniques are being developed.35,112–115 These strategies aim to mitigate the effects of multiple
scattering and enhance imaging depth, such as using iterative back propagation and multi-slice
models from an initial estimate of partial refractive index map to refine the reconstructed 3D
refractive index maps35,112 or solving the inverse scattering problem using the more accurate
theoretical models.115 The integration of physics-based deep learning methodologies with these
techniques is proving to be particularly effective, offering enhanced accuracy in the reconstructed
images.

Fig. 6 Conceptual framework for bridging dynamic QPI imaging of cell morphology to improve
precision cancer medicine. (a) Dynamic morphological changes of cellular and subcellular struc-
tures over an extended period, as shown in this representative image sequence which illustrates
the plastic nature of cell morphology in cells, coupled with (b) spatial multi-omics performed on the
same cell population, and (c) assisted with AI and computational modeling, have the potential to
predict cell fate decisions.

Liu and Uttam: Perspective on quantitative phase imaging. . .

Journal of Biomedical Optics S22705-15 Vol. 29(S2)



Despite these advances, the image resolution and imaging depth remain to be improved to
make QPI truly suitable for imaging 3D organoids and other complex scattering samples. The
computational speed for reconstructing a large 3D scattering object is rather slow. Robust and
accurate cell segmentation methods and software packages for 3D quantitative phase images,
especially for cell aggregates, are still lacking.

The future integration of dynamic QPI with 3D imaging capabilities in these advanced
in-vitro tumor models opens significant possibilities for label-free drug screening. By enabling
non-perturbed analysis, this approach facilitates the identification and selection of the most effec-
tive therapies. The application of dynamic and 3D QPI in innovative tumor models represents a
promising frontier in precision cancer medicine, offering the potential to revolutionize the way
we evaluate and select cancer treatments.

4.4 Clinical Pathology
Conventional pathology has long been the cornerstone of cancer diagnostics, informing the
important aspects of disease identification, staging, and prognosis for over two centuries.
However, the landscape of pathology is undergoing a significant transformation with the advent
of FDA-approved digital pathology platforms that, when fused with the analytical power of AI,
are redefining the paradigms of pathological assessment. Adding to this, the emergence of spatial
biology has become critical to unraveling molecular characteristics in the spatial context of tissue
architecture and microenvironment to guide precision cancer medicine.

Within this evolving framework, QPI offers the potential to refine the diagnostic precision of
traditional histopathology, particularly in areas where conventional techniques show limitations.
The integration of QPI into clinical practice is seen as promising along three avenues: it bolsters
the accuracy of cytological assessments, provides prognostic insights by profiling tissue micro-
environments, and delivers quantitative analysis that enriches the morphological observations of
standard histopathology, aiding in risk assessment of precursors.

QPI aligns well with current clinical workflows, utilizing sample preparations compatible
with those of traditional histopathology or FFPE tissue blocks obtained as the standard of care.
It introduces no disruption, such as the need for additional tissue collection. Transmission QPI
offers enhanced contrast in visualizing tissue architectures, such as the extracellular matrix, that
may be less prominent in conventional histological images. The biggest strength of QPI lies in its
sensitivity to nanoscale structural alterations within cells and tissues, detecting changes that may
precede those detectable by conventional methods. For example, the reflection QPI’s ability to
identify aberrant nuclear architecture in early carcinogenesis as a valuable indicator for strati-
fying patients who may be at highest risk for cancer development.13,14,48,49

Beyond enhancing conventional 2D histopathology, QPI’s potential for 3D volumetric im-
aging addresses a critical need in histopathology for comprehensive 3D tissue evaluation.
Traditional methods, while informative, often overlook the complex 3D microenvironment due
to their reliance on thin tissue sections. While innovative technologies like serial section stitching
(CODA)116 and light-sheet microscopy of cleared tissue117 have made significant progress
towards achieving visualization of large-scale 3D tissue architecture with microscopic details,
they are time-consuming and labor-intensive. Recent advances in label-free 3D volumetric map-
ping through ODT demonstrate QPI’s capability to produce detailed 3D refractive index maps of
tissue.118 This innovation presents a new opportunity for QPI toward realizing efficient label-free
3D histopathological diagnosis.

Moving forward, the combination of spatial biology with QPI’s precise mapping of tissue
architecture and nanoscale details could serve as a new and powerful approach. This integrative
method promises a multi-scale, quantitative characterization of tumors and their precursors,
extending from the molecular to the systemic level, potentially transforming our approach to
precision cancer medicine. The future synergy between AI and QPI also enriches the diagnostic
process and paves the way for advancing multi-modal digital pathology to a new level of pre-
cision and insight.

Nevertheless, the path to its widespread clinical adoption is filled with challenges. A para-
mount challenge is the standardization of QPI protocols. Different types of QPI methodologies
and image reconstruction algorithms can yield variable results. Hence, for a universally accepted
set of procedures and algorithms that guarantee reproducible outcomes, irrespective of the
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laboratory or equipment utilized. Furthermore, clinical samples, inherently highly processed,
necessitate QPI methodologies equipped with robust self-calibration and reference standards
to accurately process and interpret the vast array of sample conditions encountered in a clinical
setting. While QPI holds great promise, its integration into clinical practice will require a con-
certed effort to overcome technical and logistic challenges. Addressing these will ensure that QPI
can become a vital element of contemporary medical practice, offering clinicians a more pro-
found assessment of pathogenesis, and aiding in the delivery of targeted interventions.

5 Conclusion
In summary, QPI is emerging as a promising tool to improve precision cancer medicine. Offering
label-free and nanoscale precision, QPI reveals detailed cellular and tissue structures in 2D and
3D, thereby enabling high-throughput, non-invasive and real-time monitoring of cellular dynam-
ics. This opens new doors for understanding cancer behavior and its response to therapies. The
dynamic imaging capabilities of QPI offer a live, real-time view into cellular processes to thera-
peutic agents, crucial for understanding the complex behaviors of cancer cells and the immediate
effects of therapeutic agents. When integrated into drug screening, QPI’s insights into drug
actions and responses offer a comprehensive understanding of treatment efficacy. Additionally,
the rise of spatial biology and multi-omics provides a multidimensional view of the tumor micro-
environment, and QPI has shown the potential to enhance these approaches by adding a layer of
label-free spatial and morphological context to genomic, proteomic, and metabolomic data, lead-
ing to a more integrated understanding of cancer biology.

Despite its potential, there are numerous technical challenges to overcome for QPI to fully
impact cancer research. Improvement in imaging throughput, resolution, and imaging depth,
especially for 3D patient-derived tumor models, more accurate theoretical models for solving
inverse scattering problems, accelerated image reconstruction algorithms, robust cell segmenta-
tion tools and seamless integration with other imaging techniques are imperative. Additionally,
the development of accessible and user-friendly software for comprehensive image analysis and
the standardization of QPI data analysis will pave the way for its broader application in the
biomedical field. Finally, a proper understanding of label-free contrast images and what they
represent in the heterogeneous context of cancer is currently lacking. Integration of QPI with
other spatial omics approaches will go a long way in overcoming this barrier.

The future of QPI in advancing precision cancer medicine is bright. It holds the promise to
deepen our knowledge of tumor biology, improve diagnostic and prognostic precision, help tailor
treatments to individual patient profiles, and ultimately improve patient outcomes. As we stand at
this technological forefront, the continued development and integration of QPI with cutting-edge
biomedical research and clinical applications hold tremendous potential to transform cancer care.
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