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Abstract. Most previous target detection methods are based on the physical properties of
visible-light polarization images, depending on different targets and backgrounds. However, this
process is not only complicated but also vulnerable to environmental noises. A multimodal
fusion detection network based on the multimodal deep neural network architecture is proposed
in this research. The multimodal fusion detection network integrates the high-level semantic
information of visible-light polarization image in crater detection. The network contains the base
network, the fusion network, and the detection network. Each of the base networks outputs a
corresponding feature figure of polarization image, fused by the fusion network later to output
a final fused feature figure, which is input into the detection network to detect the target in the
image. To learn target characteristics effectively and improve the accuracy of target detection, we
select the base network by comparing between VGG and ResNet networks and adopt the strategy
of model parameter pretraining. The experimental results demonstrate that the simulated crater
detection performance of the proposed method is superior to the traditional and single-modal-
based methods in that the extracted polarization characteristics are beneficial to target detection.
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1 Introduction

In the military field, cameras are usually employed to collect images after a heavy artillery test and
the success of this experiment is determined according to the position of the crater in the image.
However, because of active or passive interference caused by fog, clouds, and glare, traditional
image-based crater-detection methods based on the visible-light band simply cannot meet the basic
needs of military research. Detection based on images with polarization1 is a new approach in which
a photoelectric imaging device is used to obtain the target scene radiation, spatial information, spec-
tral information, and polarization information.2 The evaluation requirements can be initially met
using the difference in polarization characteristics between the target and the background to extract
the target object. However, this process3 is complicated, cumbersome, and usually inaccurate.

Recently, researchers have focused on detecting targets in polarization images using physical
information such as polarization, texture, and spectral information. We visualize some of the
physical features in Fig. 1, where Fig. 1(a) presents a texture image produced using the local
binary pattern (LBP) algorithm4 from a visible-light polarization image, and Fig. 1(b) presents
a polarization image of the visible light using the Stokes equation.5 Previous target detection
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methods employing visible-light polarization images can be divided into two categories: meth-
ods based on prior information6–10 and methods based on external devices.11–13 Early methods,
such as polarization information fusion enhancement,6,8 multiband fusion priors,10 and algorithm
prior optimization,14 mostly use prior parameter estimations of the polarization characteristics. In
contrast, external device-based methods obtain these parameters from external conditions, which
mainly depend on the visible-light polarization detection system and are based on its mechanical
design. These methods are based on the physical information of the image and tend to lose
detailed information and focus only on certain feature information. Therefore, the target location
cannot be detected accurately in different scenarios. In this study, we obtain these parameters
from training data using a deep learning-based approach and an improved multimodal network.

Fig. 1 (a) Example images of the texture diagram of the polarized image of visible light; (b) exam-
ples of the visible polarization image representing polarization information through the Stokes
equation. (a) Texture image and (b) polarization image.
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Multimodal deep learning15 has been used successfully in audio-visual classification
as well as in shared-representation learning. Multimodal networks are currently used for target
detection in synthetic aperture radar images; for instance, in Ref. 16 in which a multiscale
convolutional neural network (CNN) model is used to extract the features learned by
multiscale training directly from the image patches to detect built-up areas. Furthermore, Ref. 17
proposed a deep fusion network by adding more base networks and focusing on how they are
integrated.

In this study, our goal is to accurately detect a target crater in visible-light polarization
images. To achieve this aim, some existing methods11–13,18 change the equipment and configu-
ration of the camera, for instance, by employing liquid crystal variable retarders.18 Others19–24

rely on analyzing the polarization characteristics to highlight the target. The above methods
solely focus on learning knowledge representation from a single modality, yet neglect the com-
plementary information from others.25

In the proposed method, we obtain and represent the polarization information of the visible-
light polarization image using the Stokes equation and the LBP algorithm, respectively. Because
the resultant images have a wealth of semantic information, we use a neural network for further
processing. That is, we utilize a CNN to learn the target features in the multisource information
image, extract semantic information, fuse features, and ultimately detect the target accurately. In
contrast to previous methods, we not only use physical information, but also high-level semantic
information. In addition, our method can fully automatically detect and mark the location of
a target crater in an image.

We present the following contributions in this paper: (1) we collected many real images of
simulated craters through a large number of experiments and created a comprehensive dataset
consisting of six small datasets based on the physical information of the polarized images.
(2) We propose a multimodal fusion detection algorithm that combines the physical information
and semantic information of polarized images to detect craters effectively. (3) Our proposed
algorithm can quickly and accurately detect craters and mark them automatically. (4) We obtain
a lightweight fusion model through experiments comparing different base network frameworks
that can be used to efficiently perform target detection tasks.

2 Related Work

Several methods have been proposed to solve the problem of target detection in visible-light
polarization images. Some require additional information. For instance, in a polarization imaging
detection system, Ref. 18 used a liquid crystal variable retarder as a phase delay device. After the
image was acquired by the detection system, targets were detected to obtain their contours and
partial details. The system proposed in Ref. 19 used the differences in the polarization character-
istics of a target and the background to design a visible-light polarization detection system based
on a double line polarizer. Alternatively, Ref. 20 proposed a noncontact road condition detection
method that is illuminated by a near-infrared quartz-halogen tungsten lamp. Using a rotating
polarizer, images of four polarization direction components were sequentially collected, and then
the degree of linear polarization was extracted to detect road conditions (such as icy, wet, and
dry surfaces). These methods rely on certain external experimental conditions.

Many methods extract polarization information from visible-light polarization images using
the Stokes equation and then fuse certain features of that information to detect targets. In Ref. 21,
a calculation based on the Stokes vector and Mueller matrix was proposed that can determine the
degree of line polarization in an arbitrary polarization direction. A system for the detection of
polarization for low-illumination camouflage targets in multiple directions was implemented.
Zhao et al.22 used a polarization image enhancement method based on Stokes parameters to
improve the detection and recognition rate of targets. In Ref. 23, the Stokes vector was used
to calculate the polarization angle and degree of each polarization image based on the least-
squares method to obtain the polarization degree image. At the same time, the local entropy
was extracted from the polarization image and thresholded to obtain a binary image. The polari-
zation degree image and binary image were synthesized to create a composite image that was
then decomposed into binary connected domains for target detection.
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There are also several methods that use image spatial information and feature fusion. For
example, to improve the quality of visible images and the detection rate of artificial targets
hidden in natural backgrounds, Ref. 24 proposed a method based on polarization imaging that
could highlight artificial targets and provide more details and texture information. The authors of
Ref. 26 applied hue, saturation, value-RGB image fusion technology to a polarization correla-
tion-based imaging system and effectively fused multiple polarization images to comprehen-
sively describe target structure and improve target detection and recognition efficiency. In
Ref. 27, using multidimensional information from polarization images, a method of suppressing
image background based on fused polarization information was proposed for target detection
against complex cloud or sea backgrounds.

These previously proposed methods are all based on the physical information of images and
prior knowledge. Our proposed approach in this work is fundamentally different in that we
employ the physical information of images as a training dataset and then use deep learning to
train the model to collect data of the multimodal target information in these images for automatic
target detection.

3 Proposed Method

Most previous deep learning methods depend on single-modal image input and hence require
a complicated process to learn effective feature representations and detect the target. Here,
we propose a multimodal fusion detection algorithm that is based on the characteristics of
visible-light polarization.

Our proposed method can be divided into four main steps. First, the physical information of
the visible-light polarization image is obtained by the Stokes equation and the LBP algorithm
and used as input to the base networks. Second, target features in the three images are extracted
simultaneously through three identical CNNs and the semantic information of the target in the
image is learned, thereby reducing the network training time. Third, the output feature images of
these three networks are fed into the fusion network. These images are fused and more features
are extracted. Finally, the output is fed to the detection network to detect the target in the image.
In addition, we used a pretrained model and fine-tuned it to improve the network computational
speed and detection accuracy, as explained in detail below. Figure 2 shows the overall multi-
modal fusion detection network architecture.

Fig. 2 Multimodal fusion detection network architecture. Different colors represent various layers
and the plus sign indicates fusion. The architecture consists of three convolution networks: a base
network, fusion network, and detection network. The inputs are three images, and they are con-
verted into features by the base network. The three features are fused by the fusion network to
obtain the fused feature, which is then input to the detection network to detect the target.
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3.1 Data Input

In the network, the input data consist of either real images of simulated craters, which consists of
images captured by a visible-light polarization camera, or images converted from the simulated
crater dataset. The dataset is introduced in Sec. 4. We labeled all images in the dataset. For each
target detection, three images containing different types of target information were input into
the base network to extract the features.

3.2 Base Network

First, the CNN part of a VGG28 network was adopted as the base network of our multimodal
network for training. We used very small 3 × 3 receptive fields for convolution with each pixel of
the input. However, in the experiment, the training speed was slow because there were too many
model parameters. For the final network, we choose a ResNet29 network with batch normali-
zation layers and activation layers as the base network of the multimodal network. Experiments
showed that the output feature of the ResNet-4 network contains the most discriminative infor-
mation and yields the best detection performance.

Figure 3 shows the network architecture of a residual block, and Fig. 4 presents the
network architecture of the base network. Each residual block has a batch normalization layer
and an activation layer to avoid the disappearing gradient problem and speed up learning.
The architecture of each residual block is the same. Res2, Res3, and Res4 stages are composed
of res_units (residual blocks), which extract the initial features of the image and sharpen the
edges in the image.

Fig. 3 ResNet50 res_units network architecture. f1 represents the input filter numbers, k is the
kernel, s is the stride, and p is the padding.

Fig. 4 Base network architecture. k is the kernel, s is the stride, p is the padding, Res2, Res3, and
Res4 uses the res_units as the parameters. (a) Simulated crater dataset, (b) IQU dataset,
(c) I dataset, (d) Q dataset, (e) U dataset, and (f) P dataset.
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3.3 Fusion Network

Our fusion network is similar to a deep fused network17 architecture and a deep fusion
network is multi-input. Network fusion is a process of combining multiple base networks, such
as K base networks fH1

L1
; · · · HK

LK
g. The conventional fusion, in general, includes two

approaches: feature fusion, fusing the feature representations extracted from the networks
together, and decision fusion, fusing the scores computed from the networks. Our method
focuses on feature fusion and the fusion can be formulated in the function form Hðx0Þ ¼
F½H1

L1
ðx0Þ; : : : :; HK

LK
ðx0Þ�, where the fusion function Fð:Þ, in our method, is the sum of the

representations:

EQ-TARGET;temp:intralink-;e001;116;615F½H1
L1
ðx0Þ; : : : ; HK

LK
ðx0Þ� ¼

XK
k¼1

HK
LK
ðx0Þ: (1)

3.4 Detection Network

In the target detection network, the detection network of faster region-CNN (Faster R-CNN)30 is
used. Faster R-CNN is a two-stage detector mainly consisting of three major components: shared
bottom convolutional layers, a region proposal network (RPN), and a region-of-interest (ROI)-
based classifier. In our method, we only use the two components of RPN and ROI.

First, feature figures are a shared bottom feature figure. Based on that feature figure, RPN
generates candidate object proposals where afterward the ROI-wise classifier predicts the
category label from a feature vector obtained using ROI pooling. The training loss is composed
of the loss of the RPN and the loss of the ROI classifiers:

EQ-TARGET;temp:intralink-;e002;116;446Ldet ¼ Lrpn þ Lrot: (2)

Both training losses of the RPN and ROI classifiers have two loss terms: one is to classify
the accuracy of prediction probability and the other is a regression loss on the box coordinates for
better localization.

3.5 Transfer Learning

Neural networks are trained with data. They obtain the information from the data and convert this
information into the corresponding weights. These weights can be extracted and transferred to
other neural networks, which enables us to “transfer” these learned features without having to
train another neural network from scratch. Some researchers use a VGG16 or VGG19 pretrained
model to perform the initial training on a network. According to the characteristics of the visible-
light polarization image, we input visible-light polarization images into a single-model network,
extract the features in the network, and train the single model. We use this model as the
pretrained model of the multimodal fusion network. Because the pretrained model has good
generalization performance, we can use an analogous structure and the weights directly when
training using the new dataset to improve the accuracy of target detection.

4 Experiments

In this section, we present the experimental details, experimental results, and discuss the results
of other methods. Our experimental datasets are obtained from real images taken by cameras.
Of the possible cameras we used the polarization spectrometer and the camera of a spectrometer
polarization imaging detection system. The camera operating mode is simultaneous imaging
with a single channel; the polarization directions are 0 deg, 60 deg, and 120 deg; and the imaging
band was 400 to 1100 nm.
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4.1 Datasets

We collected visible-light polarization images of craters that we simulated at a test site to verify
our methods. The ground types of the test site include soil, sand, grassland, and other types. We
created a simulated crater and used the visible-light polarization camera from different angles
and different heights to obtain images for the simulated crater dataset, which is also called the
uncharacterized dataset. Using the Stokes equation, the images in the simulated crater dataset
were processed and used to create a dataset called the incident light intensity and linear polari-
zation information (IQU) dataset, which belongs to the characterized dataset. Using the LBP
algorithm, the texture images corresponding to the simulated crater dataset were also obtained.
We combined the IQU dataset and texture diagrams with the simulated crater dataset and
processed them to get four semicharacterized datasets: the I dataset, Q Dataset, U dataset, and
P dataset. The Stokes equation expression is as follows:

EQ-TARGET;temp:intralink-;e003;116;585I ¼ 2

3
½Ið0 degÞ þ Ið60 degÞ þ Ið120 degÞ�; (3)

Fig. 5 Some of the images in the six datasets used in experiments are shown: (a) uncharacterized
dataset, (b) characterization dataset, (c), (d), (e), and (f) the semicharacterization dataset.
(a) Visible light polarization image, (b) polarization image, (c) polarization feature image, (d) mean
fusion image, (e) Laplace fusion enhancement, (f) wave fusion enhanced, (g) Brovey fusion
image, (h) multifocus fusion enhancement image, and (i) our method.
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EQ-TARGET;temp:intralink-;e004;116;735Q ¼ 2

3
½2Ið0 degÞ − Ið60 degÞ − Ið120 degÞ�; (4)

EQ-TARGET;temp:intralink-;e005;116;691U ¼ 2½Ið60 degÞ − Ið120 degÞ�ffiffiffi
3

p ; (5)

EQ-TARGET;temp:intralink-;e006;116;655P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þU2

p
I

: (6)

In the equation: Iðθ degÞ represents a polarization image of the polarizing plate at a rotation
angle of θðθ ∈ ½0 deg; 360 deg�Þ, I is related to the incident light intensity, Q is related to the
linear polarization information in the 0 deg, 60 deg, and 120 deg directions, U is related to the
linear polarization information in the 60 deg and 120 deg directions, and P is the degree of
polarization.

The simulated crater dataset contains 2403 visible-light polarization images and the IQU
dataset contains 2403 characterized images. Moreover, the I dataset contains the simulated crater
dataset, corresponding texture images, and 801 I images; the Q, U, and P datasets are similar to
the I dataset, except that I images are replaced by the Q, U, and P images, respectively, As is
shown in Fig. 5.

4.2 Training Parameters

We trained all networks on a NVIDIA Geforce GTX 1080 Ti GPU. The proposed framework
was implemented using the MXNet toolbox. The size of the input images was 256 × 256. The
network was trained with a minibatch size of 16, a learning rate of 0.001, 10 training epochs,
and a learning rate decay every seven epochs. Further, the optimization method was the Adam
optimizer. These parameters were constant in our experiments. We used 80% of the images in
the dataset as a training dataset and the remaining 20% of the images as the test dataset.

5 Result

5.1 Traditional Polarization Detection Experiments

In Fig. 6, we show the target detection results obtained by different methods, where the final
image was obtained using our proposed method. It can be concluded from Fig. 6 that the test
results obtained by the previous methods require manual observation, but our method can
automatically and accurately detect the target and mark the target area.

5.2 Single-Modal Experiments

The results obtained by our method and single-modal methods for the simulated crater dataset
are compared. The single-modal networks consist of a faster R-CNN (VGG) network, faster
R-CNN (ResNet) network, and the Yolov331 network. The resulting models were validated
on a test dataset, as shown in Table 1.

According to the precision and mean average precision (mAP) metrics, our model obtains
better results than most previous methods. In addition, because two base networks are used in
the proposed network, the two models generated are different in size. The ResNet50 network is a
better base network than the VGG16 base network. Moreover, its detection precision is higher
and model size is smaller, so we obtain a better lightweight network model. In addition, this
result demonstrates that using a multimodal network framework and base network to extract
features and fuse them to detect targets is effective.

5.3 ResNet50 Fused Experiments

In order to get the feature figure with the most target information, we find out which stage of
ResNet50 has the best fusion effect based on the receptive field32 formulation:
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EQ-TARGET;temp:intralink-;e007;116;126lk ¼ lk−1 þ
�
ðfk − 1Þ �

Xk−1
i¼1

si

�
; (7)

where lk−1 is the receptive field of layer k − 1, fk is the filter size (height or width, but assuming
they are the same here), and si is the stride of layer i.

Fig. 6 Above nine pictures in order: the first eight images are obtained by using the previous
methods of image fusion to detect the simulated crater, and the last one is generated using our
proposed method to detect the simulated crater in the image. (a) Original image, (b) simulated
crater real box, (c) faster R-CNN (VGG) test image, (d) faster R-CNN (ResNet) test image,
(e) FV1 test image, and (f) FR1 test image.
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We hypothesize that if the receptive field of the output in the ResNet_4 network covers the
original image, the precision will be maximized. We used the IQU dataset as the input dataset to
verify this. The ResNet50 network was split into five parts, namely ResNet_1, ResNet_2,
ResNet_3, ResNet_4, and ResNet_5. The features of each stage were outputted and then ana-
lyzed. The five results are shown in Table 2. The detection precision increases gradually after
each of the outputs of ResNet_1, ResNet_2, ResNet_3, and ResNet_4 is fused. However, when
the feature output by ResNet_5 is fused, the detection precision decreases. Therefore, the output
of the fourth layer of the ResNet network is the best.

5.4 Multimodal Experiments

For each labeled image in each training dataset, three images with different modals were input to
the three networks in the base network to obtain three base network features. The outputs were
then fed into the fusion network and detection network. Continuous learning in the network
generated the final model. We then verified the multimodal-fusion detection model on the veri-
fication dataset, and the results show that the precision obtained is better than the precision of
the single-modal model.

The model test results for 12 experiments are shown in Table 3. We used precision, mAP, and
model size to evaluate our results. Moreover, we set the intersection over the union (IoU) thresh-
old to 0.8 in the experiment. When IoU ≥ 0.8, the simulated crater is correctly detected. As can
be observed in Table 1, the test precision of the multimodal fusion detection model is higher than
that of the single model. In Table 3, FV represents our method to use VGG16 base networks, CS
represents simulated crater dataset, FR represents our method to use ResNet50 base networks.
Therefore, FV–CS and FR-CS are experiments using simulated crater datasets, FV-IQU and FR-
IQU are experiments using the characterized datasets, and the rest are experiments using semi-
characterized datasets. As can be seen from Table 3, the best precision is obtained in the FV-IQU
and FR-IQU experiments using the visible-light polarization images characterized by the Stokes
equation. These experimental results show that the polarization information is beneficial for

Table 2 Using ResNet50 as the base network, it is judged that the
fusion of feature diagrams in a certain part of the base network can
make the best detection effect, and five experiments have been
carried out and the precision rates have been obtained.

Method Precision (%)

ResNet_1 79.42

ResNet_2 80.34

ResNet_3 83.75

ResNet_4 88.60

ResNet_5 84.68

Table 1 Experimental comparison table of the simulated crater dataset. FV represents our
method to use VGG16 base networks, FR represents our method to use ResNet50 base networks.

Method Precision mAP Model size

Faster R-CNN (VGG) 66.58% 64.31 546.8 MB

Faster R-CNN (ResNet50) 69.78% 66.06 113.3 MB

Yolov3 68.63% 65.92 246.3 MB

FV 71.35% 67.43 1.5 G

FR 78.50% 69.05 198.3 MB
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target detection. In the multimodal-fusion detection network, the detection results using the
ResNet50 base network are better than those using the VGG16 base network. Moreover, we
use two different base networks to obtain different model sizes. The size of the network model
generated by the VGG-based network was 1.5 G, and the model size obtained by ResNet50-
based network was 198.3 MB, which is a factor of 7.7. Hence, it is possible to obtain a lighter
multimodal fusion detection model. We, therefore, conclude the following: in multimodal fusion
detection networks, polarization information is beneficial for target detection in visible-light
polarization images. At the same time, the use of different base networks for target detection
leads to different performances.

5.5 Qualitative Results on a Visible-Light Polarization Image

Our trained multimodal fusion detection model was tested on the images of the simulated crater
dataset. Figure 7 shows the detection results of a visible-light polarization image. The red boxes
represent the true position and size of the crater, and the blue boxes indicate the coordinates
predicted by various models. We selected a visible-light polarization image taken on sand for
detection. There is a clear difference between the target and background in images taken of
craters on soil and grass, but the sand is light in color and reflective, so a target in sand is difficult
to accurately detect. However, the use of this challenging image better demonstrates that our
method can accurately detect targets in images.

Figure 7(a) shows the original image of the simulated crater, where the crater is located in
the top right of the image. Figure 7(b) shows the ground truth. Figures 7(c) and 7(d) both show
the prediction results of a single-modal method. In these images, the red and blue boxes do not
overlap much, indicating that the prediction results are poor. Figures 7(e) and 7(f) are the results
of our method. Here, the overlapping parts of the two boxes are large. These figures show that the
multimodal fusion detection model using the ResNet-based network better detects the simulated
crater. These results demonstrate that our proposed multimodal fusion detection networks can
take full advantage of multiple types information provided by visible-light polarization images.
Of these proposed models, the lightweight multimodal fusion detection model yields the best
detection performance on the simulated crater dataset.

Table 3 FV-SC represents the use of a VGG16 base network to experiment with simulated crater
dataset. Similarly, FR-SC represents the use of the ResNet50 base network to experiment with
simulated crater dataset. Therefore, the name of after ‘-’ represents used the dataset, and before ‘-’
represents the used method.

Data type Method Precision (%) mAP Model size

Uncharacterized dataset FV-SC 71.35 67.43 1.5 G

FR-SC 78.50 69.05 198.3 MB

Characterized dataset FV-IQU 80.88 70.87 1.5 G

FR-IQU 88.60 75.63 198.3 MB

Semicharacterized dataset FV-I 78.93 69.93 1.5 G

FR-I 85.99 73.02 198.3 MB

FV-Q 78.01 69.96 1.5 G

FR-Q 89.10 76.28 198.3 MB

FV-U 74.72 68.77 1.5 G

FR-U 63.85 61.09 198.3 MB

FV-P 79.68 70.41 1.5 G

FR-P 86.45 73.56 198.3 MB
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6 Conclusion

In this paper, a multimodal-fusion detection algorithm based on a multimodal network
architecture was proposed. Its aim is to accurately detect targets in visible-light polarization
images. ResNet50 was selected as the base network to extract multiscale features of the target
in the input image. Then the target features were fused using the fusion network, which obtains
a target multifeature output. Finally, the detection network is trained and the target is detected.
The experimental results show that precision of target detection can be improved by adding
polarization features, and the multimodal-fusion detection network can effectively detect targets
in visible-light polarization images. Of the evaluated approaches, the lightweight multimodal
fusion detection model has a good detection performance on simulated craters in visible-light
polarization images.
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