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Abstract

Purpose: Detection of Alzheimer’s disease (AD) on magnetic resonance imaging (MRI) using
convolutional neural networks (CNNs), which is useful for detecting AD in its preliminary
states.

Approach: Our study implements and compares several deep models and configurations,
including two-dimensional (2D) and three-dimensional (3D) CNNs and recurrent neural net-
works (RNNs). To use a 2D CNN on 3D MRI volumes, each MRI scan is split into 2D slices,
neglecting the connection among 2D image slices in an MRI volume. Instead, a CNN model
could be followed by an RNN in a way that the model of 2D CNN + RNN can understand the
connection among sequences of 2D image slices for an MRI. The issue is that the feature extrac-
tion step in the 2D CNN is independent of classification in the RNN. To tackle this, 3D CNNs
can be employed instead of 2D CNNs to make voxel-based decisions. Our study’s main con-
tribution is to introduce transfer learning from a dataset of 2D images to 3D CNNs.

Results: The results on our MRI dataset indicate that sequence-based decisions improve the
accuracy of slice-based decisions by 2% in classifying AD patients from healthy subjects.
Also the 3D voxel-based method with transfer learning outperforms the other methods with
96.88% accuracy, 100% sensitivity, and 94.12% specificity.

Conclusions: Several implementations and experiments using CNNs on MRI scans for AD
detection demonstrated that the voxel-based method with transfer learning from ImageNet to
MRI datasets using 3D CNNs considerably improved the results compared with the others.
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1 Introduction

Alzheimer’s disease (AD) is a fatal irreversible, progressive neurodegenerative disorder that
causes brain cells to waste away and die. Typically, AD begins in middle/old age, with protein
accumulation inside/around neurons. The most prevalent and one of the early symptoms of AD is
problems remembering new things, since AD-related changes usually begin in the brain parts
charged with learning. Symptoms include, but are not limited to, behavioral changes; deep con-
fusion regarding time, events, and places; and doubts about family members and friends. They
usually develop slowly and worsen over time, leading to a continual deterioration in memory and
difficulty in swallowing, talking, and walking.1–3
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AD is the prevalent dementia type, which includes about 60% to 80% of the total cases of
dementia.1 Dementia refers to severe loss of memory and other cognitive capabilities that inter-
fere with daily life. It is estimated to have affected about 50 million people in the world and
459,000 Australians in 2020.1,4 The statistics are estimated to almost double every 20 years.5

Dementia is the second leading cause of death among Australians, accounting for 15,016 deaths
in 2019.6

Despite exploring various treatments for preventing or slowing AD, the success rate has been
low, particularly in the latest phases of the disease.7 Studies indicate that AD-related changes in
the brain might begin about 20 years before symptoms emerge.1 Therefore, there is a time gap
that could be highly valuable to slowing AD’s progression. Early detection of AD extends the
independence of patients for a longer period. Recent research may enable greater comprehension
of the disease and improvement of new treatments.2,8

In practice, AD detection is based on checking brain scans, a clinical assessment, and asking
questions of the patient and their relatives.9,10 This process is usually challenging because of the
limited knowledge in identifying the parts of the brain affected by AD. Moreover, AD symp-
toms, like brain shrinkage, can also be observed in healthy, elderly normal control (NC)
groups.11 In the last two decades, a wide range of studies has been performed to detect AD
using artificial intelligence. Common classification algorithms in machine learning, such as neu-
ral networks and support vector machines (SVMs), have been applied to brain scans such as
positron emission tomography (PET) and magnetic resonance imaging (MRI). Detecting AD
using these algorithms is difficult for scholars because of the low image quality, issues of brain
segmentation and preprocessing steps, the absence of a database with a sufficient number of
subjects, and the complexity of medical images. Successful classification necessitates a robust
power to distinguish specific features in similar brain images.12 In a systematic literature
review,13 18 of 114 reviewed studies compared deep learning models with machine learning
models. They all reported the superiority of the former. Therefore, in this paper, we only inves-
tigate and compare deep learning models.

The rise in the computation capacity of graphics processing units (GPUs) has supported the
evolution of modern and innovative deep learning algorithms. As a subgroup of machine learn-
ing, deep learning models analyze data processing and pattern recognition in the human brain to
solve complicated decision-making tasks. Deep learning approaches have enhanced intelligent
systems in numerous areas.14 Research on medical images has been encouraged by deep learning
methods in applications using two-dimensional (2D) natural images.15,16 Among deep learning
models, convolutional neural networks (CNNs) have recently demonstrated revolutionized out-
comes in disease detection and organ segmentation.17 In contrast to traditional machine learning
methods, CNNs can merge three main steps of classification: feature extraction, feature selec-
tion, and classification. It was recently stated that CNNs are the most frequently used method—
about 70%—for AD detection.13

MRI is the most extensively utilized biomarker for the detection of AD using deep learning.
It has been used in more than 80% of AD detection studies in single-modal approaches.13 This
paper plans to use MRI scans to classify AD patients from NCs using CNNs. We aim to use
CNNs to uncover latent representations, discover relationships among slices of images, and rec-
ognize patterns related to AD in brain scans. Our research’s main contribution is to expand the
idea of transfer learning from 2D images to three-dimensional (3D) MRI scans. Hence, learnable
parameters from 2D CNNs are transferred to 3D CNNs. To begin, the related work is first out-
lined to present the structure of CNNs and the background of employing 2D and 3D CNNs in
AD detection using neuroimaging. Next, different types of CNNs in 2D and 3D approaches to
manage MRI volumes with or without transfer learning are examined in detail. Subsequently, our
proposed deep model for introducing the concept of transfer learning to 3D CNNs is explained.
Finally, experimental results are discussed, followed by the conclusion.

2 Related Work

Given that the inputs are in the form of a vector, which is followed in many other algorithms
using multi-layer perceptron, vectorization ruins the structure information of surrounding voxels
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or pixels in images. CNNs are regarded as the most outstanding deep models for analysis of
images. The brain’s visual cortex is the inspirational source for CNNs. CNNs are designed
to understand spatial information of images by stacking several convolutional layers to extract
more abstract features.17 Further, in contrast to multi-layer neural networks, there are signifi-
cantly fewer parameters in CNNs because of shared weights in convolutional layers and the
presence of pooling layers.17

Despite the initial success of CNNs,18 their extensive application has not been realized until
recent years—various novel approaches and computer systems have been developed to train
them efficiently.17 CNNs attracted great attention after they succeeded in the ImageNet compet-
itions, for which they were successfully employed for a classification task on a database with
about one million images with 1000 various classes.19 This section aims to overview the basic
concepts, architectures, and application of CNN models used in AD detection.

2.1 CNN Architecture

Typical CNNs consist of several layers, including but not limited to convolutional layers, acti-
vation layers, pooling layers, fully connected layers, and a Softmax layer. A CNN is trained as
follows: a forward step computes the loss cost between ground-truth labels and predicted outputs
and then a backward step applies penalization on learnable parameters. The performance of the
CNN depends mainly on the architecture of the layer and the filters’ settings, leading researchers
to focus on developing different architectures to improve performance. Here the key elements in
a CNN architecture are explained.

2.1.1 Convolutional layers

A convolutional layer is the first and underlying layer in the architecture, in which the con-
volution of an input image with a kernel is conducted, and feature maps are produced.
Discriminative scale/shift-invariant features of local areas in the image are extracted by the
first convolutional layers of deep CNNs. The last convolutional layers enable task-specific
classification through the extracted features. The key benefit of convolutional layers is the
weight-sharing idea in the same feature map, which decreases parameters and leads to model
simplicity.20

2.1.2 Activation layers

A non-linear activation function such as a Sigmoid, Tanh, or ReLU typically follows convolu-
tional layers to create a feature map corresponding to each filter. Introducing non-linearity allows
models to learn complex representations. Old-style activation functions were in the form of a
Sigmoid function, but this function’s saturation property leads learning algorithms to operate
poorly in the neural networks’ training process. To solve this problem, ReLU turned out to
be useful and popular. It was employed in most of the studies,13 although Sigmoid or Tanh use
is still widespread. ReLU applies an element-wise activation function maxð0; xÞ. The training
time using ReLU was reported to be considerably faster than that of Tanh and Sigmoid.21

However, to solve the issue of zero gradients in gradient-based learning algorithms, leaky
ReLU was suggested with the output value of 0.01x for the input value of x < 0 instead of forcing
negative values to 0.22

2.1.3 Pooling layers

A pooling layer is the third layer type that appears after convolutional layers. This layer performs
the input feature map’s down-sampling via the replacement of each area with its average or
maximum. Pooling helps reduce the parameter number in a network and, simultaneously, retain
the most influential features. Average pooling was often used historically,23 but it has recently
fallen out of favor compared with the max-pooling operation. Max pooling has been shown to
have faster convergence and better classification performance; it can select superior invariant
features and improve generalization.22,24
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2.1.4 Fully connected layers

The fourth type of layer is the fully connected layer with a performance similar to that of tradi-
tional neural networks. It contains a large portion of learnable parameters in a CNN.20 Following
the previously mentioned chain of layers, feature maps are flattened to a vector, in which they are
no longer spatially positioned. Then a fully connected layer is added. Fully connected layers are
connected to the previous layer’s feature elements. They help to understand non-linear associ-
ations among the local features extracted by convolutional layers.

2.1.5 Softmax layer

The Softmax layer categorizes subjects by selecting the highest anticipated probabilities of each
category. The vector’s largest value is underlined by the Softmax function, while the lower
values are considerably suppressed.

2.2 CNN Models in the Literature

Deep learning approaches in AD detection using neuroimaging can be divided into two types:
unsupervised and supervised.13,20 Unsupervised models try to obtain an abstract representation
from images. A typical unsupervised method comprises an auto-encoder (AE) for feature extrac-
tion and an SVM as the classifier. Nevertheless, supervised methods are more prevalent in the
literature than are unsupervised methods. Feature extraction and classification are combined as a
single entity in supervised approaches. As discussed previously, CNNs are the most used model
for AD detection in deep intelligent systems.

The preference in some studies is to design the CNN structure.25,26 Nevertheless, employing
notable structures such as LeNet,18 AlexNet,27 CaffeNet,28 VGGNet,29 GoogLeNet,30 ResNet,31

DenseNet,32 and Inception33 can be helpful. According to previous studies and ImageNet com-
petitions, these models have been successful in image classification.20 This section explains the
employed 2D/3D CNN models in the literature and the weight initialization process.

2.2.1 2D CNNs

CNNs were initially proposed to recognize patterns from 2D images. Although 3D CNNs can
classify 3D brain scans, they need many parameters compared with 2D CNNs.34,35 Therefore,
using 2D CNNs is more common than using 3D for AD detection using 3D brain scans.13 By
dividing the MRI volumetric data into 2D image slices, 2D information can be extracted from
3D images. Assuming that certain features of interest in 3D MRIs are preserved in 2D images,
this process reduces the number of parameters in CNNs. Here different deep models using
2D CNNs are reviewed.

Generally, 2D CNNs capture the middle part of brain scans as the input data and ignore the
remainder. Some studies extract gray matter (GM) tissue as the input data. Research studies use
standard planes of brain scans, such as the sagittal, coronal, or axial planes. The axial plane is the
most widely used plane.13 Farooq et al. employed axial slices of MRI (GM) so that slices were
eliminated from the beginning and end, where there is no information. They implemented 2D
CNNs based on GoogLeNet, ResNet-18, and ResNet-152.36 Valliani and Soni37 employed the
median axial slice of subjects to train ResNet-18. Farooq et al. used 166 axial slices of MRI
(GM) to train GoogLeNet, and ResNet-152.38 Seven 2D CNNs on seven groups of 2D images
slices (five mid-axial slices in each group), each consisting of three convolutional layers, was
proposed by Luo et al.39 In this study, a subject was classified as AD when at least one of the
classifiers categorized it as AD.

After discarding the first and the last axial slices, assuming them to be without anatomical
information, Wu et al.40 combined every three neighboring slices into an RGB color image to
train CaffeNet and GoogLeNet. By removing the last 10 axial slices from MRI (GM) and slices
with 0 mean pixels, LeNet and GoogLeNet models were used by Sarraf and Tofighi for AD
detection.41 In two other studies, a sorting mechanism based on entropy was proposed to select
the most informative slices from the axial plane of each MRI scan.42,43 The highest entropy
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computed from the histogram was associated with the most informative slices. The slices were
then used to train VGGNet-16 and Inception-V4.

Gunawardena et al.44 used several image slices from the coronal plane to train a 2D CNN
with two convolutional layers. This work showed that a brain scan’s coronal view covers the
essential brain parts related to AD. The coronal view offers a discriminative advantage that was
depicted by Wang et al. with DenseNet-121.45 All planes were used, and the coronal plane was
selected as the most accurate. In another study, 20 mid-coronal slices were employed for training
a 2D CNN based on VGGNet-16.21 Sagittal slices were also employed to train a 2D CNN with
two convolutional layers46 or six convolutional layers.22

The use of all three planes of 3D brain scans can offer complementary features useful for our
classification process. Thus some research considered all image planes. Islam and Zhang47

designed three 2D CNNs for three views. Each CNN comprised 4 dense blocks (12 convolu-
tional layers in each) and 4 convolutional layers; the final classification was done by majority
voting. In another multi-view study, different 2D CNNs (such as GoogLeNet, AlexNet, ResNet,
and VGGNet) were employed with and without long short-term memory (LSTM).48 LSTM is
considered a type of recurrent neural network (RNN) with a more complicated structure.
No significant differences have been reported among all views, and multi-view models were
reported to have higher accuracy than were single-view models.48 The most critical disadvantage
of multi-view approaches is that they could lead to ambiguity in the final decision.

2.2.2 3D CNNs

Given that MRI scans are 3D images, and a spatial relationship exists among 2D image slices,
using 3D CNNs is the trend. The most direct method for AD detection is to take the entire MRI
scan as the input. However, a large number of parameters are involved in training on a small
dataset, which could lead to overfitting.49 In straightforward methods, 3D CNNs with 550 and
1251 convolutional layers were proposed; 3D CNNs pretrained with AEs with 3 convolutional
layers52 were also suggested. Others, based on VGGNet and ResNet,53 ResNet-18,54 and ResNet-
37,55 were recently implemented. In another study, the features were combined from multi-scale
3D convolutional AEs with three hidden layers and a 3D CNN with six convolutional layers.56

A VGGNet-based 3D CNN was proposed by Tang et al. to reduce the gradient-vanishing
impact through an additional shortcut to merge high- and low-level information.57 A 3D
CNN with seven convolutional layers was described by Wegmayr et al.58 To capture input
features on different scales in this work, three different sizes for filters were selected in the first
convolutional layer. Dense connections were introduced to 3D CNN for AD detection by Wang
et al.59 It was reported that dense connections could enhance the gradients’ propagation through-
out the network with insufficient training data.

2.3 Transfer Learning

Successful deep learning methods in the classification of natural images have benefited studies
of deep learning in the domain of medical images. However, it is still a challenge for researchers
because of the low medical image acquisition quality and errors in preprocessing and segmen-
tation; unavailability of a comprehensive dataset (including a vast number of subjects and bio-
markers); low between-class variance in different stages of diseases; lack of expert knowledge,
especially in identifying regions of interest (ROIs) in the medical images; and complexity of
medical images compared with the usual natural images.

Overfitting is a challenging topic in deep learning that may occur because of issues such as a
low number of subjects and a large number of learnable parameters. Some techniques are
embedded into CNNs to avoid overfitting, such as max pooling and drop-out layers. Max pool-
ing reduces the number of parameters and, subsequently, the dimension of extracted features
to control overfitting and reach the invariance to scale, shift, and rotation.24 Drop-out layers
randomly drop neurons at each update of the training phase and force neurons to act
independently.21 Another idea is to discard fully connected layers applied to networks such
as SqueezeNet. Removing them reduces the number of learnable parameters compared with
VGGNet and reduces overfitting.
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In addition to these CNN-related structures, L1 and L2 regularization have proven to prevent
overfitting in the literature for training CNN models. A comprehensive overview of regulariza-
tion methods, their working time, and object was recently studied together with advanced
optimization methods on loss function during the training process.60,61 The overfitting issue is
worst when applying 3D CNNs, which require training a large number of parameters.49 Transfer
learning is another workaround to avoid overfitting.

Some studies trained a deep model from scratch; however, it is often not optimal. It is time
consuming to train from scratch, and a dataset with adequate size is sometimes not available.21,49

Datasets for conventional classifications contain millions of images, while MRI datasets contain
only a few hundred images. It causes overfitting in the training procedure. Using weights from a
pretrained CNN for a specific task and retraining it for a new task through simply fine-tuning the
learnable parameters is common. It is possible because general features are extracted by convolu-
tional layers of CNNs, which can be utilized for many tasks. Hence, it is possible to transfer
weights of convolutional layers from one application to another. This practice is called “transfer
learning.”

Considering transfer learning from the ImageNet database, 2D CNNs like VGGNet-16,21

GoogLeNet and ResNet-152,38 Inception-V4,62 ResNet-18,37 VGGNet-16 and Inception-
V4,42 VGGNet-16,43 CaffeNet and GoogLeNet,40 and DenseNet-12145 were implemented
for AD detection using MRI scans. In contrast, CNNs such as LeNet and GoogLeNet,41

GoogLeNet, ResNet-18, and ResNet-152,36 and 3D CNNs based on ResNet,55 VGGNet,57 and
VGGNet and ResNet53 were trained for AD detection from scratch. Transfer learning was
reported to be quicker and outperformed training from scratch in 2D CNNs.37,42 Competition
was noted among famous 2D CNNs, like ResNet-152 and GoogLeNet.36,38 Nevertheless, the
performance of Inception-V4, ResNet, and CaffeNet was better than that of VGGNet-16,
AlexNet, and GoogLeNet in some studies.40,42,62 DenseNet outperformed ResNet and LeNet
in another study.63

Generally, 2D CNNs with transfer learning performed well when a limited number of sub-
jects were available. For more subjects, however, 3D CNNs requires many more learnable
parameters to solve such a complex problem. Wang et al.59 examined the effect of depth in
CNNs. Results of this study indicated that shallow and very deep networks do not always yield
proper outcomes. One crucial factor is the size of the training set, which significantly influences
the performance of classifiers.59 There are a limited number of AD patients in MRI datasets,
which is particularly insufficient for deep models. Therefore, combining datasets, using several
scans of the same subject in longitudinal datasets, and data augmentation were followed in some
studies.

3 Materials and Methods

Training 2D CNNs is easy, but they are not optimized in encoding the spatial information of the
3D MRIs because of the non-existence of the third dimension in convolving kernels.49

Conversely, 3D CNNs can obtain 3D information from the 3D MRIs. Regardless of the training
complexity, they have shown a higher accuracy than 2D CNNs.57 In Sec. 2.3, the success of
transfer learning was explained. Training from scratch has been followed in many classification
studies. However, according to the literature review, parameters such as weight and bias can be
initialized by training deep models on other related or unrelated tasks. These parameters can
extract general features from images, which can assist in our AD detection problem. The dataset
from the source domain can be anything with millions of images, such as ImageNet or MNIST.
ImageNet is a visual dataset that includes 1000 object categories, such as plants, tools, and many
animals.19 MNIST is a dataset of handwritten digits with 70,000 centered, fixed-size, and gray-
scale images.64 To train models from scratch, the Xavier initialization method is utilized.65

The block diagram of an AD detection system is presented in Fig. 1. Preprocessing steps,
such as intensity normalization, registration, and tissue segmentation, prepare MRI scans to be
used as input data for intelligent systems. After preprocessing, MRI scans are prepared for
training the implemented deep models according to each model’s structure. Slicing 3D MRI
scans to 2D images, identifying ROIs, 2D/3D patch extraction, and resizing are possible data
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management methods. Three approaches for AD detection were implemented in this paper, using
CNNs. The slice-based approach extracts 2D image slices from 3D MRIs for data management,
using a 2D CNN as the deep model. The sequence-based approach takes the extracted features
from the previous approach and feeds them to a RNN. The voxel-based approach takes the entire
3D MRI for data management, using a 3D CNN as the deep model.

As discussed previously, various 2D CNN models have been proposed for AD detection
using the ImageNet dataset. In Tables 1 and 2, all employed CNNs in this paper are listed
together with their depth, number of layers, number of connections, number of convolution
layers, number of fully connected layers, size on disk, number of learnable parameters, and
image input size. The network depth is defined as the largest number of sequential convolutional
layers and fully connected layers on a path from the input layer to the output layer. CNN struc-
tures are the same for 2D and 3D CNNs (i.e., number, type, and order of layers). The only
differences are the dimensions of filters and input images, which can be 2D and 3D. Except
for LeNet-5, which was trained on grayscale MNIST images, all networks’ inputs are RGB
images according to the ImageNet dataset’s images. To adjust the models to our AD detection
problem, the last layer of each 2D CNN model was changed to have two outputs with a weight/
bias learning rate factor 10 times more than the previous layers. Applying this learning rate leads
to faster training of the new layer than the other layers, which were already trained on the
MNIST/ImageNet dataset.

The classification accuracy of the reference dataset (MNISTor ImageNet) is the most generic
means to evaluate network accuracy. Networks that perform well on the reference dataset are
likewise usually accurate when applied to other image datasets using transfer learning. This
assumption is feasible because networks have learned to extract general informative features
from images. However, high accuracy on the reference dataset does not guarantee the model’s
performance on other tasks; hence, trying multiple networks is required. Our LeNet-5 imple-
mentation achieved 98.48% accuracy on the MNIST test set after training on its training set.
Other CNN models are implemented in MATLAB with the listed accuracies in the final column

MRI Preprocessing
Data 

management
Deep 
model

Classification

Fig. 1 The block diagram of an AD detection system.

Table 1 Implemented 2D CNNs in our study.

Network Depth #Layers #Connections
#Convolutional

layers #FCs
Size
(MB)

#Parameters
(millions)

Image
input size

Reference
accuracy

(%)

LeNet-5 5 16 15 3 2 0.23 0.062 32 × 32 98.48

AlexNet 8 25 24 5 3 227 61.0 227 × 227 × 3 54.10

VGG-16 16 41 40 13 3 515 138 224 × 224 × 3 70.29

SqueezeNet 18 68 75 27 0 4.5 1.24 227 × 227 × 3 55.16

ResNet-18 18 71 78 20 1 44 11.7 224 × 224 × 3 69.49

VGG-19 19 47 46 16 3 535 144 224 × 224 × 3 70.42

GoogLeNet 22 144 170 58 1 27 7.0 224 × 224 × 3 66.25

Inceptionv3 48 315 349 94 1 87 23.9 299 × 299 × 3 77.07

ResNet-50 50 177 192 53 1 96 25.6 224 × 224 × 3 74.46

ResNet-101 101 347 379 104 1 167 44.6 224 × 224 × 3 75.96
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of Table 1. Standard ImageNet validation data were utilized to achieve these numbers according
to the MATLAB documentation page.66

The knowledge from MNIST and ImageNet datasets can be transferred to our AD detection
case. However, the main issue here is that these datasets have 2D images, and deep models
pretrained on 2D images cannot be useful in a 3D workflow. This paper extends the concept
of transfer learning from the 2D natural-images domain to the 3D MRI-images domain. To this
end, we consider several approaches, explained in the following section.

3.1 Dataset Preparation

The ADNI (AD Neuroimaging Initiative) study provided the dataset used here. ADNI is the most
extensively utilized dataset in studies in this field.13,67 Its main goal is to determine if it is possible
to combine PET, MRI, and other biological markers, neuropsychological and clinical assess-
ments to measure AD progress. Determination of sensitive and specific markers of very early
AD progression is intended to aid researchers and clinicians in developing new treatments,
monitoring their effectiveness, and reducing the time and cost of clinical trials. The ADNI
was launched in 2003 by the National Institute on Aging (NIA), the National Institute of
Biomedical Imaging and Bioengineering (NIBIB), the Food and Drug Administration, private
pharmaceutical companies, and non-profit organizations, as a $60 million 5-year public–private
partnership. Acquisition of these data was performed according to the ADNI acquisition
protocol.67 ADNI subjects aged 55 to 90 years were recruited from more than 50 sites across
the United States and Canada. MRI scans of 132 subjects for each class (AD and NC) were
employed in this study (only for baseline or screening); the dataset is available online upon
request.

Classification performance is affected by image preprocessing. Among different preprocess-
ing techniques for AD detection, registration and intensity normalization are the techniques
most commonly used.13 Normalization is mapping voxel/pixel intensities of all MRI scans to
a common range. Registration is defined as a type of spatial adjustment of MRI scans to a refer-
ence anatomical space. Because of the differences among the brains of unique subjects, it is a
necessity. Image registration is helpful to standardize MRI patterns. Intensity normalization
(zero-center) and registration to Montreal Neurological Institute space68 were utilized in this
study using the SPM12 toolbox.69

After preprocessing, the dimension of each MRI was 79 × 95 × 79. For 3D CNNs, the entire
preprocessed MRI was used for training. For 2D CNNs, 2D slices of every view of MRI (axial,
coronal, and sagittal) were extracted by disposing of the first and last image slices. By stacking
three adjacent slices as RGB color channels, the remaining MRI slices were formed into 24 RGB
coronal images, 19 RGB sagittal images, and 16 RGB axial images. Except for LeNet-5, since all
2D CNN models pretrained on the ImageNet dataset take RGB images as the input, RGB images
are required. Some sample images of the ADNI dataset are shown in Figs. 2 and 3. Next,
we resized each MRI to fit each 2D/3D CNN’s input layer in Tables 1 and 2. Data augmentation
was used because the number of patients was insufficient to train a deep structure to improve
classification performance.37,70 Data augmentation methods such as random translation, scaling,
reflection, noise injection, rotation, blurring, cropping, and gamma correction are a process that
increases data diversity to train models without gathering new data. In 3D approaches, �5%

scaling and �5 pixel translation were performed on the training set only. In 2D approaches and

Table 2 Implemented 3D CNNs in our study.

Network Size (MB) #Parameters (millions) Image input size

LeNet-5 0.26 0.26 32 × 32 × 32

ResNet-18 46 34 224 × 224 × 224

ResNet-50 132 48 224 × 224 × 224

ResNet-101 204 87 224 × 224 × 224
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because of brain scans’ symmetry, reflecting coronal and axial views was conducted along with
the stated data augmentation transformations.

3.2 Approach 1: 2D CNNs

For approach 1, 2D CNNs have the ability to extract AD-related discriminative features, such as
brain shrinkage, from each image slice, and classification of each subject is conducted based on
image slices of that subject. Figure 4(a) indicates our single-view 2D CNN structure. Single-
view (coronal, sagittal, and axial) image slices of all subjects on the training set are used to train
a 2D CNN. For testing, all image slices of an MRI scan are then classified by the CNN model.
The final classification is determined by a majority voting strategy on all image slices. The multi-
view configuration follows a similar process, as depicted in Fig. 4(b), except another majority
voting strategy is used on all three views to make the final decision.

3.3 Approach 2: 2D CNNs + LSTM

This approach aims to understand spatial connections in 2D image slices of MRIs by the combi-
nation of 2D CNNs with LSTM. After a preliminary phase of feature extraction with a CNN
model on the ADNI database, an LSTM structure is employed to acquire informative features to
detect AD on a sequence of image slices. In the single-view mode, after feature extraction by
a CNN structure on each MRI slice, an LSTM model is trained on the extracted features from

Axial view Coronal view Sagittal view

Fig. 2 Sample images of the ADNI dataset.

Fig. 3 24 MRI coronal slices of one subject.
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MRI slices of a specific subject on each view, as shown in Fig. 4(c). The features extracted after
the second to last layer of the CNN (before the final layer) feed the LSTM model. It is expected
that LSTM can comprehend the connections between sequences of images in each subject and
make a sequence-based decision based on all input image slices, not individually. The multi-view
configuration, as can be observed in Fig. 4(d), also follows this process, with the difference being
that a majority voting approach was employed over all three views for the final classification.
Two LSTM layers (100 hidden units for each of them) were designed for the LSTM network by
trial and error.

3.4 Approach 3: 3D CNNs

The whole preprocessed MRIs were used to train 3D CNNs to make voxel-based decisions.
According to Table 2, 3D CNNs have many learnable parameters, and training them is computa-
tionally expensive. However, we utilized this type of deep model to be able to compare them with
2D CNNs. To build 3D CNNs, we extended the 2D filters of some CNN models in Table 1 in the
third dimension to have 3D filters. Any other layers explained in Sec. 2.1 were adjusted accord-
ing to the new filters. Training 3D CNNs has many learnable parameters compared with 2D
CNNs. This issue makes the backpropagation learning process difficult to converge, especially
when training from scratch. To transfer the learnable parameters from pretrained 2D CNNs (on
MNIST or ImageNet) to 3D CNNs, we duplicated 2D filters (copying them repeatedly) through
the third dimension. This is possible because an MRI scan can be converted into a sequence of
image slices. To the best of our knowledge, 3D CNNs with transfer learning have not been
employed for any classification task. In the training process, we expect that 3D models learn
AD-related features in each slice of MRI and understand AD-related patterns across image slices.
The 3D models are listed in Table 2, along with the number of learnable parameters and the
networks’ size on a memory. The number of learnable parameters increases with the extension
of the filters’ dimensions. A diagram of our 3D structure can be observed in Fig. 4(e).

Classification

LSTM

ClassificationClassification

Sagittal view

Classification
MRI slices

LSTM

Classification
MRI slices

Coronal view

Axial view

Coronal view

Sagittal view

Axial view

LSTM

LSTM

MRI volume

(a)

(b)

(e)

(c)

2D CNN 2D CNN

2D CNNs

(d)

2D CNNs

3D CNN

Fig. 4 Architectures of the applied approaches: (a) single-view 2D CNN; (b) multi-view CNNs;
(c) single-view 2D CNN + LSTM; (d) multi-view CNNs + LSTM; and (e) 3D CNN.
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4 Results and Discussion

As previously discussed, the ADNI dataset was utilized in this paper. For our experiments, we
utilized 100, 16, and 16 subjects per class to train, validate, and test, respectively. For each sub-
ject, one MRI scan was used. Therefore, each set contains the same number of MRI scans for
each class. The reason for selecting the same number of samples for each class was to avoid the
prediction bias because of an imbalanced dataset. It is possible to access many MRI scans from
healthy people to include in our dataset and increase the dataset size. However, the number of
subjects with AD is limited in medical datasets. Therefore, to avoid class imbalance and sub-
sequent prediction bias to one of the classes—NC in this case—the same number of MRI scans
was selected for each class.

The same training parameters were used for all 2D CNNs that contained mini-batch size = 64,
initial learning rate = 0.0003, and L2 regularization = 0.0005. Stochastic gradient descent (SGD)
with momentum ¼ 0.9 was the optimizer algorithm with early stopping according to the val-
idation set. However, mini-batch size ¼ 8 was used for 3D CNNs because of the available com-
putational resources. Moreover, we utilized the same training parameters for all LSTM models
that contained mini-batch size = 64, initial learning rate = 0.01, and L2 regularization = 0.0001.
SGD was the optimizer, with momentum ¼ 0.9, and the maximum number of epochs was 50,
with early stopping according to the validation set.

The training set was shuffled in every epoch of the training process, and simultaneously, data
augmentation was implemented for CNN models. Consequently, a CNN model observed altered
input data in a different arrangement in each epoch. MATLAB deep learning toolbox was used in
this paper to implement and train our models on an NVIDIA DGX station. This system has 4
GPUs with 32 GB memory for each and 256 GB RAM. However, we utilized only one GPU to
reduce the chance of parallel computational issues in multi-core systems. The same training,
validation, and test sets were employed for all models to ensure objective comparisons. In the
following figures and tables, “TL” and “Sc” denote transfer learning and training from scratch,
respectively.

The performance of classification by utilized CNNs is shown in Table 3. In this table,
accuracy refers to the percentage of correctly classified test subjects. Sensitivity refers to the
percentage of evaluated test subjects suffering from AD who were correctly classified as such,
while specificity is the percentage of evaluated healthy test subjects correctly classified as
healthy. Sensitivity is often more important for screening tests in medical tasks.

2D CNN made 24, 16, and 19 decisions on coronal, axial, or sagittal views in the single-view
mode of the 2D approach. The majority voting on the whole pile of images for each MRI view of
a particular subject informed the final decision. In the multi-view mode, CNNs determined all
image slices of the related view separately. A majority voting approach on all three views of a
particular subject determined the final decision. Both transfer learning and training from scratch
were employed in this approach. Transfer learning yielded about 2% accuracy enhancement on
average. Generally, transfer learning helps deep models avoid overfitting.

SqueezeNet and ResNet-18 performed best on our dataset in this approach. The core idea
behind ResNet is presenting a “shortcut connection” that skips some layers to avoid the vanish-
ing gradient problem. The main notion of SqueezeNet is to use 1 × 1 (point-wise) filters to
replace 3 × 3 filters to have fewer computations and down-sample late in the model to retain
a large feature map. Multi-view ResNet-18 using transfer learning had 84.38% accuracy,
87.5% sensitivity, and 81.25% specificity. Multi-view SqueezeNet using transfer learning had
90.62% accuracy, 81.25% of sensitivity, and 100% specificity. The same performance was
achieved by SqueezeNet + LSTM.

In the 2D CNNs + LSTM approach, a CNN was assigned to extract features from an image
slice, and an LSTM model was assigned to locate the connection among sequences of image
slices for a subject. After extracting features via a CNN structure on each MRI slice, the LSTM
model made a decision based on the extracted features from MRI slices of a specific subject on
each view in the single-view mode. In other words, the LSTM model made a single decision on
either the sagittal, coronal, or axial view. In the multi-view mode, an LSTMmodel independently
decided on all slices of a view. The final decision was reached by a majority voting approach on
all three LSTM models allocated to each view.
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Because of the better performance compared with training from scratch in the 2D CNNs
approach, only transfer learning was utilized in this approach. The performance of models was
compared, with and without LSTM. Since LSTM models incorporated temporal dependencies
for the classification, almost 2% accuracy enhancement on average was observed. The results in
Table 3 indicate there were not any significant differences among all views. However, multi-view
models were more robust to some extent and showed greater accuracy compared with single-
view models.

In the 3D CNNs approach, each CNN made a decision based on the whole MRI volume.
A 3D CNN was responsible for feature extraction from each image slice and finding the relation
between sequences of images for each subject simultaneously. Training some models was impos-
sible using available hardware. We implemented and trained LeNet-5, ResNet-18, ResNet-50,
and ResNet-101 in the 3D workflow. Both transfer learning and training from scratch were
employed in this approach. Because of the computational requirements, ResNet-101 was trained
using 4 GPUs simultaneously with parallel processing. In this situation, the 3D ResNet-101 did
not converge after 2000 epochs while training from scratch. According to the results in Table 3,
transferring knowledge from ImageNet to 3D CNNs improved the results significantly (96.88%
accuracy on 3D ResNet-18) compared with other approaches. However, training 3D CNNs from
scratch had a poor performance on our MRI dataset. This is because 3D CNNs have many learn-
able parameters, which makes the training process challenging. The situation was the worst for
deeper models like ResNet-101. As shown in Table 3, transfer learning and training from scratch
yielded the same performance for LeNet-5. However, transfer learning overtook training from
scratch in accuracy in deeper models like ResNet-18 and ResNet-50. For ResNet-101, the
training process could not converge for our available hardware resources when training from
scratch.

The training time of different CNNs and different approaches in both transfer learning and
training from scratch modes is shown in Fig. 5. Further, the number of required epochs is shown
in Fig. 6. Only the results of multi-view approaches are given in both figures. All models have the
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same training parameters, except mini-batch size, 64 for 2D CNNs and 8 for 3D CNNs. Also the
same hardware/software resources were used to train the models. Therefore, we omitted 3D
ResNet-101 with transfer learning because it did not converge on a single GPU. As expected,
deeper models or models with more learnable parameters took longer to train. For example, the
training progress—SGD optimizer’s training loss versus epochs—of 3D ResNet-18 with transfer
learning is shown in Fig. 7. Training from scratch was more time consuming and required more
epochs compared with transfer learning. Comparing transfer learning in 2D and 3D CNNs,
approximately the same training time was obtained in our experiments, though 3D CNNs
required fewer epochs. Deeper models need fewer epochs in their training process; however,
each epoch was more time consuming.

5 Conclusions

This paper has presented the design, implementation, and experiments of several MRI-based AD
detection approaches using CNNs. In the first approach, a 2D CNN was trained on MRI slices in
the single-view mode. Then for classification, the CNN model made decisions on all slices of
one patient on the particular view. A majority voting mechanism was applied in multi-view mode
to make the final decision on three views of an MRI volume. In the second approach, an LSTM
model was used to classify a sequence of MRI slices in multi-view and single-view modes.
In these approaches, there were not any significant differences among all views. However, the
multi-view models were slightly more robust and accurate compared with single-view models.
In the third approach, a 3D CNN was employed to classify MRI volumes, each in a single
decision.

In general, SqueezeNet and ResNet-18 have the best performance on our dataset. Transfer
learning was used in the 2D CNN approach, yielding ∼2% accuracy enhancement on average
compared with training from scratch. Further, transferring knowledge from ImageNet to the MRI
dataset from ADNI using 3D CNNs considerably improved the results compared with training
from scratch. To the best of our knowledge, 3D CNNs with transfer learning have not been
employed for any classification task. These 3D models can be employed for classifying 3D
images and videos. Comparing different approaches, 2D CNN models with LSTM achieved
∼2% accuracy enhancement on average compared with 2D CNN models alone. Also 3D
CNNs with transfer learning considerably improved the results to 96.88% accuracy, 100% sen-
sitivity, and 94.12% specificity. However, training 3D CNNs from scratch performed poorly on
our MRI dataset. In conclusion, deep learning methods can be utilized for accurate detection of
AD. However, the necessity of a large dataset is a weakness of these approaches.
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