
Datapath system for multiple electron
beam lithography systems using image
compression

Jeehong Yang
Serap A. Savari
H. Rusty Harris

Datapath system for multiple electron beam lithography
systems using image compression

Jeehong Yang
Qualcomm Technologies Inc.
5775 Morehouse Drive
San Diego, California 92121
E-mail: jeehongy@qti.qualcomm.com

Serap A. Savari
H. Rusty Harris
Texas A&M University
Department of Electrical and Computer

Engineering
3128 TAMU
College Station, Texas 77843

Abstract. The datapath throughput of electron beam lithography systems
can be improved by applying lossless image compression to the layout
images and using an electron beam writer that contains a decoding circuit
packed in single silicon to decode the compressed image on-the-fly. In
our past research, we had introduced Corner2, a lossless layout image
compression algorithm that achieved significantly better performance in
compression ratio, encoding/decoding speed, and decoder memory
requirement than Block C4. However, it assumed a somewhat different
writing strategy from those currently suggested by multiple electron beam
(MEB) system designers. The Corner2 algorithm is modified so that it can
support the writing strategy of an MEB system. © 2013 Society of Photo-Optical
Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMM.12.3.033018]

Subject terms: data compression; image compression; multiple electron beam
lithography; maskless direct write lithography; datapath.

Paper 12064 received Jun. 18, 2012; revised manuscript received Jun. 4, 2013;
accepted for publication Jul. 25, 2013; published online Sep. 9, 2013.

1 Introduction
As the semiconductor technologies develop, circuit elements
are becoming smaller and are thus harder to fabricate using
conventional photolithography systems. Scientists have been
seeking various ways to solve this problem using alternative
lithographical methods. Among them, electron beam lithog-
raphy (EBL) has been considered as a useful candidate for
next-generation lithography.1

EBL consists of three parts as shown in Fig. 1: (1) a digital
layout image that is stored at the storage system, (2) a data
path through which the layout image is transmitted, and
(3) an electron beam writer that writes the transmitted layout
image on the photoresist using an electron beam. Instead of
masking the layout image patterns from the light source, an
EBL system writes the layout image digitally pixel-by-pixel
using electron beams.

EBL systems have a number of advantages over conven-
tional photolithography systems:

• EBL systems are well-known to obtain very high res-
olutions. By using the electron beam as its light source,
EBL can offer far better resolution than conventional
photolithography systems.

• EBL systems do not require physical masks.
Conventional photolithography requires high-quality
physical masks, which are very expensive to fabricate2

and maintain.1 Since many current applications can
require 20 to 30 masks, the cost of physical masks for
conventional photolithography is enormous. However,
EBL systems do not require masks. Instead, the soft-
ware-controlled e-beam writer writes the mask pattern
directly to the photoresist layer.

• EBL systems are suitable for rapid prototyping.
Because EBL can write any patterns as long as the
layout images are provided, EBL systems not only

enable fast modifications, but also allow multiple
chips to be written on the same wafer.

However, EBL systems have a drawback over physical
mask lithography systems—they are slow.3 Because EBL
systems write layout images pixel by pixel, the throughput
of EBL is extremely low and is hence not suitable for the
mass production of circuits. Moreover, considering the enor-
mous data requirement—Dai4 suggested 735 Tera pixels are
required for a 300-mm wafer using 45-nm technology—to
cover the entire wafer, this is unsustainable without mas-
sively parallel electron beams. Over the decades, scientists
have been trying to solve this problem and are recently
attacking it by applying multiple electron beam (MEB) writ-
ers to the system.2,4,5,6 By writing multiple pixels at a time,
it is possible to decrease the writing time and increase the
throughput. Furthermore, by carefully selecting the number
of electron beam writers of the EBL systems, it is possible
to match the throughput of conventional photolithography
systems.

Many innovations in MEB lithography are being devel-
oped for various applications, such as mask writing, proto-
typing, writing critical layers in high-volume manufacturing
(HVM), and writing all layers in HVM. Recently, Lin1

suggested that MEB direct-write (DW) systems writing all
layers in HVM are the most economical option for next-
generation lithography technology, especially once the wafer
size increases to 450 mm.

However, there are still a few outstanding problems to
address before MEB DW systems can replace conventional
lithography systems, and one of these is the datapath issue.
For MEB DW systems to maintain sufficient throughput,
many bits must be simultaneously transmitted to the array
of electron beam writers. This raises a question of how
to provide the massive layout image data (which is typically
several hundred terabits per wafer4) to MEB DW systems.
Because of a bandwidth shortage between the storage where
the layer images are deposited and the MEB DW system,0091-3286/2013/$25.00 © 2013 SPIE

J. Micro/Nanolith. MEMS MOEMS 033018-1 Jul–Sep 2013 • Vol. 12(3)

J. Micro/Nanolith. MEMS MOEMS 12(3), 033018 (Jul–Sep 2013)

http://dx.doi.org/10.1117/1.JMM.12.3.033018
http://dx.doi.org/10.1117/1.JMM.12.3.033018
http://dx.doi.org/10.1117/1.JMM.12.3.033018
http://dx.doi.org/10.1117/1.JMM.12.3.033018
http://dx.doi.org/10.1117/1.JMM.12.3.033018
http://dx.doi.org/10.1117/1.JMM.12.3.033018

obtaining competitive throughput using an MEB DW system
is not possible with conventional datapath methods.

Dai and Zakhor3,7 proposed a datapath system with a loss-
less image compression component. As shown in Fig. 2, they
cache compressed layout images in storage disks and send
this compressed data to the processor board memory. Then
the MEB systems can have higher throughput if the decoder
embedded within the array of electron beam writers can
quickly recover the original images from the compressed files.
Since the decoder cannot store an entire compressed layout
image, each compressed layout image is repeatedly trans-
ferred from the storage to the decoder as it is written multiple
times on a wafer. Cramer et al.8 later improved and tailored
the algorithm of Ref. 7 to operate on a particular MEB sys-
tem called reflective electron beam lithography (REBL).5

Based on the datapath system introduced by Dai and
Zakhor,3 Yang and Savari developed a lossless compression
algorithm, Corner9 and Corner2,10 that has better compres-
sion performance than Block C4 (BC4) (Ref. 7) for both
regular and irregular circuits. The Corner2 algorithm utilizes
dictionary-based compression to handle repeated circuit
components and applies a transform that is specifically
tailored for layout images to deal with irregular circuit com-
ponents. The transformation used in Corner2 utilizes the
fact that most polygons in the layout images are Manhattan,
i.e., they have right angle corners. This transformation as
well as the dictionary-based compression are tailored for the
application so that the decoder can reconstruct the layout
image with only a small cache requirement.

Krecinic et al.11 independently introduced a vertex-based
circuit layout image representation format, which can be
viewed as a variant of the Corner2 transformation along
with a version of run length encoding (RLE) to compress
circuit layout images. However, they did not account for
circuit regularity or use more advanced entropy encoding
techniques to further compress the representation as was
done in Ref. 10.

Yang and Savari12 recently improved the frequent pattern
discovery algorithm of Corner2 by using isolated polygons,
i.e., polygons that are separated from each other, as candidate

patterns and by solving an integer programming problem. The
result shows that the Corner2 algorithm obtains high compres-
sion ratios and fast encoding/decoding times while requiring
limited decoder cache on the decoder hardware.12 Moreover,
the entire decompression is simple so that it could be imple-
mented as a hardware add-on to the electron beam writer.13

However, the Corner2 algorithm was not optimized for the
MEB systems that are currently under development. Corner2
assumes the decoder can write in a row-by-row fashion with
a raster order, i.e., from top to bottom and from left to right,
but neither MAPPER,6 IMS,14 nor REBL5 utilizes raster
writing. In fact, REBL writes a 4096 × 248 block at a time
to produce a large pixel with multilevel electron beam
dosage, while MAPPER and IMS have electron beam writers
positioned in a lattice formation, allowing each electron
beam writer to write a designated block in a zig-zag order.

In this paper we introduce Corner2-MEB (C2-MEB),
which is a modified Corner2 algorithm suitable for MEB sys-
tems that have writing strategies similar to MAPPER. We
redesigned the algorithm to support both block processing
and a zig-zag writing order. The experimental results show
that for MAPPER-like systems, there are performance dete-
riorations because of block processing, but the C2-MEB
algorithm still attains high performance. The rest of this
paper consists of four parts. In Secs. 2 and 3 we describe the
C2-MEB encoding and decoding processes. We show exper-
imental results in Sec. 4 and conclusions are given in Sec. 5.

Throughout the paper we assume binary (i.e., black and
white) circuit layout images because the control signals of
MAPPER-like systems are turning the electron beams on
or off. In Refs. 10 and 12 we assumed binary circuit layout
images as did Krecinic et al. in Ref. 11. However, there are
MEB systems like REBL5 that use multilevel electron beam
dosage, and the research works (Refs. 8, 3, 7, and 15) con-
sider multilevel (gray) circuit layout images. Our earlier
work15 adapts Corner2 to gray circuit layout images. We
also assume an ideal e-beam writing setting as on-the-fly
corrections to recover the tool dose/alignment deviations
are beyond the scope of this work.

2 Compression Algorithm
Figure 3 shows an overview of the C2-MEB compression
algorithm. First, the layout image is separated into blocks
so that each block is written by a single electron beam writer.
Second, we detect the frequent patterns within the blocks. In
order to do that, we first extract the frequent patterns from the
graphic data system II (GDSII)16 description of the entire
layer image as in Ref. 10, and generate candidate patterns
from the individual image blocks and choose the optimized
frequent pattern list from all of the candidate patterns as in
Ref. 12. Third, each block goes through a forward trans-
formation process that replaces the frequent patterns from
the image blocks and applies the corner transform to the

Wafer
Circuit Layout

Image

e-Beam
Writer

10101101

Photoresist

Fig. 1 Electron beam lithography systems.

Decoder Chip

Storage
Disks

Processor
Board

Memory
Decoder Lithography

Writer

Fig. 2 Datapath for an MEB system.

J. Micro/Nanolith. MEMS MOEMS 033018-2 Jul–Sep 2013 • Vol. 12(3)

Yang, Savari, and Harris: Datapath system for multiple electron beam lithography systems. . .

unmatched parts. Note this process is similar to the frequent
pattern replacement (FPR) and corner transform process in
the original Corner2 algorithm,10 but has been revised so that
each image block is later reconstructed by the decoder in a
zig-zag order. Fourth, the pixels of encoded image blocks are
flattened to form a pixel stream so that the decoder can at
each time simultaneously reconstruct a pixel for each
block. Finally, the flattened pixel stream is compressed to
a bit stream using entropy coding technology—RLE, end-
of-block (EOB) coding, and arithmetic coding—as in the
original Corner2 algorithm. In the following subsections,
we will explain each step in detail.

In Fig. 3, the frequent pattern detection and forward trans-
formation algorithms refer to processes that are applied to
individual image blocks as opposed to the full layout image.
Similarly, the input/output of those two components is an
image block and not the full image. For example, the forward
transformation process is applied independently to each image
block to produce the corresponding transformed image block.

2.1 Block Separation

Since each electron beam writer has a limited writing region,
we need to make sure the image that we pass to each electron
beam writer corresponds to its writing region, which is a

block. Therefore, we segment the layout image into blocks.
Figure 4 shows the MAPPER lithography system writing
strategy.6 In the right part of the figure, the green pillars
show the electron beam positions. While the electron beam
are moving in a horizontal zig-zag order and turned on and
off depending on the control signal, the stage where the
wafer is fixed is moving vertically so that the electron beams
write a tall rectangular stripe region on the wafer. Each elec-
tron beam writes a region 2 μm wide and 33 mm tall in a
horizontal zig-zag order. In the HVM setting, once the elec-
tron beams write 33-mm tall blocks, they continuously repeat
writing the blocks until they reach the end of wafer. That is,
each electron beam writes a 2-μm wide stripe with the height
of the wafer region that it covers with multiple copies of the
image it writes.

The left part of the figure shows how the movement of the
stage affects the writing strategy on the wafer. By moving the
stage in a vertical zig-zag order, the MAPPER system with
13,000 electron beams writes a 26-mm (13;000 × 2 μm)
wide stripe during a single vertical scan. By writing these
26-mm wide stripes on the wafer in a vertical zig-zag order,
we are actually printing upside down copies of the circuit
layout image for the stripes written from the bottom to the
top. This could be a problem if a circuit layout image has to

Input:
Layout Image

Block
Separation

Frequent Pattern
Detection

•GDSII Pattern Extraction
•Candidate Pattern Generation
•Pattern Optimization

Forward
Transformation

•Frequent Pattern Replacement
•Corner Transformation

Flatten
Transformed

Image

RLE+EOB
Coding

Arithmetic
Coding

Output:
Compressed

bits

Forward
Transformed
Image Blocks

Flattened
Pixel Stream

Image
Blocks

Frequent Pattern List
 &

Image Blocks

Image

istt

Fig. 3 Corner2-MEB compression algorithm overview.

Field

EO slit

300 mm wafer EO slit
13,000 beams

26
 m

m

26 mm

Fig. 4 The MAPPER writing strategy. Each electron beam writes a tall rectangular region in a horizontal zig-zag order.

J. Micro/Nanolith. MEMS MOEMS 033018-3 Jul–Sep 2013 • Vol. 12(3)

Yang, Savari, and Harris: Datapath system for multiple electron beam lithography systems. . .

be covered by multiple stripes. However, the 26-mmwidth of
a stripe is wide enough to cover most circuits; for example,
the previous generation 45 nm Intel Core i7-920 process had
a die size of 263 mm2.17 In our MAPPER-like writing strat-
egy, we assume one or multiple copies of the circuit are
covered by this 26-mm wide stripe so that we do not have
to consider processing different images for each 26-mmwide
stripe.

Observe that since MAPPER staggers its writing regions
in the vertical direction by 150 μm as shown in the right part
of Fig. 4, we cannot simply partition the image into blocks
and pass each block to the corresponding electron beam
writer. The writing strategy of the electron beam writers to
create the circuit layout image on the wafer is shown in
Fig. 5. Here, the starting position of each electron beam in
each writing is marked with a black square and the writing

W
ritin

g
 #3

6-3-1

7-3-1

8-3-1

3-3-1

4-3-1

2-3-1

5-1

6-1-1

7-1-1

8-1-1

2-1-1

3-1-1

4-1-1

5-2

6-2-1

7-2-1

8-2-1

2-2-1

3-2-1

4-2-2

5-3

2-1-2

3-1-2

4-1-2

6-1-2

7-1-2

8-1-2

2-2-2

3-2-2

4-2-2

6-2-2

7-2-2

8-2-2

1-1

1-2

1-3

W
ritin

g
 #1

W
ritin

g
 #2

2-3-2

3-3-2

4-3-2

6-3-2

7-3-2

8-3-2

C
ircu

it #1
C

ircu
it #2

Fig. 5 The application of the MAPPER writing region to the wafer. The black squares represent the starting positions of the electron beams during
each writing, and each tall rectangle within a circuit region illustrates the writing region of the corresponding electron beam writer.

J. Micro/Nanolith. MEMS MOEMS 033018-4 Jul–Sep 2013 • Vol. 12(3)

Yang, Savari, and Harris: Datapath system for multiple electron beam lithography systems. . .

region of each electron beam writer is illustrated as a tall rec-
tangular block where the rows are successively written from
the top row to the bottom row in a horizontal zig-zag order.
In the HVM setting, whenever an electron beam writer fin-
ishes writing a block, it repeats writing the same block until it
reaches the end of the wafer region. In the example of Fig. 5,
each electron beam writer writes three copies of the blocks
(represented by writings #1 to #3), and two copies of the
circuit layout image (represented by circuits #1 and #2) are
printed on the wafer.

In order to emphasize that some blocks can contribute to
two different circuit layout image copies, we used different
coloring (light and dark) for the corresponding blocks. For
example, block #2 of writing #2 consists of two parts block
2-2-1 and block 2-2-2. While block 2-2-1 is part of circuit #1
along with the second part of block #2 of writing #1 (block 2-
1-2), block 2-2-2 is part of circuit #2 along with the first part
of block #2 of writing #3 (block 2-3-1). Finally, note that in
Fig. 5 all blocks with the same color are identical. That is,
blocks 2-1-1, 2-2-1, and 2-3-1 are identical and blocks 2-1-2,
2-2-2, and 2-3-2 are identical.

Therefore, the block separation process reinterprets the
circuit layout image (or circuit) in the order of the writings
of Fig. 5. Figure 6 shows how this process changes the circuit
layout image. The top of Figure 6 shows a circuit of Fig. 5,
which is a circuit layout image. To obtain the block separated
image, we first partition the circuit layout image. Then, we
apply circular shifts to the blocks that contribute to two dif-
ferent circuit layout image copies in Fig. 5—the correspond-
ing blocks are blocks #2 to #4 and #6 to #8—so that each
block has its electron beam starting point at the top-left cor-
ner of the block, as in the second part of Fig. 6. Note that the
second part of Fig. 6 corresponds to a writing of Fig. 5.
Throughout the discussion of the processes in Fig. 3,
when we refer to image blocks we are referring to the blocks
in the second part of Fig. 6. The reason that we concentrate
on a writing instead of a circuit in the lower part of Fig. 6 is to
emphasize the flow of decompressed data to the elec-
tron beams.

The frequent pattern discovery algorithm, which is
described in Sec. 2.2.1, searches each block to discover the
frequent patterns used for all blocks. Then each block is a
separate input to the forward transformation process. Since
it is important to understand the FPR process in order to
illustrate the frequent pattern discovery process, in the next
subsection we begin by explaining the forward transforma-
tion process.

2.2 Forward Transformation

Once the blocks are separated and the frequent patterns are
discovered, each block separately goes through the forward
transformation process. During the forward transformation
process, we first search the image block looking for embed-
dings of predetermined frequent patterns. Whenever there
exists an embedding of a frequent pattern, we replace the
embedding with a simple representation. After all of the fre-
quent pattern embeddings are replaced with simple represen-
tations, we apply corner transformation to the remaining image
where no frequent pattern embeddings were found. Through
this process, we handle the regular circuit parts with FPR and
the irregular circuit parts with corner transformation.

In the following subsections, we will explain in detail the
FPR and corner transformation processes.

2.2.1 Frequent pattern replacement

Figure 7 offers an overview of FPR. The inputs to the FPR
encoder are an image block and the frequent pattern list, and
the FPR encoder outputs a matched pattern image and a
binary residue image. The FPR process is applied to each
image block with the frequent pattern list fixed for all
image blocks. The FPR encoder seeks the patterns within the
block. Whenever a pattern is matched within the image
block, the encoder will replace the first point of the pattern
embedding with a pattern symbol and will replace the rest of
filled pixels that have been matched with 0’s (or empty).
Note that because of the zig-zag writing, the first point of
the pattern embedding could be either the top-left corner
or the top-right corner of the pattern depending respectively
on whether the first row of the pattern is odd or even. For the
example in Fig. 7, the first 3 × 3 square pattern begins at the
first row of the image. Since the first row is written from left
to right, the top-left corner of the pattern is replaced with the
pattern symbol (gray pixel). Similarly, the second 3 × 3
square pattern is found at the second row of the image,
and since the second row is written from right to left, the
top-right corner of the pattern is replaced with the pattern
symbol.

Note the output matched pattern can have symbols from
the set f0; S1; S2; : : : ; SPg, where Si is the symbol used to
represent frequent pattern i and P is the size of the frequent
pattern list. Finally, note that when the FPR encoder seeks a
pattern, it more precisely searches for the pattern surrounded
by empty rows and columns so that the pattern embedding is
isolated, i.e., not connected to other polygons. This is nec-
essary to avoid interference with corner transformation and

Circuit Layout Image

MAPPER Block Image

Fig. 6 The effects of block separation. The circuit layout image is par-
titioned and some of the partitioned blocks are rearranged.

J. Micro/Nanolith. MEMS MOEMS 033018-5 Jul–Sep 2013 • Vol. 12(3)

Yang, Savari, and Harris: Datapath system for multiple electron beam lithography systems. . .

to prevent partial pattern matching, which could result in per-
formance deterioration. Otherwise, the 3 × 9 rectangle in the
bottom of Fig. 7 can be represented by three 3 × 3 squares,
which is not desirable.

Once the FPR process is applied, the residue image block
is passed to the corner transformation process.

2.2.2 Corner transformation

The input to the corner transformation process is the residue
image block from the FPR encoder, and the output is the cor-
ner transformed image block. As we indicated earlier, like
the FPR encoder, the corner transformation process is only
processing a block of the layout image at a time.

Figure 8 illustrates the corner transformation process.
First, we expand the input image block by introducing two
empty columns (shown as gray grids in the figure) to sur-
round the input image block in order to handle the zig-zag
writing order. Second, we apply horizontal and vertical
bitransitional encoding on the expanded image block. This
bitransitional encoding marks the pixels (black) where the
current pixel value is different from the previous pixel read
in the encoding direction, i.e., left to right for horizontal
encoding and top to bottom for vertical encoding. Next, we
left-shift the even-numbered rows, i.e., the rows that are writ-
ten from right to left. During this left-shift, the pixels from
the surrounding right column could get inside the image area.

Frequent Pattern Replacement Layout Image

Matched
Pattern

Residue
Image

(Binary)

Freq.
Pattern

writing
direction

Fig. 7 Frequent pattern replacement.

(a) Residue Image (b) Horizontal coding of (a)

(c) Vertical coding of (b)

writing
direction

(d) Left shifting of even
numbered rows of (c)

Fig. 8 Corner transformation process of Corner2. The new step (d) accounts for the zig-zag writing strategy.

J. Micro/Nanolith. MEMS MOEMS 033018-6 Jul–Sep 2013 • Vol. 12(3)

Yang, Savari, and Harris: Datapath system for multiple electron beam lithography systems. . .

Finally, we discard the pixels in the expanded columns. By
applying this corner transformation, we represent the residue
image block using its transitional corners. We call these
points transitional corners because they are similar to poly-
gon corners, but they are extracted by transitional coding.
Similar to the FPR process, the corner transformation is sep-
arately applied to each image block.

The algorithm is summarized in Algorithm 1. In the algo-
rithm, is x ∈ ½1; : : : ; C� the column index of the image block,
y ∈ ½1; : : : ; R� is the row index of the image block, and we
will assume all odd rows are written from left to right and all
even rows are written from right to left. Note that R × C is the
dimension of the block and is predefined by the MEB DW
system.

In Ref. 10, we introduced a one-step corner transforma-
tion algorithm where pixel ðx; yÞ is processed as a function of
the input pixels (x − 1, y), (x, y − 1), and (x − 1, y − 1). We
modified that algorithm so that it applies a left-shift for the
even-numbered rows in lines 12 to 16 of Algorithm 1.

Observe that the transitional corners can only appear at a
polygon corner, right of a polygon corner, left of a polygon
corner, below the polygon corner, to the bottom-right of a
polygon corner, and to the bottom-left of a polygon corner.
By matching isolated patterns during FPR, we guarantee that
the transitional corners produced by Algorithm 1 do not
overlap with any of the pattern symbols in the matched pat-
tern image block. We sum the pattern matched image block
and the corner transformed image block to form the forward
transformed image block. By choosing the frequent pattern
replacement symbols (Si) to not overlap with corner symbols

f0; 1g, we can always separate the matched pattern image
block and the corner transformed image block from the for-
ward transformed image block.

Finally, after all blocks have been forward transformed,
they are input to the flatten pixel stream process, which
will be explained in Sec. 2.4, to produce a one-dimensional
(encoded) pixel stream.

2.3 Frequent Pattern Discovery

We next discuss the generation of the frequent pattern list.
This process contains three subprocesses: (1) pattern extrac-
tion from the GDSII layout description, (2) candidate pattern
generation, and (3) selection of the optimized pattern list. In
the following subsections we will offer a detailed description
of these procedures.

2.3.1 GDSII pattern extraction

In Ref. 10 we extracted patterns that are frequently used in
the entire layout image by seeking the frequently used sub-
structures in the original GDSII layout descriptions since the
layout image is rasterized from the GDSII representation.
This procedure, which can be effective, is illustrated in
Fig. 9.10

However, as illustrated in Fig. 10, this method has
shortfalls because some substructures could result in differ-
ent image patterns depending on the rasterization grid. In
Fig. 10, two 5 nm × 5 nm squares are defined in the layout
description (GDSII). When we rasterize the image in a 4-nm
grid (Fig. 10, right), we are actually quantizing a 4 × 4 block
from the 1-nm grid as a single pixel (Fig. 10, left), and we fill
the pixel if the number of filled pixels in the original block is
at least 8. The rasterized image shown in Fig. 10 (right) has
two different polygons, but they came from the same layout
description.

Furthermore, since we have partitioned the image into
blocks, the patterns extracted from the GDSII representation
may not have matches. We therefore need to search for fre-
quent patterns within the block images.

2.3.2 Candidate pattern generation

In order to extract patterns that are frequently used for entire
image blocks, we search the blocks. We then generate a list
of candidate patterns and later determine which among these
should be included in the frequent pattern list. In this section,
we will discuss the candidate pattern discovery algorithm
first described in Ref. 12. As we explained in Sec. 2.2.1,
during the FPR process, we match isolated patterns, i.e.,
we first surround the pattern with empty rows on the top
and bottom and empty columns to the left and right. We
require that the frequent patterns satisfy the following con-
ditions: (1) the patterns should be defined in a rectangular
region, (2) the patterns should never overlap with other
patterns, and (3) the patterns should be isolated.

Algorithm 1 Corner transformation algorithm.

Input: Layer image IN ∈ f0;1gR·C

Output: Corner image OUT ∈ f0; 1gR·C

1: Initialize OUTðx; yÞ ¼ 0; ∀ x; y .
2: for y ¼ 1 to R do
3: for x ¼ 1 to C do
4: if y is odd then
5: if INðx − 1; y − 1Þ ¼ INðx; y − 1Þ and INðx − 1; yÞ ≠ INðx; yÞ then
6: OUTðx; yÞ ¼ 1
7: end if
8: if INðx − 1; y − 1Þ ≠ INðx; y − 1Þ and INðx − 1; yÞ ¼ INðx; yÞ then
9: OUTðx; yÞ ¼ 1
10: end if
11: else
12: if INðx − 1; y − 1Þ ¼ INðx; y − 1Þ and INðx − 1; yÞ ≠ INðx; yÞ
then
13: OUTðx − 1; yÞ ¼ 1
14: end if
15: if INðx − 1; y − 1Þ ≠ INðx; y − 1Þ and INðx − 1; yÞ ¼ INðx; yÞ
then
16: OUTðx − 1; yÞ ¼ 1
17: end if
18: end if
19: end for
20: end for

GDSII File

Layer #

Analyze
Frequently
Repeated
Structures

Rasterize

Frequent
Pattern Image

Fig. 9 Frequent pattern discovery from GDSII layout description.

J. Micro/Nanolith. MEMS MOEMS 033018-7 Jul–Sep 2013 • Vol. 12(3)

Yang, Savari, and Harris: Datapath system for multiple electron beam lithography systems. . .

First, we will explain how the candidate patterns are gen-
erated. Later, we determine which ones will be included in
the frequent pattern dictionary. The candidate pattern gener-
ating algorithm is shown in Algorithm 2. In the algorithm,
x ∈ ½1; : : : ; C� is the column index of the image block and
y ∈ ½1; : : : ; R� is the row index of the image block. Once
again note that R × C is the block dimension, which is pre-
determined by the MEB DW system.

The algorithm starts by picking a pixel from the image
block in raster order, i.e., from top to bottom and then from
left to right. If the pixel is filled (1), then we define a rec-
tangular region ðx0; y0Þ − ðx1; y1Þ so that all of the filled pix-
els that are connected to ðx; yÞ are covered by it (line 5). We
then make the rectangular region as the candidate pattern
Pattern (line 6) and search the list of candidate patterns
PatternList (line 7) to see whether the pattern was
already in the list or not. If Pattern was already in the
PatternList, we increase its frequency by 1 (line 9).
Otherwise, we put Pattern into the PatternList
and initialize its frequency to 1 (line 11). Finally, we make
sure that the region is not searched again by marking the
region in checked (lines 13 to 17), and this prevents the
patterns from overlapping.

Once again, note that this frequent pattern discovery algo-
rithm is applied separately to each image block. By aug-
menting the discovered PatternList after processing
each block image, we obtain the final candidate pattern list.
Moreover, to incorporate the GDSII extracted patterns in
Sec. 2.3.1 with the Algorithm 2 patterns, we first run the fre-
quent pattern replacement algorithm of Sec. 2.2.1 on each
image block using only the GDSII extracted patterns. We
next apply Algorithm 2 to the residue image blocks, which
are the block image regions that have not been matched by
the frequent pattern replacement process. By combining both
the GDSII extracted patterns and the patterns generated using
Algorithm 2, we obtain the final candidate pattern list.

2.3.3 Pattern optimization

Once the candidate patterns are discovered, we analyze them
in order to decide which patterns to keep and which patterns
to discard. The final patterns will be used as the frequent
patterns of the FPR encoder for every image block. As dis-
cussed in Ref. 12, there are two parameters that we consider
to make this decision. The first parameter is gain, which pro-
vides information on what improvement we should expect by
using the pattern for the frequent pattern replacement proc-
ess. Since compression is related to the corners we remove
by patterns as well as to the frequency of patterns, we define
the gain of pattern p as

Gainp ¼ ½NðCpÞ − 1� × NðFpÞ;

where NðCpÞ is the number of corners of pattern p and is the
frequency of pattern p.

The second parameter is cost, which shows how much
decoder memory is required to keep the pattern in the
decoder memory. For the pattern p whose dimension is
wp × hp, the decoder usually needs wp × hp bits of memory
to store the pattern. However, we can reduce the cost when
the pattern is fully filled. For this case, since we already
know that all pixels are filled, all we need to store are the
pattern dimensions. We allocate 16 bits for each dimension
and a 1 bit flag to specify whether or not the pattern is fully
filled. Therefore, the cost of pattern p with dimension wp ×
hp is defined as follows:

Costp ¼
�
33; if patternp is fully filled

33þ wp × hp; otherwise
:

To reduce the complexity of the optimization problem, we
initially discard the candidate patterns whose gains were less
than a preset threshold Threshold.

To choose the frequent patterns, we want to

maximize
X
p

Gainp · xp such that
X
p

Costp · xp ≤ Psize;

(1)

where xp is a binary number indicating whether pattern
should be used as a frequent pattern (1) or not (0), and
Psize is the decoder memory in bits that can be used to
store the frequent pattern dictionary.

Equation (1) is an instance of a standard binary integer
programming (BIP) problem.18

Layout Description (1nm grid) Bitmap Image (4nm grid)

Polygon1 = (0,0)-(0,4)-(4,4)-(4,0)-(0,0)
Polygon2 = (6,7)-(6,11)-(10,11)-(10,7)-(6,7)

Fig. 10 Example of pattern mismatch due to rasterization.

Algorithm 2 Candidate pattern generation.

Input: Layout image IN ∈ f0;1gR·C

Output: List of patterns PatternList
Intermediate: List of patterns checked ∈ f0; 1gR·C

1: Initialize Checkedðx; yÞ ¼ 0; ∀ x; y
2: for y ¼ 1 to R do
3: for y ¼ 1 to C do
4: if Checkedðx; yÞ ¼ 0 and INðx; yÞ ¼ 1 then
5: ðx0; y0; x1; y1Þ ¼ DefinePatternRegionðx; yÞ
6: Pattern ¼ MakePatternðx0; y0; x1; y1Þ
7: P ¼ PatternList:FindðPatternÞ
8: if P ≠ NOTFOUND then
9: PatternList½P�:frequencyþ ¼ 1
10: else
11: PatternList:InsertðPattern; 1Þ
12: end if
13: for yy ¼ y0 to y1 do
14: for xx ¼ x0 to x1 do
15: Checkedðxx; yyÞ ¼ 1
16: end for
17: end for
18: end if
19: end for
20: end for

J. Micro/Nanolith. MEMS MOEMS 033018-8 Jul–Sep 2013 • Vol. 12(3)

Yang, Savari, and Harris: Datapath system for multiple electron beam lithography systems. . .

Maximize ctx subject to aTx ≤ b and x ∈ f0; 1g (2)

by setting c ¼ ½Gain1 Gain2 · · · GainG �, b ¼ Psize,
and a ¼ ½Cost1 Cost2 : : : CostG �.

HereG is the number of candidate patterns. By applying a
widely used BIP solver,19 we are able to choose the optimal
frequent patterns from the generated candidate pattern list.

Finally, note that this optimal frequent pattern set is used
during the frequent pattern replacement process of every
image block. If we instead use a different frequent pattern
set for each image block, we can only assign a fraction of
Psize for the frequent pattern replacement of each image
block in order to sustain the same decoder memory require-
ment. That results in discarding some of the large patterns
that are widely used in multiple image blocks and, hence,
in deteriorating the compression performance.

2.4 Flatten Pixel Stream

Once the forward transformed image blocks are generated,
we flatten the forward transformed image blocks into a
one-dimensional pixel stream so that the MAPPER system
receives an encoded pixel for each block at a time to
match the current placement of all of the electron beams. We
obtain this stream by gathering the transformed image blocks
and reading one pixel from each block in a horizontal zig-
zag order.

An example of this permutation is shown in Fig. 11 where
each block has adimension of 5 × 4 and each block is written
in zig-zag order. For example, we first read the first (or top-
left) pixels of each block in the order of the blocks. Then, we
read the second pixels in zig-zag order of each block and
continue that until the last pixels in zig-zag order of each
block are read. The order in which the pixels are read in this
example is marked in the image.

Finally, note that this permutation operation inputs the
forward transformed image blocks and outputs a long one-
dimensional stream to which the following entropy coding
schemes will be applied.

2.5 Entropy Encoding

We use the final entropy coding scheme of Refs. 10 and 12
to compress the final flattened stream of pixels. Since the
forward transformed images are very sparse, the flattened
stream contains long run of zeroes making RLE20 and
EOB10 coding efficient to compress it. Moreover, we also

find long runs of EOBs as the forward transformed images
are very sparse. We use an N-ary representation to encode
runs of EOBs and an M-ary representation to encode runs
of zeroes as in Refs. 10 and 12. Observe that the output
of RLE+EOB coding can have up to Pþ 1þM þ N sym-
bols, where P is the number of frequent patterns after the
pattern optimization process in Sec. 2.3.3 and one symbol
is needed for representing the transitional corners shown
in Sec. 2.2.2.

This Pþ 1þM þ N symbol string is compressed using
arithmetic coding21,22 for further compression. We followed
the implementation of arithmetic coding provided by Witten
et al.22 For the implementation, the decoder requires four
bytes per alphabet symbol, and since we used Pþ 1þM þ
N symbols, 32ðPþ 1þM þ NÞ bits were required for arith-
metic decoding.

3 Decompression Algorithm
The C2-MEB decoder decompresses the compressed bit
stream to write the circuit layout image using the electron
beam arrays. Because of the memory constraints of the
decoder, the same compressed bit stream is repeatedly
retransmitted to the decoder during each writing of an elec-
tron beam.

The C2-MEB decompression process is illustrated in
Fig. 12 and consists of four major blocks: arithmetic decod-
ing, run length and EOB decoding, block reconstruction, and
an inverse transformation process block for each electron
beam that is directly connected to it. The entire decoder is
fabricated on the same silicon as the electron beam writer
(controller) array.

The first two steps, arithmetic decoding and run length
and EOB decoding, reverse the corresponding encoding pro-
cedures and output the (Pþ 2)-ary flattened pixel stream of
Sec. 2.4. In the block reconstruction process, the input pixel
stream is separated into multiple pixel streams, which each
correspond to a forward transformed image block. Each such
block is converted back into a reconstructed image block,
which is passed to an electron beam writer that writes the
decoded block onto the wafer as the stage moves. The differ-
ent image blocks are processed and written in parallel on the
wafer by independent inverse transformation processes and
the corresponding electron beam writers.

The decoder requires dlog2ð3Þ × widthe bits of cache for
each inverse transformation process block to keep intermedi-
ate information for the row-by-row decoding of each block,

1 7 13 19 2 8 14 20 3 9 15 21 4 10 16 22 5 11 17 23 6 12 18 24

43 37 31 25 44 38 32 26 45 39 33 27 46 40 34 28 47 41 35 29 48 42 36 30

49 55 61 67 50 56 62 68 51 57 63 69 52 58 64 70 53 59 65 71 54 60 66 72

91 85 79 73 92 86 80 74 93 87 81 75 94 88 82 76 95 89 83 77 96 90 84 78

97 103 109 115 98 104 110 116 99 105 111 117 100 106 112 118 101 107 113 119 102 108 114 120

Gray box: First pixel of each block (1st – 6th bit)
Numbers: Writing order

Dotted line : Block order
Solid line : In-block writing order

Fig. 11 Permute pixels corresponding to the writing strategy.

J. Micro/Nanolith. MEMS MOEMS 033018-9 Jul–Sep 2013 • Vol. 12(3)

Yang, Savari, and Harris: Datapath system for multiple electron beam lithography systems. . .

Psize bits of memory for the frequent pattern dictionary, and
32ðPþ 1þM þ NÞ bits for arithmetic decoding, where
width is the width of the image block, P is the number of
total frequent patterns, and M∕N are RLE/EOB parameters.

3.1 Block Reconstruction

Since arithmetic and RLE+EOB decoding are well under-
stood in data compression, we will next discuss the
reconstruction of the forward transformed image blocks of
Sec. 2.2 from the flattened pixel stream of Sec. 2.4. As illus-
trated in Fig. 13, we can achieve this by wiring each symbol
of the flattened pixel stream to the corresponding inverse
transformation data queue.

In the example shown in Fig. 13, we are assuming there
are six electron beam writers and six inverse transformation
processes working simultaneously for the system. The infor-
mation stored in the inverse transformation data queue is
passed onto the inverse transformation process where each
row of a forward transformed image block is reconstructed
and decoded as a row of the reconstructed image block.
Since each inverse transformation process block is connected
to the corresponding electron beam writer, each recon-
structed row is passed to the electron beam writer to be writ-
ten on the wafer.

3.2 Inverse Transformation

Inverse transformation is applied to each forward trans-
formed image block to reconstruct the original image
block. The reconstructed image block is forwarded to the
associated electron beam writer. The inverse transformation
performs frequent pattern reconstruction and inverse corner
transformation. Recall that the frequent patterns are encoded

using symbols S1; : : : ; SP while the transitional corners are
marked by the symbol 1.

The bottom half of Fig. 12 shows the detailed hardware
architecture of an inverse transformation block. As illustrated
in the figure, both the inverse corner transformation and
the frequent pattern reconstruction processes require a row
buffer to keep track of the previous row’s status. The fre-
quent pattern reconstruction process also requires a frequent
pattern dictionary. Note that this frequent pattern dictionary
is shared among all of the inverse transformation blocks.

Observe that since the electron beams write a pixel of
each image block at the same time, synchronization is
needed among the inverse transformation processes. Here
we have the inverse transformation processes produce a row
of each reconstructed image block in parallel.

We next explain the operation of the inverse corner trans-
formation and the frequent pattern reconstruction processes
for an image block.

3.2.1 Inverse corner transformation

The inverse corner transformation uses pixels from the pre-
vious row and column to decode the current pixel. We
designed the decoder to decode the input corner transformed
image block in a row-by-row manner instead of in its entirety
in order for this process to be compatible with the restricted
memory available to the hardware decoder. The inverse cor-
ner transformation process is as follows: First, the decoder
reads the input corner transformed image block in a zig-
zag order. The zig-zag order is the same as raster order except
that it reads the even rows from right to left. Second, the
decoder processes the current pixel by checking the status
of the row buffer (BUFF). The row buffer is used to store
the status of the previous (decoded) row. It uses two symbols,
0 and 1, to represent its status, and hence, the buffer requires

Corner2-MEB Decoder

Input:
Compressed bits

Arithmetic
Decoding

RLE + EOB
Decoding

Block
Reconstruction

•Inverse Transformation
Data Queue

Inverse Transformation
•Frequent Pattern Reconstruction
•Inverse Corner Transformation

Electron Beam
Writers

Output:
Wafer Image

Blocks

(P+2)-ary
Flattened

Pixel Stream

Reconstructed
Image Blocks

Forward Transformed Image Blocks

Inverse Corner
Transformation #1

Frequent Pattern
Reconstruction #1

Frequent
Pattern

Dictionary
(Shared)

in out

Inverse Transformation Process Block #1

Decoder Cache

Row Buffer #1

Inverse
Transformation
Data Queue #1

Electron Beam
Writer #1

Fig. 12 Corner2-MEB decompression algorithm overview.

J. Micro/Nanolith. MEMS MOEMS 033018-10 Jul–Sep 2013 • Vol. 12(3)

Yang, Savari, and Harris: Datapath system for multiple electron beam lithography systems. . .

width bits of memory. “0” means no transition while “1”
means transition and indicates the starting/ending point of
a vertical line. Third, whenever the read symbol is a transi-
tional corner point (“1”), the decoder starts reconstructing a
horizontal line by setting the horizontal line fill flag (Fill)
until it reads another transitional corner point from the input
row and resets the horizontal line fill flag. For the even rows,
this line is written from right to left, while it is written from
left to right for the odd rows. Fourth, for every new horizon-
tal line created by the transitional corners, the row buffer
(BUFF) is updated so that the decoder can take the status
of the current row into account while reconstructing the
next row.

Note that because we are dealing with transitional corners,
a horizontal line starts from a transitional corner point and
ends one pixel before the pairing transitional corner point.
In Fig. 8, step (d) is applied to sustain the same decoding
rule for the even rows. If the encoder did not left-shift the
even rows, then in order to reconstruct the horizontal lines
of those rows, the decoder has to start a horizontal line
one pixel after a transitional corner point and end it at the
pairing transitional corner point. However, there could be
a problem reconstructing the horizontal line of the even
rows when the first pixel of the row (i.e., the rightmost
pixel) has to be filled. Since there is no pixel to the right
of the rightmost pixel, the reverse line from right to left can-
not be reconstructed using this decoding rule. By inserting an
empty right column and allowing the transitional corners to
appear there and applying left-shifts to the even rows as in
step (d) of Fig. 8, we can always reconstruct horizontal lines
by starting from a transitional corner point and ending it one
pixel before the corresponding transitional corner point fol-
lowing the row direction.

Because the inverse corner transformation rule is indepen-
dent of the row direction, we have to make sure that the col-
umn index matches the row direction. Algorithm 3 describes
the inverse corner transformation process. We assume the
inverse corner transformation decoder can randomly access

the entire row buffer and the input corner transformed image
block is read in a zig-zag order. Note that the

L
operation

is a binary XOR operation and is only applied to binary
summands.

In Algorithm 3, the horizontal fill flag (Fill) is initial-
ized for every row (line 4). Then we check the row number
and update the column index (lines 6 to 10). If the row is odd
numbered, then the column index starts from 1 to C (lines 6
and 7), while the order is reversed (from C to 1) if the row
number is even. We update the column index if the row num-
ber is even (lines 8 to 10). Lines 11 to 13 process the buffer. If
the buffer is filled, i.e., if there is a vertical fill, then the cor-
responding pixel is filled. If the input pixel (read in zig-zag
order) is a transitional corner (“1”), the decoder changes the
status of the horizontal fill flag (lines 14 to 16). Finally,

1 7 13 19

43 37 31 25

49 55 61

Q1 Q2 Q3 Q4 Q5 Q6

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

37 38 39 40 41 42

43 44 45 46 47 48

49 50 51 52 53 54

55 56 57 58 59 60

61 62 63 64 65 66

1 2 3 4 5 6 7 8 9

Input Stream

Inverse Transformation Data Queues

Forward
Transformed

Image Block #1

Inverse
Transformation

1 7 13 19

43 37 31 25

49 55 61

Reconstructed
Image Block #1

Fig. 13 Reconstructing the forward transformed image blocks from the flattened stream. The decoder places each incoming stream symbol into the
appropriate inverse transformation data queue. All of the symbols in a queue are rearranged into a block that undergoes the inverse transformation
process to produce a decoded image block.

Algorithm 3 Inverse corner transformation.

Input: Corner transformed image block IN ∈ f0;1gR·C

Output: Reconstructed image block OUT ∈ f0;1gR·C

Intermediate: Row Buffer BUFF ∈ f0;1gR
1: Initialize BUFFðxÞ ¼ 0; ∀ x .
2: Initialize OUTðxÞ ¼ 0; ∀ x; y .
3: for y ¼ 1 to R do
4: Fill ¼ 0
5: for x ¼ 1 to C do
6: if y is odd then
7: x 0 ¼ x
8: else
9: x 0 ¼ C þ 1 − x
10: end if
11: if BUFFðx 0Þ ¼ 1 then
12: OUTðx 0; yÞ ¼ 1
13: end if
14: if INðx 0; yÞ ¼ 1 then
15: Fill ¼ Fill

L
1

16: end if
17: OUTðx 0; yÞ ¼ OUTðx 0; yÞLFill.
18: BUFFðx 0Þ ¼ BUFFðx 0ÞLFill.
19: end for
20: end for

J. Micro/Nanolith. MEMS MOEMS 033018-11 Jul–Sep 2013 • Vol. 12(3)

Yang, Savari, and Harris: Datapath system for multiple electron beam lithography systems. . .

depending on the horizontal fill flag (Fill), the output pixel
(line 17) and the buffer (line 18) are updated if necessary. If
the input pixel is “0,” the decoder makes no horizontal/
vertical changes to the image, but fills the output pixels and
updates the buffer according to the fill status.

3.2.2 Pattern reconstruction

If the decoder finds symbols fS1; : : : ; SPgwithin the forward
transformed image block, it starts the pattern reconstruction
process. First, it reconstructs the first row of the correspond-
ing pattern according to its writing order. If the decoder is
processing an odd row, it will reconstruct the pattern row
from left to right and otherwise it will reconstruct the pattern
row from right to left. Second, it updates the corresponding
buffer with the following string:

½PatternRow�:
Here $ is a special symbol used to indicate the start of

frequent pattern p replacement. If pattern of dimension wp ×
hp is to be reconstructed, then Pattern# is a dlog2ðPÞe-bit
binary representation of p and Row# is a dlog2ðhp − 1Þe-
bit binary representation of one less than the remaining num-
ber of pattern p rows the decoder has to reconstruct. Because
Pattern# determines which frequent pattern the decoder
needs to reconstruct (and its dimension), and Row# deter-
mines which row of the corresponding pattern it has to recon-
struct, the decoder can reconstruct the pattern. We could
alternatively use base-3 logarithms, but that would compli-
cate the decoding hardware.

Note that this ½ PatternRow�: stream is updated depending
on the writing direction of the next row. An example of
the frequent pattern reconstruction process is demonstrated
in Fig. 14. When the first row is decoded, we update the

Frequent
Pattern

Dictionary

Row Buffer

Frequent
Pattern

Dictionary

Row Buffer

(b) After processing the first row

(d) After processing the third row

Frequent
Pattern

Dictionary

Row Buffer

Frequent
Pattern

Dictionary

Row Buffer

(a) Input

(c) After processing the second row

writing
direction

Decoded

Encoded

Decoded

Encoded

Decoded

Encoded

Fig. 14 Frequent pattern reconstruction example.

Table 1 Compression ratio (x)—Memory array (block size:
888 × 17;816).

Layer C2-MEB C2-BIP C2-ORG BC4

1 11,074 22,201 18,658 147.78

2 457 1289 1216 79.80

3 11,074 22,201 18,658 147.78

4 83 151 86 54.12

5 640 920 920 133.22

6 640 920 920 133.22

7 104 84 84 31.58

8 41 90 67 24.40

9 89 171 170 38.17

10 96 114 57 25.31

11 204 442 442 75.70

12 2837 11,059 3169 121.69

13 5971 28,606 9616 141.02

Average 164 261 192 57.36

J. Micro/Nanolith. MEMS MOEMS 033018-12 Jul–Sep 2013 • Vol. 12(3)

Yang, Savari, and Harris: Datapath system for multiple electron beam lithography systems. . .

row buffer in the reverse direction starting at the fourth col-
umn because the next row is written from right to left and the
pattern involves the second, third, and fourth columns. The
½ PatternRow�: stream is represented as ½ 1� in the reverse
direction because there is only one frequent pattern defined
in the dictionary making dlog2ðPÞe ¼ 0. (In Fig. 14, the $’s
are represented by red pixels and the 1’s are represented by
black pixels.) In the next row, the decoder has to process two
more rows of the pattern. When the second row is decoded,
since the writing order of the next row is from left to right and
since we need to write one more row to the first pattern, the
buffer of the first pattern is updated to ½ 0� in the forward
direction. Similarly, the buffer of the second pattern is
updated to ½ 1� . Finally, when the third row is decoded, we
reinitialize the buffer of first pattern to [0 0] to indicate that
the frequent pattern reconstruction is complete.

In order to combine this frequent pattern reconstruction
and the inverse corner transformation, the inverse transfor-
mation decoder requires dlog2ð3Þ × Ce bits for the row buffer
for each inverse transformation block and Psize bits to store
the pattern dictionary. Given that the forward transformed
image is a (Pþ 2)-ary array with dimension R × C, this
buffer requirement is comparatively small.

4 Experimental Results
We tested the algorithm on two custom circuits—a memory
circuit and a binary frequency shift keying (BFSK) transmitter
circuit used for testing Corner2.10,12 The memory core was
targeting 500-nm lithography technology containing 13 layers

of repeated memory cell structure. The custom-designed
BFSK transmitter was targeting 250-nm lithography technol-
ogy containing 19 layers of mostly irregular features. We
scaled these images to the point where their minimum features
were small rectangles (with less than a dozen pixels) to sim-
ulate the MAPPER environment. Most parts of C2-MEBwere
written in C/C++ with OpenMP support for processing the
forward and inverse transformation processes in parallel.
For the decoding process, the inverse transformation processes
are synchronized so that the same writing row of each was
processed in parallel. Because C2-MEB blocks can be proc-
essed independently, we applied parallel processing for faster
encoding/decoding speed. The binary integer programming
part was written in MATLAB using the MATLAB function
bintprog.19 All of the experiments ran on a laptop computer
having a 2.53 GHz Intel Core 2 Duo CPU and 4 GB RAM.

We applied C2-MEB and compared the results with
Corner2-BIP (C2-BIP),12 Corner2 (C2-ORG),10 and BC4.7

While C2-BIP, Corner2, and BC4 were applied to the entire
layout image, C2-MEB was applied in a block fashion. We
set the MAPPER block size to be 888 × height because the
MAPPER writing region is a width-2 μm stripe on a 2.25-nm
grid.6 Here, height is the height of the circuit layer image,
which was 17,816 for the memory circuit and 31,624 for
the BFSK circuit.

In the following subsections we show the compression
results for both the memory and BFSK circuits on the
MAPPER system. In the following subsections, we defined
the compression ratios to be

Table 2 Encoding/decoding time (s)—Memory array.

Encoding time (s) Decoding time (s)

Layer C2-MEB C2-BIP C2-ORG BC4 C2-MEB C2-BIP C2-ORG BC4

1 23.12 18.89 4.29 1875 2.81 2.40 2.53 55.44

2 30.84 26.48 26.36 1891 3.57 3.16 3.34 54.99

3 23.74 18.36 4.29 1788 2.81 2.42 2.53 52.90

4 43.47 49.02 48.93 1815 3.55 2.96 3.20 53.70

5 15.40 25.26 26.85 1831 3.22 2.95 3.05 53.55

6 15.55 25.28 26.86 1796 3.24 2.90 3.05 54.48

7 25.88 23.07 25.27 1846 3.52 3.21 3.23 54.63

8 92.07 97.32 109.97 1885 3.87 3.21 3.51 54.79

9 32.57 25.37 30.18 1817 3.44 2.79 3.05 54.83

10 68.83 84.16 78.49 1917 3.58 2.98 3.44 54.07

11 64.58 70.68 80.22 1795 3.40 2.78 3.04 56.43

12 15.64 6.23 4.16 1775 3.46 2.95 2.49 51.50

13 17.20 6.52 4.16 1762 3.58 2.94 2.48 51.88

Total 468.87 485.45 470.05 23,793 44.04 37.67 38.93 703.18

J. Micro/Nanolith. MEMS MOEMS 033018-13 Jul–Sep 2013 • Vol. 12(3)

Yang, Savari, and Harris: Datapath system for multiple electron beam lithography systems. . .

Input file size

Compressed file size
:

Note that the total compression ratio is not the average of
the preceding compression ratios, but the net average, which
is defined as

Total input file size

Total compressed file size
:

To compare the result with C2-BIP, we used the same M,
N, Psize and settings as in Ref. 12.

4.1 Memory Circuit

Tables 1 and 2 show the experimental results for the memory
circuit when the MAPPER block separation was applied.
Because of the block partitioning, C2-MEB had 37.3 and
14.9% smaller compression ratio than C2-BIP and C2-ORG,

respectively, which operated on the full layout image.
However, C2-MEB was still 2.9 times better than BC4 as
shown in Table 1. The block partitioning resulted in fewer
pattern matches and introduced more corners in the block
boundaries. Moreover, the flattening process also deterio-
rated the RLE+EOB encoding by segmenting long run of
zeroes into smaller pieces. However, because Corner2-varia-
tions have better layout image modeling, C2-MEB still
resulted in better compression performance than BC4.

On average, C2-MEB encoding was 3% (or 0.3%) faster
than C2-BIP (or C2-ORG) and 50.8 times faster than BC4
as shown in Table 2. While C2-MEB generated more candi-
date patterns due to block truncation, which slowed down the
encoding process, it became faster than C2-BIP and C2-
ORG because of parallel processing. However, C2-MEB
encoding could be further accelerated by using more paral-
lelization. Since the Intel Core 2 Duo CPU only supports
running four threads simultaneously, we were not able to
take advantage of processing all blocks in parallel. Distributed
computing over the grid or an application of GP-GPU-based
parallel processing might enable this.

On average, C2-MEB decoding was 17% (or 13%) slower
than C2-BIP (or C2-ORG), while it was 16.0 times faster
than BC4 as shown in Table 2. Our decoding time results
do not include the time to reverse the flattening process
because this procedure would be unnecessary in a hardware
implementation. The process was only used to verify that the
reconstructed image matches with the input image. Further-
more, similar to the encoding time, we expect the decoding
time to be further reduced when full parallelization is
applied. Considering this as a compress-once-and-decode-
multiple-times application, C2-MEB is more realistic than
C2-BIP and C2-ORG in that it takes advantage of multiple
electron beams, and it offers better compression than BC4.

4.2 BFSK Circuit

Tables 3 and 4 show the experimental results for the BFSK
circuit when the MAPPER block separation was applied.
Like the memory circuit, C2-MEB had a 28.4% smaller com-
pression ratio than C2-BIP and a 25.2% smaller compression
ratio than C2-ORG. This is mainly due to the new corners
introduced and the shortened runs of zeroes due to block sep-
aration. However, C2-MEB still offered a 3.4 times better
compression ratio than BC4. On average, C2-MEB was 58%
slower than C2-BIP and 79% slower than C2-ORG, while it
was 109.0 times faster than BC4. Compared to the memory
circuit result, the improvements in encoding speeds were
because more candidate patterns had to be generated even
though not so many of them were used. Similarly, C2-MEB
was 18% slower than C2-BIP and 14% slower than C2-ORG,
while it was 26.1 times faster than BC4. However, this was
because we could run only four inverse transformation proc-
esses in parallel, which could be further improved with the
help of massively parallel computing.

5 Conclusion
In this paper, we have modified Corner2 for MAPPER-like
systems. Although its compression performance was inferior
to that of C2-BIP12 due to block processing, it is better suited
to MEB DW systems because it incorporated the actual writ-
ing strategy and because the inverse transformation process
can be parallelized for higher throughput. Moreover, the

Table 3 Compression ratio (x)—BFSK circuit (block size:
888 × 31;624).

Layer C2-MEB C2-BIP C2-ORG BC4

1 12,126 20,874 9226 151

2 6275 7432 6760 150

3 1016 1596 1186 137

4 2942 3745 3270 147

5 925 1125 1033 59

6 476 609 580 128

7 297 399 390 111

8 122 173 167 81

9 361 474 452 122

10 179,212 460,192 195,365 153

11 139 206 200 86

12 848 1082 1006 138

13 142 209 203 89

14 943 1170 1093 139

15 167 236 230 92

16 1070 1368 1296 141

17 5635 8019 6656 150

18 19,687 26,467 19,579 152

19 12,005 20,773 9173 151

Average 385 537 515 113

J. Micro/Nanolith. MEMS MOEMS 033018-14 Jul–Sep 2013 • Vol. 12(3)

Yang, Savari, and Harris: Datapath system for multiple electron beam lithography systems. . .

performance of C2-MEB was still far better than that of BC4.
Hence handling regular circuit parts using dictionary-based
compression and irregular circuit parts using corner-based
(or vertex-based) representation as in Corner2 is far more
effective than handling regular circuit parts using Lempel-
Ziv-based compression and irregular circuit parts using pre-
diction-based compression as is done in BC4.

The decoder needs to be implemented in hardware, and
we showed that the Corner2 inverse transformation decoder
along with the RLE+EOB decoder required only 2% of a
Xilinx Spartan 3E field-programmable gate array board even
when using 5 kbytes of decoder cache.13 The C2-MEB
decoder consists of an arithmetic decoder, RLE+EOB decoder,
and 13,000 inverse transformation blocks with each inverse
transformation block smaller than those we introduced in
Ref. 13. Each inverse transformation block consists of simple
operations such as comparisons, branches, XORs, and binary

arithmetic. Since a GPU core can handle these operations and
more advanced operations, we argue that the dedicated
inverse transformation core will be much smaller than a
GPU core. The row buffer requirement for each inverse
transformation block is dlog2ð3Þ · Bwidthe bits, where is the
block width. Therefore, the entire C2-MEB system support-
ing 13,000 electron beams will require <3 MB of cache.
Since current GPUs have >3000 cores23 and previous gen-
eration Intel CPUs have 8 MB of cache,17 the entire C2-MEB
decoder can be built using current silicon technologies.

We have two concerns regarding this algorithm. First,
we do not have an efficient hardware implementation for
the arithmetic decoder, making the final arithmetic encod-
ing less suitable for the purpose. We can tackle this issue
by using other standard compression techniques and trad-
ing off part of the compression ratio for an efficient hard-
ware decoder; since C2-MEB has about three times better

Table 4 Encoding/decoding time (s)—BFSK circuit.

Layer

Encoding time (s) Decoding time (s)

C2-MEB C2-BIP C2-ORG BC4 C2-MEB C2-BIP C2-ORG BC4

1 6.29 1.74 2.41 451 1.09 0.80 0.84 29.50

2 38.87 16.33 17.88 3791 9.35 6.77 8.22 242.07

3 45.60 15.47 18.31 3800 9.20 6.63 8.24 237.42

4 35.70 15.11 17.21 3760 9.23 6.57 8.22 237.35

5 41.80 26.62 28.07 12,468 9.76 7.29 8.35 280.67

6 40.45 26.28 26.43 4485 9.66 7.26 8.33 274.15

7 63.57 54.74 37.09 4476 11.37 12.08 9.74 282.03

8 35.40 15.36 17.91 4588 10.91 9.71 9.68 289.53

9 59.26 58.11 35.56 4393 11.34 10.91 9.67 275.56

10 38.57 15.93 20.73 4866 10.47 7.61 9.41 293.04

11 37.33 17.56 17.90 4414 10.80 10.10 9.64 281.57

12 53.19 42.59 33.20 4428 11.05 10.89 9.57 278.34

13 34.73 15.00 17.88 4651 10.79 10.32 9.62 290.37

14 53.20 50.16 34.38 4413 11.11 10.46 9.57 276.35

15 37.22 17.29 17.80 4364 10.81 9.33 9.60 277.88

16 55.64 53.06 38.54 4381 11.26 9.34 9.59 275.98

17 32.80 14.30 15.74 3756 9.08 6.49 8.21 236.50

18 27.90 13.21 14.26 3049 7.24 5.23 6.47 190.71

19 5.90 1.73 2.42 454 1.05 0.79 0.84 27.68

Total 743.41 470.59 413.75 80,987 175.58 148.58 153.81 4576.71

J. Micro/Nanolith. MEMS MOEMS 033018-15 Jul–Sep 2013 • Vol. 12(3)

Yang, Savari, and Harris: Datapath system for multiple electron beam lithography systems. . .

compression performance than BC4, there is some room for
this trade-off.

Second, adjustments to the algorithm will be necessary to
account for e-beam proximity correction (EPC).24 We expect
that EPC layout images will not have linear boundaries.
Nevertheless, some combination of frequent pattern replace-
ment with a loose matching and a way to handle errors will
be useful. This is the next major direction of this line of
research.

Acknowledgments
The work of the second author was supported in part by
the National Science Foundation grants CCF-1017303 and
ECCS-1201994.

References

1. B. Lin, “Future of multiple-e-beam direct-write systems,” Proc. SPIE
8323, 832302 (2012).

2. N. Chokshi, Y. Shroff, and W. G. Oldham, “Maskless extreme ultravio-
let lithography,” J. Vac. Sci. Technol. B 17(6), 3047–3051 (1999).

3. V. Dai and A. Zakhor, “Lossless compression of VLSI layout image
data,” IEEE Trans. Image Process. 15(9), 2522–2530 (2006).

4. V. Dai, “Data compression for MEBL systems: architecture, algorithms,
and implementation,” Ph.D. Thesis, Department of Electrical
Engineering and Computer Science, University of California, Berkeley
(2008).

5. P. Petric et al., “REBL nanowriter: reflective electron beam lithogra-
phy,” Proc. SPIE 7271, 727107 (2009).

6. E. Slot et al., “MAPPER: high throughput maskless lithography,” Proc.
SPIE 6921, 69211P (2008).

7. H. Liu et al., “Reduced complexity compression algorithms for direct-
write maskless lithography systems,” J. Micro/Nanolithogr. MEMS
MOEMS, 6(1), 013007 (2007).

8. G. Cramer, H.-I. Liu, and A. Zakhor, “Lossless compression algorithm
for REBL direct-write e-beam lithography system,” Proc. SPIE 7637,
76371L (2010).

9. J. Yang and S. A. Savari, “A lossless circuit layout image compression
algorithm for maskless lithography systems,” in Proc. of the 2010 Data
Compression Conf., pp. 109–118, IEEE, Snowbird, UT (2010).

10. J. Yang and S. A. Savari, “A lossless circuit layout image compression
algorithm for maskless direct write lithography systems,” J. Micro/
Nanolithogr. MEMS MOEMS 10(4), 043007 (2011).

11. F. Krecinic, S.-J. Lin, and J. J. H. Chen, “Data path development
for multiple electron beam maskless lithography,” Proc. SPIE 7970,
797010 (2011).

12. J. Yang and S. A. Savari, “Improvements on Corner2, a lossless layout
image compression algorithm for maskless lithography systems,” Proc.
SPIE 8352, 83520K (2012).

13. J. Yang, X. Li, and S. A. Savari, “Hardware implementation of Corner2
lossless compression algorithm for maskless lithography systems,”
Proc. SPIE 8323, 83232O (2012).

14. E. Platzgummer, C. Klein, and H. Loeschner, “eMET POC: realization
of a proof-of-concept 50 keV electron multibeam mask exposure tool,”
Proc. SPIE 8166, 816622 (2011).

15. J. Yang and S. A. Savari, “Transform-based lossless image compression
algorithm for electron beam direct write lithography systems,” in Recent
Advances in Nanofabrication Techniques and Applications, B. Cui, Ed.,
pp. 95–110, InTech, Rijeka, Croatia (2011).

16. S. M. Rubin,Computer Aids for VLSI Design, 2nd ed., Addison-Wesley,
Boston (1987).

17. “Intel Core i7-920 processor specifications,” http://ark.intel.com/
products/37147/Intel-Core-i7-920-Processor-(8M-Cache-2_66-GHz-4_
80-GTs-Intel-QPI).

18. L. A. Wolsey, Integer Programming, Wiley-Interscience, New York
(1998).

19. MathWorks, “bintprog,” http://www.mathworks.com/help/toolbox/optim/
ug/bintprog.html.

20. S. Golomb, “Run length encodings,” IEEE Trans. Inf. Theory 12(3),
399–401 (1966).

21. A. Moffat, R. M. Neal, and I. H. Witten, “Arithmetic coding revisited,”
ACM Trans. Inf. Syst. 16(3), 256–294 (1998).

22. I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding for data
compression,” Commun. ACM 30(6), 520–540 (1987).

23. Nvidia GeForce GTX 690 GPU Specification http://www.geforce.com/
hardware/desktop-gpus/geforce-gtx-690/specifications.

24. F. Yesilkoy et al., “Implementation of e-beam proximity effect
correction using linear programming techniques for the fabrication of
asymmetric bow-tie antennas,” Solid State Electron. 54(10), 1211–1215
(2010).

Jeehong Yang received his BS degree in
electrical engineering from Yonsei University,
Seoul, Korea, in 2003. He received his MS
and PhD degrees in electrical engineering
and computer science from the University
of Michigan-Ann Arbor in 2005 and 2012.
He was involved in developing various data
compression algorithms (text, audio, image,
and video) and parallel processing algo-
rithms. He is currently working at Qualcomm
Technologies Inc.

Serap A. Savari is an electrical engineer at
Texas A&M University. She received her SB
and SM degrees in electrical engineering, her
SM degree in operations research, and her
PhD degree in electrical engineering and
computer science, all from the Massachu-
setts Institute of Technology. She was with
the Computer Sciences Research Center
at Bell Laboratories, Lucent Technologies
from 1996 to 2003 and with the University
of Michigan, Ann Arbor from 2004 to 2007.

She was an associate editor for source coding for the IEEE Transac-
tions on Information Theory from 2002 to 2005. She was the Bell Labs
representative to the DIMACS council from 2001 to 2003 and has
served on the program committees for numerous conferences and
workshops in data compression and in information theory.

H. Rusty Harris earned his BS in engineer-
ing physics, and master’s and PhD in electri-
cal engineering at Texas Tech University. He
previously worked in technology develop-
ment in Advanced Micro Devices and was
assigned to SEMATECH. He is currently
an assistant professor in electrical engineer-
ing and physics at Texas A&M University.

J. Micro/Nanolith. MEMS MOEMS 033018-16 Jul–Sep 2013 • Vol. 12(3)

Yang, Savari, and Harris: Datapath system for multiple electron beam lithography systems. . .

http://dx.doi.org/10.1117/12.919747
http://dx.doi.org/10.1116/1.590952
http://dx.doi.org/10.1109/TIP.2006.877414
http://dx.doi.org/10.1117/12.817319
http://dx.doi.org/10.1117/12.771965
http://dx.doi.org/10.1117/12.771965
http://dx.doi.org/10.1117/1.2435202
http://dx.doi.org/10.1117/1.2435202
http://dx.doi.org/10.1117/12.845506
http://dx.doi.org/10.1117/1.3644620
http://dx.doi.org/10.1117/1.3644620
http://dx.doi.org/10.1117/12.881010
http://dx.doi.org/10.1117/12.923205
http://dx.doi.org/10.1117/12.923205
http://dx.doi.org/10.1117/12.917581
http://dx.doi.org/10.1117/12.895523
http://ark.intel.com/products/37147/Intel-Core-i7-920-Processor-(8M-Cache-2_66-GHz-4_80-GTs-Intel-QPI
http://ark.intel.com/products/37147/Intel-Core-i7-920-Processor-(8M-Cache-2_66-GHz-4_80-GTs-Intel-QPI
http://ark.intel.com/products/37147/Intel-Core-i7-920-Processor-(8M-Cache-2_66-GHz-4_80-GTs-Intel-QPI
http://ark.intel.com/products/37147/Intel-Core-i7-920-Processor-(8M-Cache-2_66-GHz-4_80-GTs-Intel-QPI
http://ark.intel.com/products/37147/Intel-Core-i7-920-Processor-(8M-Cache-2_66-GHz-4_80-GTs-Intel-QPI
http://www.mathworks.com/help/toolbox/optim/ug/bintprog.html
http://www.mathworks.com/help/toolbox/optim/ug/bintprog.html
http://www.mathworks.com/help/toolbox/optim/ug/bintprog.html
http://www.mathworks.com/help/toolbox/optim/ug/bintprog.html
http://www.mathworks.com/help/toolbox/optim/ug/bintprog.html
http://dx.doi.org/10.1109/TIT.1966.1053907
http://dx.doi.org/10.1145/290159.290162
http://dx.doi.org/10.1145/214762.214771
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-690/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-690/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-690/specifications
http://www.geforce.com/hardware/desktop-gpus/geforce-gtx-690/specifications
http://dx.doi.org/10.1016/j.sse.2010.05.009

