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Abstract. The number of rice-plant stems (S), directly affecting the competition among rice
plants and contributing to rice yield, is estimated from laser data. The laser data were normalized
to eliminate the increasing plant height effect. Relative spatial volume (rV laser

s ) was derived and
scaled as an exponential function of S. A relationship between rV laser

s and S is confirmed in two
growing seasons (2014 and 2016, separately obtained by two different laser scanners). The scal-
ing and exponent factors (β and α) depended on the planting geometry, planting density, and
bottom position of the rice plants (Dbottom) but were almost independent of the number of divided
layers in the rV laser

s computation. From the estimated stem number using Dbottom at the 80th
percentile (D80), the maximum S was obtained at ∼50 days after transplanting. In both
years, the relative error in the estimate was below 0.10, and the bias was small. In the models
with D80 in 2014 (MD80

2014) and D95 in 2016 (MD95
2016), the β and α values were very similar.

Using the rV laser
s measure, we can disregard the footprint characteristics and voxel size. The

presented results support the proposed approach as a useful future method for estimating
rice-plant stems. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JRS.11.036012]
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1 Introduction

Crop growth monitoring has been the main focus of precise agricultural studies. Yields of rice, a
staple food in Asian countries, directly affect the future security of rice-based foods. Rice growth
has been monitored not only for food security but also for satisfying the demand for safe, afford-
able, high-quality rice. Many studies of grass food crops have inferred the crop growth from plant
heights, stem numbers, the leaf area index, leaf color, fresh and dry weights, and crop growth
rates.1–5 By monitoring these crop growth parameters over time, crop growth can be controlled.

In Japan, rice growth is periodically measured by three main parameters: rice-plant height,
rice-plant stem number, and rice leaf color.6 Both the rice-plant height and rice-plant stem num-
ber strongly influence the rice yield potential. In turn, the rice yield potential directly affects the
panicle number. Together with the grain weight and spikelet per panicle, the rice-plant stem
number determines the rice yield.7,8 The number of stems per plant hill depends on the nutrient
status,9 rice variety, and planting density. Over past decades, the above-mentioned rice growth
parameters were manually measured in the paddy field. Such measurements are monotonous,
labor-intensive, and time-consuming; moreover, the result varies with the spatial distribution of
samples and sample size. In some situations, especially in large fields, the sampled plants are
difficult to evaluate. Modern remote-sensing techniques support the development of time- and
labor-saving methods for monitoring crop growth parameters in agricultural production.
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Recently, laser scanning has become an effective technology in many research areas, such as
photogrammetry,10,11 surveying,12 and structural damage detection.13,14 In agriculture, ground-
based lasers have been popularly used in applications, such as biomass estimation15–20 and ver-
tical plant-area density profiling.21,22 Ground-based lasers have demonstrated their usefulness in
precise agriculture, as they collect large amounts of crop information within a short time. In fact,
many studies of plant-height monitoring have reported the use of laser data.23–27 In our previous
study, we introduced a method for estimating the heights of rice plants from laser data without
requiring the ground-surface level.28 However, few studies have attempted the monitoring of
rice-plant stem number. Therefore, a method for estimating rice-plant stem number is demanded
for monitoring rice growth and predicting the rice yield potential.

The structures and functions of plants can be scaled as power functions of the measured size
parameters.29,30 Applying this theory to light detection and ranging (LIDAR) data, researchers
have estimated forest and individual tree parameters, such as the basal area and stem volume.
In particular, the LIDAR tree height derived from LIDAR data has become a major variable in
biomass estimation. For example, Drake et al.31 estimated the above-ground biomass from
LIDAR data using an allometric equation based on stem diameter. In a pioneering study,
Chen et al.32 calculated the volume from LIDAR data by the canopy-height model. Using
this parameter, which they named the canopy geometric volume, they estimated the basal
areas and stem volumes of individual trees. Hollaus et al.33 derived the volume from the terrain
surface to the canopy from LIDAR data. They assumed a linear relationship between the
LIDAR-derived canopy volume and the growing stock and stratified their metric into several
canopy-height classes. By applying scaled power functions, other studies have estimated the
forest parameters (tree height, stem volume, stem number, and basal area) from airborne
laser scanning data.34–36 However, estimating agricultural crop production (and especially
rice crop production) by this approach has been rarely reported. According to Norberg,37 the
average plant volume can be scaled as a power function of population density. Therefore,
we expect that rice-plant volume can be expressed as a scaled exponential function of the mea-
sured rice-plant stem number.

This study proposes a method for estimating rice-plant stem number from laser data. This
fundamental methodology is expected to be aided by ground- or small unmanned aerial vehicle
(UAV)-based laser scanner systems in the future. Our method relies on the relative spatial vol-
ume (rV) metric, which is newly derived from laser point-cloud data. This metric is scaled by
power functions to estimate the rice-plant stem number. The proposed method is evaluated on
rice plants with different planting geometries. The field observation data were acquired by a line
laser scanner during the rice-growing seasons of 2014 and 2016. The scanner was mounted
vertically on a special rack for the observation of the rice canopy beneath it.

The remainder of this paper is structured as follows. Sections 2 and 3 describe the field and
laser data acquisition and our proposed methodology, respectively. The plant stem number
results are presented in Sec. 4 and discussed in Sec. 5. The study findings are summarized
and concluded in Sec. 6.

2 Data Acquisition

2.1 Field Data

The test plots were established in a paddy of the Niigata Agricultural Research Institute in
Niigata Prefecture, Japan. Before transplanting the rice-plant seedlings in early May, the
paddy was treated with ground fertilizer (3 gN∕m2). In the 2014 growing season, each rice-
plant hill (containing four initial seedlings) was transplanted in five plots with various planting
geometries. The planting density was varied as sparse (11.2 plant hills∕m2), moderate
(15.1 plant hills∕m2), and dense (21.2 plant hills∕m2). In the growing season of 2016, the rice
plants were transplanted in another paddy field with a single planting geometry (plot 2 in 2014;
Table 1). The study was performed on Koshihikari rice, a popular rice variety in Japan.

According to the meteorological data recorded by the Automated Meteorological Data
Acquisition System in Japan, the weather conditions differed between the 2014 and 2016
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growing seasons, but the average temperature was unchanged.38 Specifically, in late June to early
July, when the rice-plant stems develop, the rainfall was higher in 2014 than in 2016, but the
number of sunshine hours in 2014 was double that of 2016. Owing to the different soil and
weather conditions, the rice growth parameters might vary between the two years. To validate
the proposed method, we collected the growth parameters of the rice plants in a field investi-
gation. The rice-plant height (H) and rice-plant stem number (S) were manually measured at
irregular intervals during the rice-growing seasons of 2014 and 2016.

2.2 Laser Data

Seven observations were carried out during the vegetative stages of each growing season. The
laser scanner was a SICK LMS 200 in 2014 and a UTM 30LX in 2016. Both scanners were
mounted at ∼3 m above the ground surface (Fig. 1). The range measurement accuracies of SICK
LMS 200 and UTM 30LX are 10 mm (at the typical range of 10 m) and 30 mm at observing
distances below 10 m, respectively. In both scanners, the laser beam wavelength was 905 nm, the
angular resolution was 0.25 deg,39,40 and the central scan angle was the nadir. Powered by
a motor, the laser scanner moved along the slide rail to sample the rice canopy. UAV-based
laser scanners with constant flight altitude and velocity operate by the same mechanism.
Unfortunately, the shapes and sizes of the footprint differ between the laser scanners used in
this study. Specifically, at an observed distance of 3 m, the footprint of SICK LMS 200 is

(a) (b)

Fig. 1 Field observations were collected by laser scanners: (a) SICK LMS 200 and (b) UTM 30LX
in 2014 and 2016, respectively. Both lasers were hung ∼3 m above the paddy field surface and
could move along the rail under motorized power.

Table 1 Rice planting densities and geometries during the growing seasons of 2014 and 2016.

Plot
Planting density
(plant hills∕m2)

Planting
geometry

Row orientation
relative to scanning plane

Growing season

2014 2016

1 21.2 30 cm × 16 cm Perpendicular (⊥) ✓ —

2 15.1 30 cm × 22 cm Perpendicular (⊥) ✓ ✓

3 11.2 30 cm × 30 cm — ✓ —

4 15.1 22 cm × 30 cm Parallel (||) ✓ —

5 21.2 16 cm × 30 cm Parallel (||) ✓ —

Note: ✓ indicates the application of a planting geometry during the growing season.
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a circle with an approximate diameter of 3 cm, whereas that of UTM 30LX is rectangular and
sized 0.8 cm × 4 cm. However, at the high density of the laser pulses, both laser scanners
covered and returned the full information of the rice canopy. As the wind velocity remained
below 2.5 m∕s, high-quality laser data were recorded.

3 Methodology

This section introduces a dimensionless metric called the relative spatial volume (rV), which is
newly derived from laser point-cloud data. Theoretically, we assumed that laser data were col-
lected under the ideal condition of nadir viewing and that the rice canopy was derivable from the
laser data. Under these assumptions, we define the volume of space between the laser-derived
rice canopy and the ground surface as the spatial volume (Vs). As Vs contains the rice plant, it is
influenced by both the rice-plant height (H) and the rice-plant stem number (S). Additionally, H
increases over time. To eliminate the effect of H on the time-series laser data, we normalize Vs

with H to obtain the normalized spatial volume (nVs), which should change only with S. To
eliminate the effect of voxel size, we also replace nVs with the relative spatial volume (rVs)
obtained as the quotient of nVs and the maximum nVs. In this way, the relationship between
rVs and S is maintained. According to our hypothesis,37 rVs is expressed as a scaling exponent
function of S; therefore, S can be directly computed from the laser data.

To estimate S directly from the laser data, Vs is normalized by the relative vertical distance
(rD). The relationship between S and the laser-derived relative spatial volume (rV laser

s ) is then
expressed in logarithmic form. From this expression, the allometric scaling factor and the expo-
nent for estimating S are computed by fitting the laser data by the least-squares method. Finally,
we validate the accuracy of estimating the stem number from the laser data. The methodology is
explained in detail in the following subsections.

3.1 Basic Concepts of Estimating Rice-Plant Stem Number from Laser Data
Under Ideal Conditions (Good Laser Data)

3.1.1 Basic hypothesis of laser-derived metrics

In rice growth monitoring by laser measurements, the laser data must be properly fitted to the
manually measured parameters of the rice plants. In this study, the laser-derived metrics appeared
to be mainly related to S. After striking the rice canopy, the laser pulses emitted by the line laser
scanner were immediately returned to the sensor. Therefore, the rice canopy surface could be
reconstructed from the good quality laser data collected under the ideal condition of nadir viewing.

Spatial volume (Vs) between the ground and laser-derived rice canopy
surface. The spatial volume Vs (m3) is occupied by the rice plants and also by the empty
space between the ground and the laser-derived rice canopy surface [Fig. 2(a)]. For visualization
purposes, we describe Vs as a voxel set [Figs. 2(b) and 2(c)]. Each voxel is a unit cubic volume of
size Pvoxel. The size Pvoxel must be sufficiently small to identify each part of the rice plant, such as
the leaf and stem. Here, the voxel size was assumed as ∼1.0 cm3 under the ideal condition of the
laser scanning points. Vs can also be simply modeled from the measured rice-plant height (H) and
rice-plant stem number (S) as a rectangular prism [Fig. 2(d)]. We imagine that rice-plant stems
separate from each other and that each stem covers an individual area. Therefore, the surface area
of this rectangular prism is an approximately area-proportional function of S [fðSÞ]. As a result,
Vs can be written as the product of rice-plant height HðmÞ and fðSÞ (m2)

EQ-TARGET;temp:intralink-;e001;116;136Vs ¼ fðSÞH: (1)

Normalized spatial volume (nVs). According to Eq. (1), Vs is an increasing function of
time, as both S and H increase over time. However, H exerts a much clearer and stronger effect
on Vs than S. Whereas S reached its maximum and then slightly decreased, H increased
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throughout the growing period, so Vs increased accordingly. Thus, to estimate S from the time-
series laser data, we must remove the temporal effect of increasing H from Vs. If H were stable,
any change in Vs would be caused by S alone. To this end, we normalize Vs by H at each given
time t. The relationship between Vs and its normalized version (nVs) is given as

EQ-TARGET;temp:intralink-;e002;116;343nVs ¼
Vs

H
: (2)

Therefore,

EQ-TARGET;temp:intralink-;e003;116;290nVs ¼ fðSÞ: (3)

To derive the normalized spatial volume (nVs) from the laser scanning data, we first normal-
ize the vertical distance (D). Next, the scanning points (comprising the point cloud collected by
the laser scanner) are divided into separate horizontal layers from the top to the bottom of the rice
plants. The division is made at constant intervals ΔnD (where nD denotes the normalized
distance) [Fig. 3(a)]. Based on their normalized D values, voxels are assigned to each layer
[Fig. 3(b)]. Normalization alters the voxel size of a scanning point (Pvoxel) in the vertical dimen-
sion. Therefore, to compute the normalized spatial volume of layer k (nVk

s), we sum the scanning
points in layers 1 (x1) to layer k (xk) obtained by the line laser scanner and scale the result by the
voxel size after normalization (nPvoxel) [Figs. 3(c) and 3(d)]

EQ-TARGET;temp:intralink-;e004;116;155nVk
s ¼ nPvoxel

Xk
i¼1

xi: (4)

Then, nVs is computed as the sum of the normalized spatial volumes of all nD layers
(m layers)

(a) (b)

(c) (d)

Fig. 2 Spatial volume (Vs) between the ground and the rice canopy surface detected by the laser:
(a) cross section of voxel representation of Vs, (b) voxel representations of a rice-plant hill, and
(c) the target area, and the modeled Vs expressed in terms of rice-plant height H and the approx-
imately area-proportional function of S [f ðSÞ] (d).
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EQ-TARGET;temp:intralink-;e005;116;266nVs ¼ nPvoxel

Xm
k¼1

Xk
i¼1

xi: (5)

Relative spatial volume (rVs). The normalized spatial volume nVs depends on the voxel
size of the scanning point after normalization [Eq. (5)]. To remove the influence of nPvoxel on the
nVs computation, we propose a metric called the relative spatial volume (rVs). Assuming that all
scanning points belong to the first layer, we find the maximum nVs (nVmax

s ). The relative spatial
volume is then calculated as the quotient of nVs and nVmax

s as follows. Note that rVs is inde-
pendent of nPvoxel

EQ-TARGET;temp:intralink-;e006;116;143rVs ¼
nVs

nVmax
s

: (6)

3.1.2 Relationship between laser-derived metrics and rice-plant stem number

Norberg37 demonstrated that the average plant volume can be scaled as a power function of the
measured plant population density. Similarly, we hypothesize that nVs can be expressed as

(a) (b)
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Fig. 3 Calculation of nVs from laser scanning data. (a) Top and bottom (close to the ground sur-
face) positions of the rice plant used for normalizing D. The corresponding laser data are then
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the number of scanning points in layer i . (c) Computation of nVk from the scanning points and
(d) relationship between nV and nVmax.
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a scaling exponential function of S. In other words, fðSÞ can be expressed as an approximate
area-scaling factor A (m2) and an allometric exponent α (α > 0) [Eq. (3)]. Equation (6) can then
be rewritten as

EQ-TARGET;temp:intralink-;e007;116;699rVs ¼
A

nVmax
s

Sα: (7)

As nVmax
s is constant in each target area, the above equation can be simplified by defining

a dimensionless allometric scaling factor β as follows:

EQ-TARGET;temp:intralink-;e008;116;631rVs ¼ βSα: (8)

For a specific rice variety, planting direction, and planting density, the allometric scaling β
and exponent α can be presumed to be unchanged over the study period. Under ideal conditions,
S can be directly computed from the laser data as follows:

EQ-TARGET;temp:intralink-;e009;116;563S ¼
�
rVs

β

�1
α

: (9)

3.2 Conceptual Application Using the Observed Laser Data

3.2.1 Data extraction

To ignore the effects of incident angle in this study, a small target area was located inside each
plot. The targeted data were identified within inclination angles of �8 deg. Moreover, the five
target areas in 2014 were limited to the same distance (60 cm in the scanner moving direction),
and both target areas in 2016 were narrowed to ∼100 cm along the rail. In our previous study, we
computed D of the scanning points by multiplying the observed range data by the cosine of the
corresponding inclination angle.28 Here, D denotes the position of the laser pulse on the rice
canopy above the ground surface. Of course, the range of D depends on the observation
date because H increases over time.

3.2.2 Computation of relative spatial volume from the observed laser data

As mentioned above, before deriving nVs from the observed laser data (nV laser
s ), we normalizeD

for each target area. Here, we assume that scanning angle effects can be ignored. As reported in
our previous study,28 the relative vertical distance (rD), computed directly from the laser data
without considering the ground-surface level, was related to H and was insignificantly affected
by the planting density. Therefore, under the practical scenario of this study, we normalize D not
by H but by the respective rDs derived from the laser data at each observation time. For this
purpose, the tops and bottoms of the rice plants were identified directly from the observed laser
data. Phan et al.28 identified the top of the rice plant (Dtop) as the first percentile height. To avoid
the effects of scanning points located on or just above the ground surface, we define the bottom
of the rice plant (Dbottom) by three rice bottom positions at the 70th, 80th, and 95th percentile
heights (D70,D80, andD95, respectively). The normalizedDs (nDs) of the scanning points range
from 0 (close to the bottom) to 1 (close to the top of the rice plant). Unfortunately, the collected
data may contain error points caused by airborne particles or unexpected objects intercepting the
transmission direction of the laser pulses. When identifying the top and bottom of the rice plant,
these outliers were identified and eliminated by setting the valid range of D. Here, the valid D
range was identified from the measured plant height and the installation height of the laser scan-
ner. To ensure a stable number of normalized scanning points, we set the nD values of scanning
points above the top position and below the bottom position as 1 and 0, respectively.

If all laser scanning points (X) belonged to the first layer, the normalized spatial volume
would be maximized (i. e., nVmax

s ). To ensure a constant nVmax
s , we counted all scanning points

in all nD layers (m layers) in the nVmax
s computation as follows:
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EQ-TARGET;temp:intralink-;e010;116;735nVmax
s ¼ nPvoxelmX: (10)

The nV laser
s is then computed directly from nD by summing the normalized spatial volumes

of the nD layers. To avoid the effect of scanning points on or just above the ground surface, we
removed the last layer before computing nV laser

s

EQ-TARGET;temp:intralink-;e011;116;676nV laser
s ¼ nPvoxel

Xm−1

k¼1

Xk
i¼1

xi: (11)

To remove nPvoxel, we then divided nV laser
s by nVmax

s . This calculation gives the relative spa-
tial volume from the observed laser data (rV laser

s ). From Eqs. (10) and (11), we finally computed
rV laser

s as follows:

EQ-TARGET;temp:intralink-;e012;116;589rV laser
s ¼ 1

m N

Xm−1

k¼1

Xk
i¼1

xi: (12)

As evident in the above equation, rV laser
s depends on the number of scanning points in each layer;

consequently, rV laser
s depends on the value of nD and the number of layers. Especially, the num-

ber of divided layers (m) affects the histogram shape of nD. If m is excessively small, the histo-
gram distribution is lost; conversely, a too largem unnecessarily increases the number of divided
layers. Thus, we should investigate a suitable layer number in the rV laser

s calculation. In this
study, the maximum rice-plant height was below 1.0 m during the target period. The voxel
size in the vertical direction, which depends on the accuracies of the range measurements,
was assumed as 1 cm, so the height was divided into 100 layers. We expected that the most
suitable m is ∼100 layers or less. Hence, the value of m in the rV laser

s computation was varied
around 100 layers as m ¼ f500; 100; 50; 5g.

3.3 Regression Analysis

In the next stage of the analysis, we identify the allometric scaling factor and the exponent (β and
α). Given these parameters, the stem number can be determined. In logarithmic form, the rela-
tionship between the rice-plant stem number and rV laser

s [Eq. (9)] becomes

EQ-TARGET;temp:intralink-;e013;116;346 ln S ¼ 1

α
ln rV laser

s −
1

α
ln β: (13)

To determine β and α in the above equation, we fitted the laser data by the least-squares
method. Finally, the accuracy of estimating the stem number from laser data was validated
by the root-mean-square error (RMSE), the relative error (rE, computed as the RMSE divided
by the mean), and the bias value in each test plot. The bias value was determined by forcing the
slope of the regression line slope to 1.0.

4 Results

According to the manual measurement results, H increased linearly over time in 2014, and the
results were consistent among the five plots. H increased more rapidly in 2016 than in 2014, but
the mature crop height was similar in both years [Fig. 4(a)]. In contrast, S clearly varied among
the plots of various planting densities and growing seasons [Fig. 4(b)]. The stem number (S) was
higher in the 2014 than in the 2016 growing season, possibly reflecting soil condition effects and
the influences of weather factors, such as rainfall and hours of sunlight. S was maximized at ∼50
days after transplanting and varied with planting density and plot geometry in 2014.

Before computing rV laser
s , the time-varying H effect was removed from the laser data by

normalizing D with various Dbottoms (Fig. 5). When Dbottom was set just above the ground sur-
face, the ground-surface effect was not eliminated completely. For example, in the first obser-
vation (with Dbottom close to 0), the nDs of scanning points close to the ground surface deviated
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from 0 after normalizing the data [Figs. 5(b) and 5(f)]. On the other hand, when Dbottom was
set far above the ground surface, some of the rice-plant information was missed [Figs. 5(d) and
5(h)]. In all cases, the D80 setting achieved satisfactory nD values because the scanning points
close to the ground surface were removed with minimal loss of rice-plant information [Figs. 5(c)
and 5(g)]. Next, we obtained the regression equations for estimating S in each test plot with
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and (b) average rice-plant stem number (S) in the two growing seasons (error bars are the
standard deviations).
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times of the growing season in 2014 and 2016. The planting density was 15.1 plant hills∕m2, and
the planting direction was perpendicular. Rows show the results from (a–d) 2014 to (e–h) 2016.
Columns show the original data (a, e) and the nD values for different bottom positions of the rice
plant: (b, f) D95, (c, g) D80, and (d, h) D70.
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various planting densities and geometries. In this study, S was estimated directly from the
laser data under various values of β and α in the regression model, which relates S to
rV laser

s . Owing to different structures of the rice-plant canopy surfaces, the rV laser
s values varied

among the test plots. The allometric parameters also varied among the plots because the different
planting geometries and densities led to different distributions of the laser scanning
points. Additionally, the nD values depended on the accuracy of computing rD or on the iden-
tified Dtop and Dbottom. The distribution of nD also influences rV laser

s because it decides the
number of scanning points corresponding to each layer. Therefore, the allometric parameters
computed from the observation data varied among the determined Dbottom values and the
test plots.

To illustrate our proposed approach, we calculated the allometric parameter values in the
regression model from the observed laser data. The results are shown in Table 2. The results
were validated on moderate density plots in the perpendicular planting direction (plot 2)
(Table 3). Table 4 shows the effect of planting density and geometry on the precision of the
estimated stem numbers. The validated parameters were unaffected by all values of m above
10. In all cases, when Dbottom was set at the 80th and 95th percentile ranks (MD80 and
MD95, respectively), the rEs were ∼0.10 in both years (Table 3). However, the greatest
stem number was clearly obtained at MD80 (Figs. 6 and 7). In 2014, the rEs of MD80 were
below 0.10 at all planting densities (Table 4). Moreover, the estimated S closely approximated
the manually measured S, especially in the growing season of 2016 (Fig. 8).

Table 2 Computed allometric parameters for the scaling exponential functions that predict the
rice-plant stem number in moderate density plots.

Year
Row

direction
Bottom
position Parameters

Number of layers (m)

500 100 50 10 5

2014 || D70 ln β 1.85 1.82 1.79 1.57 1.44

α 0.24 0.24 0.25 0.27 0.26

D80 ln β 0.76 0.73 0.68 0.24 −0.19

α 0.45 0.45 0.46 0.51 0.56

D95 ln β −0.68 −0.73 −0.80 −1.35 −2.24

α 0.72 0.73 0.74 0.81 0.94

⊥ D70 ln β −2.74 −2.82 −2.92 −3.54 −3.71

α 0.99 1.01 1.02 1.10 1.11

D80 ln β −4.54 −4.64 −4.77 −5.98 −6.65

α 1.32 1.33 1.35 1.53 1.62

D95 ln β −7.06 −7.18 −7.34 −8.50 −10.99

α 1.77 1.79 1.82 1.99 2.38

2016 ⊥ D70 ln β 0.18 0.13 0.08 −0.27 −0.43

α 0.51 0.51 0.52 0.56 0.56

D80 ln β −3.00 −3.08 −3.18 −3.89 −4.53

α 1.06 1.07 1.08 1.18 1.27

D95 ln β −4.40 −4.50 −4.62 −5.71 −7.09

α 1.33 1.35 1.37 1.53 1.74
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5 Discussion

We have proposed an approach that estimates S from laser scan data. The relationship between
estimated rice-plant stem number and laser-derived relative volume is implied by the scaling
factor β and the allometric exponent α as shown in Table 2. The scaling factor β reduced as
Dbottom approached the ground surface and increased in plots with parallel planting directions
(Table 2). In contrast, the allometric exponent α reduced as Dbottom increased from the ground
surface and increased in plots with perpendicular planting direction. The values of β and α were
not significantly affected by the number of layers (m), especially when m exceeded 10. In the
moderately dense plot with perpendicular planting direction (plot 2), the allometric exponent α
was similar in both growing seasons. Especially, in the models withDbottom at the 80th percentile
rank of the 2014 growing season (MD80

2014) and at the 95th percentile rank in the 2016 growing
season (MD95

2016), α was identical when there were more than 10 divided nD layers (Table 2).
These results may be explained by the larger target area and the larger footprint of the laser
sensor in 2016. In particular, owing to the large rectangular footprint of the UTM 30LX
used in 2016, the laser pulses of UTM 30LX less easily reached the ground surface than
those of SICK LMS 200. Under the same conditions of planting geometry and planting density,
UTM 30LX recorded fewer scanning points at the ground surface than SICK LMS 200.
Similarly, the top of the rice plant was less easily observed by the large footprint than by
the small footprint. Consequently, the two sensors collected different distributions of the obser-
vation data. Specifically, the D95 of the observation data was higher in 2016 than in 2014,
whereas the D1 of observation data was lower in 2016 than in 2014. However, the consistent

Table 3 Effect of layer number and bottom position of rice plant on the precision of the estimated
stem number in a moderate density plot (plot 2) during the 2014 and 2016 growing seasons.

Year
Bottom
position

Validated
parameters

Number of layers (m)

500 100 50 10 5

2014 D70 rE 0.09 0.09 0.09 0.09 0.10

Bias 2 2 2 2 2

RMSE 41 41 41 41 44

D80 rE 0.04 0.04 0.04 0.05 0.05

Bias 0 0 0 0 0

RMSE 20 20 20 21 22

D95 rE 0.06 0.06 0.06 0.06 0.06

Bias 1 1 1 1 1

RMSE 28 28 28 27 24

2016 D70 rE 0.08 0.08 0.08 0.08 0.09

Bias 1 1 1 1 2

RMSE 34 34 34 35 40

D80 rE 0.04 0.04 0.04 0.04 0.04

Bias 0 0 0 0 0

RMSE 16 16 16 16 17

D95 rE 0.10 0.10 0.10 0.10 0.10

Bias 2 2 2 2 2

RMSE 43 43 43 42 41
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allometric exponent in both growing seasons confirms the dependability of the proposed
hypothesis.

According to Eq. (12), rV laser
s depends on the number of scanning points in each layer (x),

which is decided by m. Setting m too large is unnecessary, whereas setting m too small provides
insufficient information. Therefore, m must be appropriately decided. However, as shown in
Fig. 5, almost all of the nD distributions are single modal, and the histogram curves are smooth,
suggesting that the computed rV laser

s is independent ofm. According to the results, the computed
rV laser

s is stable for m above 10. Moreover, the validated parameters were almost unchanged in
this situation (Tables 3 and 4). When the number of divided layers is 10 or fewer, some specific
information may be lost, increasing the computed RMSE (although the RMSE was insignifi-
cantly increased in this study). In general, the number of layers did not significantly affect the
precision of the estimated stem number, but too few divided layers gave unsatisfactory results.
When the number of layers exceeded 10, the RMSE was acceptable (rE ≈ 0.10 ; Table 3).
Therefore, the layer number (m) should be >10 [Figs. 8(d)–8(f)]. The small achieved
RMSEs inform that rV laser

s can be expressed as a scaling exponential function of S. The rEs
were also lower than 0.10 in the dense plots (Table 4). Additionally, the RMSE was influenced
by the bottom position of the rice plant, the planting geometry, and the planting density (Table 3).
The RMSE was minimized in the MD80 setting (Table 3). For example, in the moderate density
plot, the RMSE in this setting was 20 and 32 stemm−2 in 2014 and 2016, respectively. Although
the rE was always ∼0.10 in models with D80 (MD80) and D95 (MD95), only MD80 maximized
the S of the rice plants (Figs. 6 and 7). We consider that D95 was too close to the ground surface,
so it could not escape the ground-surface effects, whereas upper D80 was too far above the
ground surface to capture all of the plant information. Therefore, identifying the suitable position
of the rice-plant bottom is important. In the present results, the appropriate bottom position of the
rice plants was D80. In this situation, the estimated rice-plant stem number strongly correlates
with the laser-derived relative volume (rV laser

s ). According to the MD80 results, the correlation

Table 4 Effect of planting density and geometry on the precision of the estimated stem number in
2014 with Dbottom ¼ D80.

Planting density
Row

direction
Validated
parameters

Number of layers (m)

500 100 50 10 5

21.2 (plant hills∕m2) ⊥ Bias 0 0 0 0 0

RMSE 19 19 19 19 20

rE 0.04 0.04 0.04 0.04 0.04

15.1 (plant hills∕m2) ⊥ Bias 0 0 0 0 0

RMSE 20 20 20 21 22

rE 0.04 0.04 0.04 0.05 0.05

11.2 (plant hills∕m2) — Bias 1 1 1 1 1

RMSE 37 37 37 38 39

rE 0.08 0.08 0.08 0.09 0.09

15.1 (plant hills∕m2) || Bias 1 1 1 2 2

RMSE 45 45 45 47 51

rE 0.09 0.09 0.09 0.09 0.10

21.2 (plant hills∕m2) || Bias 0 0 0 0 0

RMSE 45 45 45 46 47

rE 0.09 0.09 0.09 0.09 0.09

Phan et al.: Fundamental study for estimating rice-plant stem number using laser scanner measurements

Journal of Applied Remote Sensing 036012-12 Jul–Sep 2017 • Vol. 11(3)



0

200

400

600

800

0 20 40 60 80

)2
m /s

met s(r eb
mu n

me ts
d er usa e

M

Estimated stems Measured stems

0

200

400

600

800

0 20 40 60 80

0

200

400

600

800

0 20 40 60 80

0

200

400

600

800

0 20 40 60 80

0

200

400

600

800

0 20 40 60 80

0

200

400

600

800

0 20 40 60 80

0

200

400

600

800

0 20 40 60 80

0

200

400

600

800

0 20 40 60 80

0

200

400

600

800

0 20 40 60 80

0

200

400

600

800

0 20 40 60 80

0

200

400

600

800

0 20 40 60 80

0

200

400

600

800

0 20 40 60 80

0

200

400

600

800

0 20 40 60 80

0

200

400

600

800

0 20 40 60 80

0

200

400

600

800

0 20 40 60 80

0

200

400

600

800

0 20 40 60 80

aera
tinu

rep
reb

mun
met

S

Days after transplanting (DAT)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Pl
ot

 5
Pl

ot
 4

Pl
ot

 3
Pl

ot
 2

Pl
ot

 1

Fig. 6 Estimated rice-plant stem numbers during the growing season of 2014. Rows show the
results from (a–c) plot 1, (d–f) plot 2, (g–i) plot 3, (j–l) plot 4, and (m–o) plot 5. Columns show
the results for different bottom positions of the rice plants: (a, d, g, j, m) D70, (b, e, h, k, m) D80,
and (c, f, i, l, o) D95.
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coefficient r ranged from 0.89 to 0.94 in 2014 and equaled 0.91 in 2016. Moreover, the RMSE
exceeded the bias value in all cases of MD80 and MD95. In both years, the bias was ∼0. The
estimated and manually measured S values were always consistent, even under dense planting
conditions (Table 4), demonstrating the effectiveness of the proposed method (Fig. 8). However,
a decisive conclusion requires more than three levels of planting density. The planting density
effects should be thoroughly assessed in a future study.

In previous forest inventory studies, volume computations required the digital terrestrial
model or digital elevation model as a reference surface.32–36 In contrast, this study computes
the metric rV laser

s directly from the laser data without considering the ground-surface level.
Moreover, a voxel-based representation of Vs requires a suitable voxel size, which depends
on the laser scanner, observed range, and study scale.41,42 In the proposed method, the
whole scanning points need not be directly transferred into a continuous three-dimensional
voxel grid. In other words, we can disregard the footprint size, footprint shape, and voxel
size. The proposed method is expected to be compatible with various sensors for future mon-
itoring of rice crops by UAV-based laser measurements.

To achieve accurate monitoring, the laser data in this study were collected in almost-nadir
viewing. Therefore, the effect of scanning angle could be ignored. Moreover, the nVmax

s plays an
important role in obtaining rV laser

s . However, nVmax
s depends on the scanning point density and

the observation distance between the target object and sensor, which affect the values of X and
Pvoxel, respectively. The scanning points acquired by the scanner should be sufficiently dense and
small to achieve the expected result. Additionally, the planting and environmental (e.g., wind)
conditions might also affect the observation data. These effects were not eliminated in this study.
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Fig. 7 Estimated rice-plant stem numbers during the growing season of 2016. Rows show the
results for different numbers of layers: (a–c) m ¼ 500, (d–f) m ¼ 100, and (g–i) m ¼ 10.
Columns show the results for different bottom positions of the rice plants: (a, d, g) D70,
(b, e, h) D80, and (c, f, i) D95.
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Because the plant-rice stem number and uniformity of the rice canopy structure depended on the
planting geometry, the allometric parameters were altered by the characteristics of the rice
canopy surface. Moreover, the quality of laser data is compromised by environmental factors.
In 2016, the wind velocity was below 2.5 m∕s, and high-quality laser data were recorded. On the
fifth observation in 2014, the rice leaves were lifted by strong winds, and the observation
data were degraded by noise. In this situation, the noise scanning points could not be identified
by setting the valid range of D. Although this study achieved favorable results under dense
planting conditions, the above-mentioned limitations should be carefully considered in future
study.

6 Conclusion

This study estimated the number of rice stems S, which directly affects rice-plant competition
and contributes to rice yield, from laser scanner data. To this end, we derived the relative spatial
volume (rV laser

s ) from the laser data and presented it as an exponential function of S. The results
confirmed the relationship between rV laser

s and S and demonstrated that rice-plant stem number
can be estimated directly from laser scanning data.

Fig. 8 Estimated S (with 100 divided layers) versus manually measured S during the growing
season of 2014 (red) and 2016 (blue). Rows show the results for different numbers of layers:
(a–c) m ¼ 500, (d–f) m ¼ 100, and (g–i) m ¼ 10. Columns show the results for different bottom
positions of the rice plants: (a, d, g) D70, (b, e, h) D80, and (c, f, i) D95.
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The effect of rice-plant height in the laser data was removed by normalizing the data, and the
ground surface was eliminated by removing the ground-surface scanning points. The allometric
parameters were determined in both growing seasons, although different line laser scanning devi-
ces were applied in the two seasons. The parameters depend on the planting geometry, planting
density, and Dbottom but were almost independent of the number of layers. The layer number
should be >10 (m > 10). However, in the moderate density plot with perpendicular planting
direction (plot 2), all cases clearly obtained the maximum S from the estimated stem number
with rE values of ∼0.10. Moreover, the values of β and α of MD80

2014 and MD95
2016 were very

similar, despite the different footprint sizes and shapes of the laser scanners. Therefore, using the
rV laser

s metric, we need not consider the footprint shape or Pvoxel. Moreover, the small bias value
confirmed the good match between the estimated S and manually measured S. By virtue of these
promising results, the proposed approach is expected to be recommended for rice-plant stem
estimation from data collected by different sensors.

The major limitation of this approach is the dependence of the allometric parameters on
the planting conditions, including the density and geometry of the plantings. Moreover, the
environmental effects were not completely removed from the laser data. In future work, the
effects of planting geometry and environment should be considered in a refined version of
the method.
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