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Abstract. We compare field hyperspectral bidirectional reflectance distribution function
(BRDF) measurements acquired by a hyperspectral goniometer system known as the goniometer
of the Rochester Institute of Technology (GRIT) during an experiment in the Algodones Dunes
system in March 2015 with NASA Goddard’s light detection and ranging, hyperspectral, and
thermal imagery of the site acquired during the experiment. We augment our field spectral data
collection with laboratory hyperspectral BRDF measurements of samples brought back from the
Algodones Dunes site using GRIT and our second-generation goniometer GRIT-two (GRIT-T).
In these laboratory experiments, we vary geophysical parameters such as sediment density and
grain size distribution of the sediments that would typically impact observed BRDF with the goal
of extending the range of applicability of our resulting BRDF spectral libraries. Geotechnical
measurements on site confirm the variability of geophysical parameters such as density and grain
size distributions within the dune system, and measurements with GRIT and GRIT-T demonstrate
the impact on observed spectral variation. By augmenting field spectral libraries with laboratory
BRDF, we show that a greater proportion of the dune system is more faithfully represented in the
expanded spectral library. Beyond developing appropriate calibration data for airborne and satellite
imagery of the Algodones Dunes, laboratory and field studies also support goals to develop
reliable retrieval methods for geophysical quantities such as sediment density directly from
spectral imagery. We consider approaches based on the Hapke model. Our approaches use the
invariance of the observed functional forms of the single scattering phase function, which must
be invariant to differences in the illumination geometry. Fill factor is retrieved and correlates with
expected direct measurements of sediment density in a laboratory setting. © The Authors.
Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or repro-
duction of this work in whole or in part requires full attribution of the original publication, including its
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1 Introduction

In March 2015, a joint field experiment and airborne measurement campaign was conducted in
the Algodones Dunes, California. The Algodones Dunes has been selected by NASA as a poten-
tial site for satellite intercalibration, and the overall goal of the experiment was to better
characterize the spectral variability of the dunes. The experiment was a multiinstitutional effort
involving NASA, South Dakota State University, the University of Arizona, the University of
Lethbridge, and the Rochester Institute of Technology (RIT). These dunes have significant
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topographic relief. This fact, combined with natural variations anticipated within a large dune
system, such as Algodones, made the direct measurement of the bidirectional reflectance dis-
tribution function (BRDF), which characterizes the angular variation in scattered light from
the surface for a given illumination geometry, of paramount importance.

Within the context of the larger team effort, our goals were to provide representative hyper-
spectral BRDF measurements at a number of sites within the dune system and to characterize the
geophysical properties of the surface that might influence observed variations in BRDF at these
locations and throughout the dune system. With a longer-term view of improving representative
BRDF of the Algodones Dunes system, we captured sediment samples from multiple sites within
the dune system, both where our BRDF field measurements occurred as well as at other sites
that represented surface variations in geophysical properties of the dunes where it had not been
possible to bring our field goniometer system within the time constraints of the field experiment.
Our plan was to bring these samples back to the laboratory and deliberately manipulate their
geophysical properties to mimic variations that might be expected within the Algodones Dunes
system. Thus, we report here our laboratory BRDF measurements in which we have manipulated
individual geophysical variables such as sediment density and grain size of the sediment samples
as well as the illumination geometry. We describe the accuracy of using these BRDF libraries
from manipulated specimens in comparison with NASA Goddard’s light detection and ranging
(LiDAR), hyperspectral, and thermal (G-LiHT)1 imagery. We also report on our efforts to invert
radiative transfer models based on the work of Hapke to directly estimate sediment fill factor
from the observed BRDF.

Representative BRDF libraries play a critical role in calibration of both airborne and satellite
systems. For example, these type of libraries have been used within scene simulation models, such
as DIRSIG,2 which can predict the expected scene top-of-atmosphere radiance. DIRSIG currently
incorporates standard BRDFmodels, such as the Ross–Li3 model. While models such as the Ross–
Li model have been widely used in NASA satellite data products, they have a limited number of
available parameters to model variations in expected BRDF of the surface. Another goal of this
work, therefore, is to undertake analysis of more complex models, such as those developed by
Hapke,4 for future inclusion in DIRSIG and use in satellite and airborne sensor calibration.

The rest of the paper is organized as follows: Sec. 2 outlines methods used to acquire data in
the field and in the laboratory where samples were manipulated. In this section, we also outline
approaches to radiative transfer modeling and inversion based on Hapke’s model.4 In Sec. 3,
we report comparisons between the spectral libraries acquired in the field and developed in
the laboratory to airborne G-LiHT imagery acquired over the dune system. In this section,
we also examine the results of our approaches to geophysical parameter inversion. These
approaches rely on a comparison of BRDF data acquired at two different illumination geometries
using the invariance of the single scattering properties of the surface. In this context, we consider
the problem of inversion of the Hapke model and a variant of this model to obtain the fill factor,
and compare to laboratory measurements of density, which are expected to correlate with the fill
factor. Finally, in Sec. 4, we provide a summary and conclusions and describe the next steps
needed to eventually transition the approach to retrieval of the fill factor directly from the
imagery time series.

2 Methods

2.1 Field Measurements of the Angular Dependence of Hyperspectral
Reflectance at the Algodones Dunes

During the March 2015 campaign, our team collected BRDF data at multiple sites within the
dune system (Fig. 1). Due to time limitations, our measurements were collected from six
locations using the goniometer of the Rochester Institute of Technology (GRIT).5,6 The
GRIT positioned the fiber optic of an ASD spectrometer with 5 deg fore-optic over a set of
hemispherical positions between 0 deg and 65 deg in zenith and 0 deg and 360 deg in azimuth.
Although the aperture size of the sensor is relatively small, measurements such as these are
sometimes referred to as hemispherical conical reflectance factor (HCRF) measurements.7,8

The use of the term conical reflects the finite size of the sensing aperture, and “hemispherical”
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indicates that illumination comes from both direct and diffuse sources in an outdoor setting.
Our ASD FR4 spectrometer measurements onboard the GRIT used a 5-deg fore-optic.

Due to the limited number of days available for measurement, we also collected sediment
samples at a number of sites within the dune system to capture the typical variation in geophysi-
cal parameters. These samples were brought back to the lab where additional testing, described
below, was performed to manipulate the geophysical properties of the sample to characterize the
potential impact on the HCRF and to compare with radiative transfer models. Relevant param-
eters include the grain size distribution, sediment density, sediment composition, moisture con-
tent, surface roughness, and local topography. Radiative transfer models depend on parameters
such as these, and, for example, the fill factor of the sediment (closely related to density) directly
parametrizes approximate solutions to the radiative transfer equation (RTE),4 which we will
review in greater detail below.

Field spectral measurements were accompanied by a set of geotechnical measurements,
which included sediment density, grain size distribution, and moisture content, as well as
mechanical properties of the sediment, such as shear strength. For example, sediment density
was measured with a sand cone density apparatus (Fig. 1). Samples collected on the dune were

Fig. 1 GRIT during measurements at the Algodones Dunes experiment: (a) sediment HCRF
measurement at a dune site with main components of the instrument highlighted (ASD spectrom-
eter, two Vectornav GPS/IMU units, Ximea FoV Camera; (b) measurement of a Spectralon® white
reference during overflight by the NASA G-LiHT. (c) Google Earth view of the Algodones Dunes
system showing the location of RIT GRIT HCRF validation sites and ancillary sites where addi-
tional samples were collected for laboratory studies. (d) Geotechnical measurements included
onsite density measurements, shown here using a sand cone density apparatus.

Bachmann et al.: Modeling and intercomparison of field and laboratory hyperspectral goniometer. . .

Journal of Applied Remote Sensing 012005-3 Jan–Mar 2018 • Vol. 12(1)



also analyzed to determine moisture content and grain size distributions using, respectively,
a drying oven and a mechanical sieve shaker, both brought to the site in our mobile laboratory.
To determine grain size distributions, sediments were dried in the oven prior to sorting into size
fractions with the mechanical sieve shaker. At sites where GRIT HCRF measurements were
made, all geotechnical measurements were completed. Additional samples were collected
from other areas to provide examples of sediment variation found across the dune system.
These were returned to our laboratory for use in laboratory-based experiments using GRIT
(Fig. 1) and later a second-generation hyperspectral goniometer system known as GRIT-two
(GRIT-T), shown in Fig. 5.9 In these experiments, individual variables such as grain size dis-
tribution and density were manipulated, along with the illumination geometry, and used in
a series of laboratory biconical reflectance factor (BCRF)7,8,10 measurements.

The primary sites where field HCRF measurements were taken with GRIT in tandem with
geotechnical measurements were on the western side of the Algodones Dunes system (Fig. 1).
Additional sites where samples were collected for later laboratory use were on the northern edge,
central-northern region, and central western edge of the dune system, as shown in Fig. 1. In each
case, efforts were made to collect samples from the top, bottom, and middle of individual dunes.
Grain size and density variations were observed across sites and even across positions within
an individual dune. The next section describes the geotechnical measurements conducted in
tandem with the GRIT hyperspectral HCRF measurements.

2.2 Geotechnical Measurements in the Algodones Dunes

Geophysical properties vary considerably across the dune system. At the sites where we mea-
sured HCRF, as well as at those sites where samples were collected for later laboratory analysis,
grain size distributions show some significant differences. The average size factor, X ¼ πD

λ ,
where D represents the average particle diameter and λ is the wavelength of light of an
image band, varied by as much as a factor of four across all collected samples, while density
varied by as much as 43% (Fig. 2). These density measurements were conducted in the field with

Fig. 2 Variations in grain size distribution in the top inch of the sediment at (a) the six field sites
where GRIT measurements were undertaken at the Algodones Dunes site and (b) at sample sites
in the central portion of the dunes and (c) central western edge of the dunes. (d) Density variations
were also considerable at the six field sites where HCRF measurements were undertaken.
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a sand cone apparatus according to an American Society for Testing and Materials (ASTM)
standard.11 Grain size distributions were determined onsite by drying the sediments in a drying
oven over a 24-h period, and then sieving the sediment in a Humboldt mechanical sieve shaker
for a 30-min period. Moisture content of the sediment was determined using the weights of
the sample before and after drying.

2.3 Laboratory Measurements of the Angular Dependence of Hyperspectral
Reflectance: Controlling Geophysical Parameters

In a laboratory setting, we conducted a series of BRDF measurements using sediments brought
back from the Algodones Dunes site. Since grain size distribution and density both play an
important role in the observed BRDF, measurements focused on manipulating these individual
parameters. In addition, the illumination geometry was also changed to provide a wide variety of
overall measurement scenarios.

To achieve samples of varying density, samples were pluviated using an apparatus in our
laboratory following an ASTM standard (Fig. 3).11 At the top of the pluviation apparatus, a
canister with a trapdoor releases sediment, which falls through a fixed set of coarse sieves placed
at a specific drop height above the sample holder. The process is designed to mimic Aeolian
deposition. In many of the experiments, we prepared samples over a wide range of densities
obtained by varying the drop height from the coarse sieves to the sample holder in the pluviation
device.

For the laboratory studies, BRDF measurements were conducted using two different gen-
erations of the goniometer system, GRIT5,6 and GRIT-T.9 In a laboratory setting, BRDF mea-
surements are sometimes referred to as BCRF7,8,10 measurements when there is a finite aperture
for both the single directional illumination source and the sensor. The term “factor” signifies the
referencing of sample radiance data to the radiance of a Lambertian standard. In our experiments,
Spectralon® panels, which approximate a Lambertian surface,12 were used as the reference stan-
dard. These panels were calibrated by LabSphere. Figure 4 shows some examples of BCRF of
Algodones Dunes sediment samples for varying density.

2.4 Radiative Transfer Models for Retrieval of Sediment Geophysical
Properties: Fill Factor

Absorption and scattering from sediment surfaces have been modeled with radiative transfer
models in both planetary astronomy and Earth remote sensing applications,4,13–16 and

Fig. 3 Sample preparation apparatuses. (a) Air pluviation device: at top, a canister with trapdoor
releases sample through coarse sieves with sample holder beneath; height of sieves above the
holder determines resulting density of sediment. (b) Humboldt mechanical sieve shaker used to
separate grain sizes; (c) Humboldt drying oven used to dry sediments.
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Hapke’s approximate solution to the RTEs has been widely used.17–26 The isotropic multiple
scattering approximation (IMSA) is an approximate solution to an RTE based on the
Chandresekhar–Ambartsumian method of invariance.4 In the Hapke treatment of the RTE,
five orders of scattering are considered, and the single scattering contribution through the single
scattering phase function is treated in an exact form; however, for multiple scattering contribu-
tions, the phase function is assumed to be isotropic.4 The resulting approximate solution (IMSA)
has the form

EQ-TARGET;temp:intralink-;e001;116;378

rðθi; θe; gÞ ¼ K
wðλÞ
4

1

μi þ μe

�
pðg; λÞ½1þ BS0BSðg; K; λÞ�

þ
�
H

�
μi
K
; wðλÞ

�
H

�
μe
K

; wðλÞ
�
− 1

��
½1þ BC0BCðg; K; λÞ�: (1)

The factors μi ¼ cos θi and μe ¼ cos θe are the direction cosines for the incident and scattered
zenith angles θi and θe; pðg; λÞ is the single particle scattering phase function; g is the phase
angle (angle defined by light source, ground, and sensor); K is the “porosity factor;” wðλÞ is
the single scattering albedo; and Hðμi∕KÞ and Hðμe∕KÞ are the incident and view angle
Chandrasekhar–Ambartsumian H-functions, which have an approximate solution of the form4,15

EQ-TARGET;temp:intralink-;e002;116;244H

�
μi
K
; wðλÞ

�
¼ 1

1 − wðλÞ μiK
�
r0 þ 1−2r0

μi
K

2
ln

�
1þμi

K
μi
K

�� ; (2)

where r0 ¼ 1−γ
1þγ ¼

1−
ffiffiffiffiffiffiffiffiffiffiffi
1−wðλÞ

p
1þ

ffiffiffiffiffiffiffiffiffiffiffi
1−wðλÞ

p is the diffuse hemispherical reflectance. The term BS0BSðg; K; λÞ is
a correction to the single-scattering term and is a description of the influence of the shadow
hiding opposition effect (SHOE), an increase in brightness observed at smaller phase angles
(usually ≲20 deg).4,14 In this expression, BS0 is a constant that must be determined in an
inversion procedure. The functional form of the opposition effect BSðg; K; λÞ is discussed further
below. The term BC0BCðg; K; λÞ describes the coherent backscatter opposition effect (CBOE),
which is observed over only a very narrow range of phase angles, typically ≲2 deg, where
coherent addition of scattering pathways in equal and opposite directions can occur.4,15 BC0

is another free constant that must in principle be determined, while BCðg; K; λÞ describes its

Fig. 4 BCRF data obtained using GRIT-T for varying density of the same sample: spectral reflec-
tance curves measured in the laboratory for varying density of sediment samples from the central
dune system in Algodones. Color code corresponds to the azimuth of the recorded sample.
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functional form, which, similarly to the SHOE, is large at small phase angles and decreases with
increasing phase angle. In this paper, we neglect the CBOE since our measurements do not cover
phase angles this small. Note that in Eq. (1), factors of μi and 1∕π are removed since our mea-
surements involve reflectance factors (BCRF and HCRF), which are the ratio of radiance values
obtained from the sediment sample and a Spectralon® white reference, an approximately
Lambertian standard.4,7,8,10,12

Importantly, a geophysical parameter, the sediment fill factor ϕ (the fraction of volume occu-
pied by particles), explicitly parameterizes the approximate IMSA solution since the nonlinear
porosity factor K ¼ KðϕÞ is a function of the fill factor ϕ, and, for equant particles, it has the
form4,16

EQ-TARGET;temp:intralink-;e003;116;616K ≈ −
lnð1 − 1.209ϕ2∕3Þ

1.209ϕ2∕3 : (3)

Thus, inversion of the IMSA solution provides an explicit estimate of an important geophysi-
cal parameter, the sediment fill factor. In this work, our goal was to obtain a relative fill factor
through inversion of the radiative transfer model. We wanted to demonstrate that the resulting
retrieved fill factor correlates consistently with the directly measured sediment density measured
in the laboratory, even if we are not sure of its absolute magnitude.

A second geophysical property that is also implicitly present in the IMSA solution is the
sediment grain size distribution. Within the IMSA solution, this plays a role in the term related
to the SHOE. Hapke has derived an approximate form for the SHOE, which takes the form4,14

EQ-TARGET;temp:intralink-;e004;116;473BSðgÞ ≈
1

1þ 1
hs
tan

	
g
2


 : (4)

For a number of explicit examples, Hapke has shown that the width parameter of the SHOE is
proportional to the product of KðϕÞϕ, with the constant of proportionality depending on the
shape and extent of the grain size distribution.4 One such example is a unimodal case, having

the form re−
r∕r̄
, where r is the particle radius and r̄ is the average radius. This grain size dis-

tribution leads to a SHOE width parameter, hS ¼ ð3
8
Þ32KðϕÞϕ.4,27 Grain size distributions have

been the focus of earlier studies, one of which included a retrieval of a weighted average grain
size from a desert site.28

The actual shape of distributions found in nature may be more complicated. Figure 2 shows
several examples of the grain size distributions derived from our sediment samples acquired in
the Algodones Dunes. Several of these show grain size distributions with more than one mode.
In many of the examples shown in the figure, the secondary mode is a smaller peak of fine
sediments, such as fine sand and/or silt. However, there is at least one example from the sediment
samples that has a complicated set of multiple peaks (sample 1202-M-02-B). For sample 1202-
M-02-B, the full distribution extends beyond the range shown in Fig. 2, and this is addressed
later in our discussion of laboratory experiments.

While a significant portion of the distributions in the samples was unimodal, many were not,
and since multimodal distributions are quite common, we have modeled the width of the SHOE
peak in this study as being proportional to KðϕÞϕ, with the proportionality constant being a free
parameter ϵ that must be optimized in our inversion of the IMSA solution

EQ-TARGET;temp:intralink-;e005;116;189hS ¼ ϵKðϕÞϕ: (5)

As each free parameter is introduced into an inversion procedure, the optimization process
grows progressively more complicated. Thus, adding the free parameter ϵ, while logical from
a modeling perspective, adds to the complexity of the model residual surface being searched,
especially for a model as nonlinear as IMSA. In order to avoid this pitfall, we have taken
a different approach, building upon an earlier workflow that we previously developed.6 We
have added some important refinements, which allow the approach to be more successful.
Another variation of this approach, which we will introduce later, takes advantage of the explicit
form of the SHOE width found in Eq. (5).
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In that initial exploration,6 we inverted the Hapke IMSA solution solving Eq. (1) for the
product of the single particle phase function and the SHOE correction

EQ-TARGET;temp:intralink-;e006;116;711

pðg; λÞ½1þ BS0BSðg; K; λÞ� ¼ 4

KwðλÞ ðμi þ μeÞrðθi; θe; gÞ

−
�
H

�
μi
K
; wðλÞ

�
H

�
μe
K

; wðλÞ
�
− 1

�
: (6)

This was done for two different BCRF scans of the same sample sediment surface at two differ-
ent illumination geometries (Fig. 5). The approach then involved a search over the two-parameter
space of the single scattering albedo wðλÞ and the fill factor ϕ. This was done in such a manner
that the quantity pðg; λÞ½1þ BS0BSðg; K; λÞ� was an invariant function. This function describes
the underlying single particle characteristics, which was assumed to be identical between the
two illumination conditions. This was ensured by minimizing

EQ-TARGET;temp:intralink-;e007;116;567minϕ;wðλÞðfp1ðg; λÞ½1þ BS0BS;1ðg; K; λÞ� − p2ðg; λÞ½1þ BS0BS;2ðg; K; λÞ�g2Þ: (7)

Here, the numerical subscripts refer to the two illumination conditions in which the source zenith
angle is varied in the two sets of BCRF measurements. We have found that regularization is
necessary to achieve stable solutions numerically, so that in practice we minimize

EQ-TARGET;temp:intralink-;e008;116;492minϕ;wðλÞ½fp1ðg; λÞ½1þ BS0BS;1ðg; K; λÞ� − p2ðg; λÞ½1þ BS0BS;2ðg; K; λÞ�g2
þ αwðλÞ2 þ βKðϕÞ2�:

(8)

Fig. 5 (a and b) Paradigm used to collect laboratory BCRF data with GRIT and GRIT-T for inver-
sion of radiative transfer models. (a) Large illumination zenith angle case, and (b) small illumina-
tion zenith angle case, which generally will have a greater degree of multiple scatter. Laboratory
hyperspectral goniometric measurements using (c) GRIT and (d) second-generation GRIT-T.
Both instruments were used to develop the spectral libraries matched to G-LiHT imagery.
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One subtlety of the minimization approach, described in Eqs. (7) and (8), is that the set of
sample phase angles in the two illumination conditions is not guaranteed to be the same,
and we elaborate here on some of the technical details required for this to successfully
converge to a meaningful solution. An overall flow diagram of the processing steps is
shown in Fig. 6.

In the inversion process, the two sets of BCRF scans must be interpolated to a common phase
angle grid to facilitate the difference calculation specified in Eq. (8). Although we tried a number
of different interpolation schemes, we found that Steffen’s algorithm29 provided a stable, well-
behaved interpolation of the BCRF data. Additional refinements, which decrease the overall
residual, include the use of a low-pass filter (Sovitsky–Golay filter)30 during the interpolation
onto the common phase angle grid. In the optimization procedure, we typically used a Nelder–
Mead simplex method,31 although we also evaluated the Levenberg–Marquardt algorithm,32

which did not produce appreciably different results.
A new refinement, which we introduce in this paper, involves an additional constraint that

improves the convergence of the model to a consistent solution. This constraint is motivated by
the goal that the resulting fill factor retrieved should be consistent across wavelengths. This is, of
course, a physical requirement of our approach, but without insisting on this constraint, the
processing steps described in Eqs. (6) and (8) and illustrated in Fig. 5 are essentially wavelength
agnostic. The system of equations can be applied independently to each wavelength, and there-
fore there is a potential to obtain solutions that do not report a consistent fill factor ϕ across all
wavelengths. In contrast, we expect to obtain a unique value of wðλÞ for each wavelength λ.
To ensure this constraint, the Nelder–Mead optimization step is set up with an additional con-
straint. We want to constrain the individual estimates obtained for the fill factor at a particular
wavelength ϕλ so that they do not differ from the average

EQ-TARGET;temp:intralink-;e009;116;448ϕ̄ ¼ 1

Nλ

X
λ

ϕλ; (9)

by more than a specified amount δ

EQ-TARGET;temp:intralink-;e010;116;395jϕλ − ϕ̄j < δ: (10)

To implement this constraint on the optimization procedure, we must first run the optimization
over all wavelengths λ [Eqs. (8) and (6)] without the constraint found in Eq. (10). We then repeat
the same steps, but this time the Nelder–Mead simplex optimization step enforces the constraint
of Eq. (10). We can reiterate this constraint if desired and let the size of δ be given by δ ¼ δðtÞ,
where δðtÞ is a decreasing function of the iteration step t.

We also explored another variation of this inversion process based on an earlier proposed
modification to the Hapke model, in which we reintroduced directional dependence into the

Fig. 6 Workflow for inversion of the IMSA model using the BCRF scans from two different illumi-
nation geometries based on Eqs. (6), (8), and (10).
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multiple scattering term.5 The inclusion of this factor was not derived in a rigorous manner;
however, by insisting that the single particle phase function and SHOE correction be inserted
in front of the multiple scattering term, this approach can be thought of ensuring that the final
scattering event in a multiple scattering pathway has the directional dependence of a single
particle, while the other scattering events are assumed to average out and not contribute to
the directional dependence. The form used in the earlier work was5

EQ-TARGET;temp:intralink-;e011;116;663pðg; λÞ½1þ BS0BSðg; K; λÞ� ¼ 4

KwðλÞ ðμi þ μeÞrðθi; θe; gÞ

− fpðg; λÞ½1þ BS0BSðg; K; λÞ�gest:
�
H

�
μi
K

�
H

�
μe
K

�
− 1

�
: (11)

In the original version of this modified approach, the factor fpðg; λÞ½1þ BS0BSðg; K; λÞ�gest was
first estimated self-consistently as the difference in Eq. (6);5 then the optimization of Eq. (8)
proceeded with fpðg; λÞ½1þ BS0BSðg; K; λÞ�gest being used on the right-hand side of
Eq. (11). In this paper, however, we use a more refined version of this approach that considers
some of the underlying parameters that determine the form of pðg; λÞ½1þ BS0BSðg; K; λÞ�
explicitly in separate optimization steps. fpðg; λÞ½1þ BS0BSðg; K; λÞ�gest in Eq. (11) is also
replaced by ηpðg; λÞ in the present version, which requires us to separate out the functional
form of pðg; λÞ as part of our processing chain. The processing steps that we describe are
outlined in Fig. 7.

The initial steps of this inversion process follow a similar approach outlined in Eqs. (6) and
(8). This provides us with an initial estimate of the fill factor ϕðt ¼ 0Þ and single scattering
albedo wðλ; t ¼ 0Þ. These values are then passed through Eq. (6) to obtain a first estimate
for both illumination conditions: fpðg; λÞ½1þ BS0BSðg; K; λÞ�gest:;1;2. Here the subscripts “1”
and “2” refer to the two illumination conditions. These estimates are interpolated onto the
common phase angle grid during each step of the initial optimization as before, and then
with the initial estimates obtained, ϕðt ¼ 0Þ and wðλ; t ¼ 0Þ, a separate optimization step is
used to find an explicit parameterization of fpðg; λÞ½1þ BS0BSðg; K; λÞ�gest:;1;2 in terms of
the free parameters BS0, ϵ [Eq. (5)], and the coefficients of the three-parameter Henyey–
Greenstein function b1; b2, and c4

EQ-TARGET;temp:intralink-;e012;116;362pHGðg; λÞ ¼
1þ c
2

1 − b21
ð1 − 2b1 cos gþ b21Þ3∕2

þ 1 − c
2

1 − b22
ð1þ 2b2 cos gþ b22Þ3∕2

: (12)

The goal of this step is ultimately to find an estimate of pðg; λÞ as a separate function. In this
optimization step, we again use the Nelder–Mead simplex method, where the residual between
the forward-propagated value of fpHGðg; λÞ½1þ BS0BSðg; K; λÞ�gfwd using the parameters BS0,

Fig. 7 Workflow for the modified model incorporating directional dependence in the multiple scat-
tering term in a multistage optimization procedure.
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ϵ, b1; b2, and c is compared against the first estimates of the single scattering properties
fpðg; λÞ½1þ BS0BSðg; K; λÞ�gest:;1;2 for the two illumination conditions at the common phase
angle grid obtained in the earlier optimization step. From the estimated values of b1; b2, and
c resulting from this step, we obtain an estimate of pðg; λÞ as a separate factor from the original
estimates of fpðg; λÞ½1þ BS0BSðg; K; λÞ�gest:;1;2. We insist at this new step that the minimization
be over a common set of coefficients BS0, ϵ, b1; b2, and c for both illumination conditions.
Therefore, the optimization is

EQ-TARGET;temp:intralink-;e013;116;651minBS0;ϵ;b1 ;b2 ;c
½ðfpðg; λÞ½1þ BS0BSðg; K; λÞ�gest:;1 − fpHGðg; λÞ½1þ BS0BSðg; K; λÞ�gfwdÞ2

þ ðfpðg; λÞ½1þ BS0BSðg; K; λÞ�gest:;2 − fpHGðg; λÞ½1þ BS0BSðg; K; λÞ�gfwdÞ2�:
(13)

Having now an estimate of pðg; λÞ from this step, we then return to an equation similar to
Eq. (11), but modified to include just the phase function and a free scale parameter η; our modi-
fied model using our estimate of pðg; λÞ is

EQ-TARGET;temp:intralink-;e014;116;550pðg; λÞ½1þ BS0BSðg; K; λÞ� ¼ 4

KwðλÞ ðμi þ μeÞ þ ηpðg; λÞ
�
H

�
μi
K

�
H

�
μe
K

�
− 1

�
: (14)

We then calculate Eq. (14) for both illumination conditions, interpolating the result to a common
grid, followed by optimization of Eq. (8) using the Nelder–Mead method. This time, however,
the optimization is over the parameters ϕ, wðλÞ, and η. This optimization step is done once first
without the constraint of Eq. (10) to estimate ϕ̄. Subsequent iterations of the estimation pro-
cedure then enforce the constraint of Eq. (10) during the optimization.

3 Results

3.1 Field HCRF and Laboratory BCRF Measurements: Impact of
Geophysical Parameters

Above, we noted that density and grain size distributions can both impact measured BCRF and
HCRF data. In previous studies, we have observed strong density-dependent effects, and the
trend for these effects has been observed to depend somewhat on the relative optical contrast
of the underlying mixture of materials in the granular sediment in combination with the illumi-
nation zenith angle, which determines the degree of multiple scatter within the medium, and thus
the potential for darker optically contrasting minerals to diminish multiple scatter.5,6,33 Grain size
effects also play an important role, since they are not entirely independent from another free
variable that affects BCRF and HCRF, namely surface roughness. Although not modeled in
the present work, Hapke has also developed a correction to the IMSA model for macroscopic
surface roughness.4,34 These corrections are applicable to the majority of the grain sizes found in
our distributions, which all fall within the geometric optics region, with the exception of very
fine clay particles, which typically have size≲2 μm. In the laboratory studies in which grain size
was explicitly manipulated as an independent variable, this directly impacted the apparent sur-
face roughness. Algodones sediment sample 1102-MS-02 from the north-central region of the
dune system (Fig. 1) was prepared in the laboratory, where different subsets of the grain size
distributions were separated through mechanical sieve shaking (Fig. 3). Sieved fractions were
included or removed, and these new samples with manipulated grain size distributions (Fig. 8)
formed the basis of several experiments in which density was also manipulated through pluvia-
tion (Fig. 3). Grain size manipulations resulted in the apparent differences in surface rough-
ness (Fig. 8).

In general, altering the grain size distribution to include significant gaps (case 3 of Fig. 8) or
measuring from the original distribution that already had significant gaps and therefore surface
roughness tended to produce results showing the greatest change in the angular distribution when
different illumination zenith angles were chosen. We have observed trends like this in the past.
Samples with the most pronounced roughness (case 3 in Fig. 8) tend to exhibit the greatest
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backscatter when the light source is more oblique (the 65-deg illumination case, Fig. 9, top row,
last column), similar to what we have observed in previous studies.27 When illumination angles
are close to nadir, the amount of diffuse multiple scatter often significantly increases (second
row of Fig. 9), as observed in previous studies.5

Density of granular sediments also plays an important role in observed BCRF and
HCRF.4,5,33 In general, reflectance tends to increase with density within certain conditions
and only up to a maximum density. In our past studies, we have observed that the degree of

Fig. 9 GRIT BCRF measurements using the three sample preparations of grain size distributions
described in Fig. 8 for an example wavelength in the SWIR (1200 nm) from the onboard ASD
spectrometer. Illumination zenith angle of 65 deg (a–c) and 25 deg (d–f). (a and d) Original sample
grain size distribution; (b and e) intermediate particle sizes only; (c and f) largest and smallest
particles. Light source azimuth was 336 deg. GRIT self-shaded region is removed.

Fig. 8 Algodones sample 1102-MS02-2 used in BCRF measurements: (a) original sample;
(b) grains in central peak only; this peak is the part of the distribution of 1102-MS02-2 shown
in Fig. 2. (c) Largest and smallest grains with central peak of distribution removed. Gaps in
the original distribution and the case with largest and smallest particles exhibit significantly greater
roughness, as expected.
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multiple scatter present and the degree of optical contrast of constituents both play a role in the
observed trend.33 The trend of increasing reflectance with density tends to be for cases when
there is less multiple scatter, as may be expected often at more oblique illumination angles.5 At
angles close to nadir, where greater multiple scatter may be present, if the sediment mixture
contains fractions that are smaller and darker minerals, then increasing the density may lead
to a decrease in overall reflectance5 since densifying the material will tend to force the smaller,
darker particles to more optimally occupy the available pore space, shutting down multiple scat-
tering pathways.33 When illumination is closer to nadir and therefore more likely to produce
diffuse multiple scatter, this leads to a decrease in reflectance.5 At oblique angles with less multi-
ple scatter, if the trend does follow the predictions of the Hapke model, then the reflectance
should increase up to a critical maximum at which point particles are so close together that
they begin to behave like larger single particles, and reflectance tends to decrease.4 We have
observed this trend in the past under these types of conditions.5 The overall variance between
the spectra may vary with illumination angle and thus degree of multiple scatter. In Fig. 9, we see

Fig. 10 (a) Spectral BCRF measured by GRIT-T for two different illumination zenith angles:
20 deg (a) and 40 deg (b) for a density of 1.59 g∕cm2, and a comparison of the angular distribution
of the reflectance at selected wavelengths throughout the spectrum. (c) Comparison of the BCRF
for selected wavelengths from the ASD spectrometer at 450 nm as a function of increasing density
(from left to right); (d) The same sequence for a SWIR wavelength (2250 nm). (e) Picture of the
sample (0903-T-02) at the highest density (1.82 g∕cm2); (f) measured grain size distribution.
GRIT-T has a relatively small self-shaded region, and samples in these experiments were
every 15 deg in azimuth and 10 deg in zenith. Plotted results are interpolated between these
points. Illumination azimuth angle is 7.5 deg.

Bachmann et al.: Modeling and intercomparison of field and laboratory hyperspectral goniometer. . .

Journal of Applied Remote Sensing 012005-13 Jan–Mar 2018 • Vol. 12(1)



greater diffuse multiple scatter when the illumination zenith angle is closer to nadir at 25 deg
compared to the oblique case of 65 deg, and in Fig. 10, we see that the spectral plots of the full
set of HCRF measurements for the 20-deg zenith angle illumination also have greater overall
spectral variance compared to the more oblique case at 40 deg.

The relative amount of forward to backward scatter may also change with density,5 and we
see this to some extent in Fig. 10, row 3, where the extent of the backward scatter and relative
amount of the backscatter compared to the amount of forward scatter changes with density for
the 450-nm wavelength. At the longer SWIR wavelength (fourth row of Fig. 10), the main differ-
ence with increasing density is a more gradual change in the extent of the backscatter region
(especially along the azimuthal dimension), which grows larger with increasing density. These
effects with density may be stronger when the illumination zenith angle is even larger, as we have
observed in earlier work.5

3.2 Matching Field and Laboratory HCRF and BCRF to G-LiHT Hyperspectral
Imagery

A spectral library was created from all the field hyperspectral HCRF measurements recorded
with GRIT during the March 2015 field experiment at Algodones as well as the hyperspectral
BCRF (using GRIT and GRIT-T) of samples brought back from the dunes and prepared as
described earlier. The total size of the spectral library generated for this study included
13,519 reflectance spectra. Although to date, the laboratory experiments have not exhausted
all the collected sediment samples, the laboratory BCRF makes an important contribution to
the representation of the spectral characteristics of the dune system (Figs. 11 and 12). The figures

Fig. 11 Spectral matching of HCRF and BCRF from field and laboratory settings. (a) Subset of
one of the G-LiHT “A”-lines flown on March 13, 2015. (b) Detailed spectral matching with the com-
bined field and laboratory spectral HCRF and BCRF library containing 13,519 spectral reflectance
elements color-coded to individual elements of the library. (c) Spectral Euclidean distance
between the best-matched library spectrum and the G-LiHT spectral pixel. This region of the
dunes contained no GRIT field measurements. (d) Breakdown of library elements by source
(field HCRF, lab BCRF with various types of manipulation, such as grain size and density, as
well as illumination zenith angle).
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portray a Euclidean spectral match between the spectral library and the G-LiHT imagery after the
library has been resampled to the spectral grid of the G-LiHT imagery. The figures show that
manipulating geophysical parameters of field samples brought back to the lab can obtain better
matches over significant parts of the imagery acquired with G-LiHT during the March 2015 field
campaign. In the sequences of laboratory experiments, we systematically explored varying the
sediment density, grain size distribution, and illumination zenith angle of the source relative to
the sediment surface. All of these libraries match parts of the G-LiHT imagery better than field
measurements in at least some part of the image subsets shown in these figures, and especially in
Fig. 12, where roughly half of the scene is better matched by the laboratory-manipulated spectral
BCRF libraries. Note that in Fig. 12, the manipulation of grain size to prepare three very different
types of distributions followed by pluviation to produce different densities had a highly

Fig. 12 Spectral matching of HCRF and BCRF from field and laboratory settings for (a) a subset of
one of the large area flight lines flown by G-LiHT on March 10, 2015; (b) closest spectral matching
library element; (c) spectral Euclidean distance to best-matching library element (114 G-LiHT
spectral band space); and (d) breakdown of types of categories providing best spectral match:
note that for this image subset, GRIT lab BCRF measurements involving grain size, density,
and illumination variations for a site where no GRIT field measurements were taken (yellow)
and GRIT lab BCRF involving density and illumination variations for samples taken at GRIT
field sites (red) provided the best spectral match in a large fraction of the scene.
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significant role in the spectral matching shown in Fig. 12. Likewise, density effects are high-
lighted at the top of the dune ridges in this scene subset. This is consistent with what we observed
in our field geotechnical data, which showed differences in density between the bottom and top
of a dune, for example, between sites BC01-01 and BC01-02 (Fig. 2). Note that in both cases in
Figs. 11 and 12, none of the GRIT field measurement locations were within the boundaries of
the scene.

These results are significant because it means that laboratory manipulations of field samples
can be used to successfully augment the representative spectral library for the field site. Since the
Algodones Dunes is envisioned as an ongoing vicarious calibration site, this means that scene
simulation packages such as DIRSIG will have more reliable spectra as input.

3.3 Radiative Transfer Model Inversion Using Laboratory Biconical
Reflectance Factor Measurements

We used the optimization procedure for inverting the original Hapke model described in Sec. 2.4.
For this particular analysis, a set of five densities was created for the sample from site 0903-T-B
(Fig. 1) using the air pluviation technique previously described (Fig. 3). These densities ranged
from 1.59 to 1.82 g∕cm2. The retrieved fill factor was then compared against the measured den-
sity of the material in the sample holder. The regression between retrieved fill factor and mea-
sured density is shown in Fig. 13 for each of the two approaches that we described in Sec. 2.4.

We found that the first iteration of the constraint equation provided the best-correlated esti-
mate with direct laboratory measurements of sediment density. At this stage of processing, the
VNIR and SWIR parts of the spectrum give slightly different estimates of the fill factor, and it is
clear that we should interpret the results only as a measure of the relative fill factor rather than
an absolute measure of this parameter. Correlations of the retrieved fill factor with directly mea-
sured density were comparable for the VNIR, with R2

VNIR ¼ 0.73 for the inversion of the original

Fig. 13 Average fill factor (average over wavelength) versus directly measured density in the lab-
oratory for VNIR and SWIR regions. (Left) For the original IMSA model using our inversion
approach, R2

VNIR ¼ 0.73 and R2
SWIR ¼ 0.50. For our modified model, which includes an angular

dependence in multiple scattering, R2
VNIR ¼ 0.71 and R2

SWIR ¼ 0.60. Results are shown after
the first constrained iteration.
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IMSA model and R2
VNIR ¼ 0.71 for the modified model, which includes an angular dependence

in multiple scattering. In the SWIR, the estimates were less correlated with directly measured
density, with R2

SWIR ¼ 0.50 for inversion of the original IMSA model and R2
SWIR ¼ 0.60 for the

modified model. The weaker correlation in the SWIR is likely due to lower SNR in this spectral
region, although that could be improved by recording a larger number of spectral samples at each
position. However, it is clear that the modified model was better correlated in this region of the
spectrum. In both cases, the estimates of the single scattering albedo (Fig. 14) appear consistent
with each other for all wavelengths and across all densities. In only one case, for the density of
1.79 g∕cm2, the solution obtained by the original IMSA model exhibited more noise (a spike in
the spectral shape ∼700 nm) in the VNIR, which is not observed in the modified model.

4 Conclusions

We have seen that field-measured HCRF with the GRIT hyperspectral goniometer system is well
matched to the hyperspectral imagery collected during the Algodones Dunes campaign. As addi-
tional samples brought back to the laboratory have been studied and manipulated for BCRF
studies with GRIT and GRIT-T, we have seen that they provide a better match to different
parts of the dune system where GRIT measurements were not obtained while on site. It is
an important point that laboratory measurements, which manipulate the geophysical parameters,
such as density and grain size distribution, can provide important data that augment field BRDF
spectral libraries to make the library more representative of the dune system in general. Because
it is likely that NASAwill use the Algodones Dunes as an ongoing vicarious calibration site for
satellite systems, these observations are particularly important. This means that more represen-
tative data can be created to augment costly field campaigns and be useful in scene simulation/
prediction packages such as DIRSIG, which are important for calibration and rely on represen-
tative BRDF as a foundational input to the overall processing chain. In addition, the data
collected during this campaign have also served the dual purpose of allowing us to develop
and test radiative transfer models that are more sophisticated than those being used, such as
Ross–Li, in packages, such as DIRSIG.

Beyond the significance for calibration, radiative transfer models like those developed by
Hapke (and variants described here) are important for geophysical parameter inversion from
imagery. In this work, we used the samples brought back from Algodones to develop and
test the idea of using BCRF measurements from two illumination geometries to invert an impor-
tant geophysical parameter of the radiative transfer model, namely the sediment fill factor, which
is ubiquitous in the approximate solution to the radiative transfer equation developed by Hapke.
The laboratory-based results that were used in the inversion allowed us to demonstrate an inver-
sion of the fill factor that strongly correlates with measured sediment density, an observation that

Fig. 14 The corresponding inversion of the single scattering albedo wðλÞ for our inversion of
(a) the original IMSA model and (b) the modified model, which incorporates directional depend-
ence in the multiple scattering term.

Bachmann et al.: Modeling and intercomparison of field and laboratory hyperspectral goniometer. . .

Journal of Applied Remote Sensing 012005-17 Jan–Mar 2018 • Vol. 12(1)



suggests the validity of the inversion process. This does not confirm the absolute scale of the fill
factor obtained; however, it does confirm the expected trend of relative fill factor with respect to
directly measured density. In the future, a source of potential improvement to our approach
would be to include a more sophisticated constraint in the spectral domain, as even in imposing
the relatively weak constraint across wavelength used in this paper, convergence of the inversion
and consistency across wavelengths was greatly improved.

To adapt this approach that we have taken for geophysical parameter inversion to a practical
strategy where this can be accomplished for imagery, such as G-LiHT, there are still some tech-
nical hurdles to overcome, but the initial results are promising. The additional hurdles include the
fact that the number of relative geometries over which the surface is both illuminated and viewed
for a given position on the ground will depend on factors, for example, such as satellite revisit
schedule or length of campaign and design of imaging flight patterns and times of day for air-
borne studies. The success of the approach that we described depended on the ability to inter-
polate an estimate of the single scattering phase function over the same phase angles with SHOE
correction and a comparison of a densely sampled set of views over a hemisphere for two differ-
ent illumination cases. In an imagery time series, the combination of illumination direction and
view direction in a time series may be more complex; however, one point is clear: the better
represented the range of phase angles is in the imagery time series, the more likely the inter-
polation and comparison can be successful. In the G-LiHT imagery flown over Algodones, sets
of lines were flown along a particular heading, with successive lines having a significant per-
centage of overlap. Since the lines were short, this meant that at least several looks at the same
point on the ground occurred from multiple view directions with roughly similar illumination
conditions. On successive days, other orientations were flown, providing a diversity of potential
geometries, and AM and PM lines were flown on each flight day so that the illumination con-
ditions also varied. Thus, comparison of pixels from the same point on the ground among the
various flight lines could be used to compare and interpolate the single scattering properties
needed in our approach for two or more different illumination geometries. Likewise, in a satellite
time series with frequent enough revisit time to ensure sites are sufficiently stable during the
acquisition of the time series, a similar strategy might be followed. The essential point of inter-
polating an estimate of the single scattering properties from observations and modeled multiple
scattering appears to be feasible.
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