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Abstract. A timely and accurate understanding of the spatial distribution of tea plantations is
beneficial for agricultural management and regional sustainable development. However,
obtaining detailed distribution data on large-area tea plantations remains challenging owing
to limitations in computational capabilities, training data, and workflow design. Utilizing the
Google Earth Engine, which provides a catalog of multisource data in a cloud-based environ-
ment, we developed a methodology to generate a highly accurate tea plantation map, with a 10-m
resolution, for Anhui Province, China, by integrating a random forest model with a progressive
model. Our major contribution lies in this hybrid approach, which comprises two major com-
ponents: (1) an optimal classification band combination derived from Sentinel-2 products and
the digital elevation model filtered by the J-M distance model and (2) a progressive random
forest method introduced for tea plantation classification. The experimental results show that
our proposed workflow achieved an average classification accuracy of 89.27% for the entire
Anhui Province. In addition, this approach is semiautomatic and can effectively reduce the labor
required during the generation of training data compared with traditional classification
approaches. These findings demonstrate the potential of integrating machine learning and
progressive models to produce high-precision remote sensing classification maps. © The
Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
lication, including its DOI. [DOI: 10.1117/1.JRS.16.024509]
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1 Introduction

Tea, which originated in China, has become one of the three most popular beverages worldwide.1

In China, the global leader in tea production, tea is primarily grown in tropical and subtropical
regions, such as Anhui Province,2 where tea cultivation plays a vital role in the agricultural
economy and rural development.3 According to the Anhui Provincial Bureau of Statistics, the
area of tea plantations in Anhui in 2019 was 1870.58 km2, an increase of 57.38% from 1990.4

Although the expansion of tea plantations has promoted local economic development, it has also
caused a series of environmental problems, such as decreased soil fertility and soil erosion.5

Therefore, a timely and accurate understanding of the spatial distribution of tea plantations
is conducive to governmental environmental protection and agricultural management.6

Information on the distribution of tea plantations can generally be obtained through manual
reporting and remote sensing image classification.7 Utilizing remote sensing data to identify tea
plantations saves time and labor costs; hence, it is more popular than manual reporting.8 The
biggest difficulty in using remote sensing data is that tea trees are perennial evergreen woody
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plants, and their spectral characteristics are easily confused with similar woody plants, such as
natural forests.9 Thus, it is difficult to achieve accurate tea plantation classifications using only
spectral bands.1 Hence, previous studies primarily used hyperspectral and high-resolution
images, fusions of multiple types of remote sensing data, and classifications based on pheno-
logical features to identify tea plantations.1,2,9–11 The classification accuracies using the former
three methods are very high, but often the data are expensive and the study area is small, which
makes it difficult to identify tea plantations over large areas.12 In this situation, phenological
feature-based classification using Sentinel-2 data is among best choices for identifying the dis-
tribution of tea plantations over large areas.13 This is because Sentinel-2 data have three distinct
advantages over other satellite images: worldwide coverage, high temporal and spatial resolu-
tion, and a variety of red-edge bands that are sensitive to vegetation.14

Nevertheless, there are some challenges in applying this method to identifying tea plantations
over a large area.15 First, determining the optimal combination of bands for classification is
difficult.12 Too few classification bands may lead to low classification accuracy, whereas too many
bands may lead to low classification efficiency, over-fitting, and local optima.16 Second, the clas-
sification of tea plantations over a large area requires many accurate training samples.17 If the
number of training samples is small, the classification accuracy is usually low and has a large
uncertainty.18 However, obtaining multiple training samples is costly and time-consuming.19

Therefore, it is essential to balance the number of training samples with the required labor.
Finally, for large-area time-series classifications, a high storage capacity is necessary to store the
remote sensing data.20 Furthermore, strong computing power is required to achieve high classi-
fication efficiency.21

Web-based remote-sensing cloud platforms such as Google Earth Engine (GEE) can greatly
reduce computing time and enable the classification of large areas using remote sensing time
series data.22 GEE contains a variety of remote sensing images from different sensors, which
reduces personal data storage requirements.23 In addition, GEE provides high computing power
that greatly improves classification efficiency, and it can effectively perform repeated compari-
son experiments to determine the optimal classification bands.24 Moreover, GEE provides a vis-
ual interactive platform that can dynamically add training samples, providing a balance between
training sample acquisition and labor.25 In this study, we used the Jeffries–Matusita distance (J-M
distance) model to select the optimal classification features and utilized the progressive random
forest method to classify tea plantations. These processes were conducted on the GEE platform,
allowing our workflow to achieve high classification accuracy for tea plantations over a large
study area with minimal time and labor costs.

The goals of this study were to classify Sentinel-2 time series data to obtain a high-precision
tea plantation distribution map for Anhui Province during 2020 and determine which classifi-
cation features and methods effectively perform high-precision tea plantation classification over
a large area with complex terrain. Specifically, we addressed the following two questions:
(1) how can we select the optimal combination of classification features in GEE, so it can classify
tea plantations with high classification accuracy and efficiency? (2) How can a suitable classi-
fication method be constructed in GEE to ensure that tea plantations can be identified with high
accuracy over a large area?

2 Study Area and Datasets

2.1 Study Area

Anhui Province is in eastern China, between 114°54E and 119°37E and 29°41N and 34°38N. It
spans 450 km from east to west and 570 km from north to south, with a total area of 140; 100 km2,
accounting for 1.45% of the total land area of China.26,27 Anhui is in the middle to lower reaches of
the Yangtze River and the Huaihe River. It borders Jiangsu to the east, Zhejiang and Jiangxi to the
south, Henan and Hubei to the west, and Shandong to the north.28 As of July 2020, there were 16
cities in the administrative regions in Anhui Province: Hefei, Wuhu, Bengbu, Huainan, Ma’anshan,
Huaibei, Tongling, Anqing, Huangshan, Fuyang, Suzhou, Chuzhou, Lu’an, Xuancheng, Chizhou,
and Bozhou (Fig. 1).
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In general, the natural conditions of northern and southern Anhui differ greatly.29 The terrain
is generally high in the west and south and low in the east and north. The north is dominated by
plains, whereas the south is dominated by hills and mountains. Anhui is in the mid-latitude zone,
which belongs to the transitional region between the warm temperate and subtropical zones. The
annual average temperature in Anhui is ∼14°C to 17°C, and the annual average precipitation is
750 to 1750 mm.26 Precipitation is higher in the south and the mountainous areas and is lesser in
the north, the plains, and the hills. Rainfall is abundant in summer, accounting for 40% to 60% of
the annual precipitation.27 The unique climatic and topographical conditions have made Anhui
Province one of the major tea-producing provinces in China.6 In 2019, the tea plantation area
reached 187,058 hectares, and the total output of tea was 121,980 tons.4

2.2 Basic Data and Data Preprocessing

The data used in this study include four types of raster data, specifically, Sentinel-2 MSI data,
land use and land cover data, topographic data, and Google Earth CNES/Airbus imageries, and
two types of vector data, specifically, administrative boundary data and field survey data. All
data were open-access datasets, except for the field survey data. See Table 1 for detailed descrip-
tions of the data used in this study.

The Sentinel-2 data were obtained by a satellite cluster composed of two identical satellites,
Sentinel-2 A and Sentinel-2 B.30 The revisit periods of the two satellites were 5 days and were
simultaneous.31 In this study, Sentinel-2 satellite data were selected as the main remote sensing
image data for accurately identifying the distribution of tea plantations. Sentinel-2 satellite data
products include three levels: level-0, level-1C, and level-2A. Among them, level-2A images are
bottom-of-atmosphere reflectance in cartographic geometry after atmospheric correction and,
thus, are ready to use.32 In this study, we used level-2A products; only the identification of clouds
and cloud shadows was required prior to use. We used the Fmask 4.0 algorithm by Qiu et al. for
cloud detection and achieved good results.33

Topographic features (elevation, slope, and aspect) are important factors that affect tea tree
growth; therefore, they can effectively improve the classification accuracy for tea plantations.11

To describe the topographic features, we used a digital elevation model (DEM) with a 30-m
resolution generated by the Shuttle Radar Topography Mission (SRTM).34 This DEM is a post-
processed elevation dataset that is widely used because of its high accuracy and extensive
coverage.35

Fig. 1 Location of the study area. Maps showing the (a) location, (b) elevation, (c) slope, (d) annual
average temperature, and (e) annual average precipitation in the study area.
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High-precision reference data and an appropriate classification system are prerequisites for
classifications. In this study, we combined imagery observations and field investigations to deter-
mine the reference points. We collected field survey data acquired with a handheld GPS/GNSS
receiver in point-positioning mode in Huangshan and Wuhu City in 2020. The imagery obser-
vation data for other cities were incrementally added via Google Earth CNES/Airbus during the
progressive random forest classification process. According to Giuseppe Pulighe et al., an error
of ∼1 m occurred in visualizing added points.36 Considering that our classification results have
an accuracy of 10 m, these points can be used for classification and accuracy verification.

GlobeLand30 was used for qualitative cross-validation with Sentinel-2 MSI classification
results through visual interpretation. Then, according to the distribution of the ground objects
in the study area, they were reclassified into six LULC (land use/land cover) types: cropland,
forest, grassland, water bodies, built-up land, and unused.37

After the data were collected, the inputs were resampled to a spatial resolution of 10 m, which
corresponds to the fine resolution of the Sentinel-2 MSI. Finally, all data were projected into the
WGS84 coordinate system (EPSG: 4326) for tea plantation classification.

3 Methods

Figure 2 shows the overall workflow for the classification of tea plantations in the study area in
2020. First, to enhance the separability of the tea plantations from the other LULC types, we used
original band features, remote sensing index features, texture features, tasseled cap transforma-
tion (TCT) features, and terrain features to generate overall classification features. Then, based
on maintaining the separability between the tea plantations and other LULC types, the J-M dis-
tance model was applied to obtain the optimal classification features. Finally, we used a
progressive random forest classification method for high-precision classification.

3.1 Selection and Optimization of Classification Features

3.1.1 Spectral features of the original bands

The spectral features of the original bands of the remote sensing images record the reflection
intensity of different ground objects.38 By analyzing the different spectral characteristics of these
objects, it is possible to distinguish vegetation, water bodies, and other types of ground objects.39

The 60-m bands in the Sentinel-2 MSI data are mainly used for atmospheric correction; there-
fore, they were excluded from this study. The other 10 original bands in the Sentinel-2 MSI data
were selected for classification, specifically, blue, green, red, red edge1-4, NIR, and SWIR1-2.
To analyze the phenological characteristics of the vegetation, we calculated the maximum,

Table 1 Data included in this study and their usage.

Data type Data name Spatial resolution Usage

Raster Sentinel-2 MSIa 10 m Identify tea gardens and other land use types

Google Earth
CNES/Airbus imageriesa

0.3 m Generate sample points through visual
interpretation

GlobeLand30 30 m Cross-validate land use and land cover types
except for tea plantations through visual
interpretation

SRTM V3 DEMa 30 m Assist remote sensing image classification

Vector Administrative boundary 1:10,000 Determine the extent of the study area

Field survey data — Generate training and verification sample points

Note: SRTM: Shuttle Radar Topography Mission.
aIt can be called on Google Earth Engine directly.
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minimum, median, and standard deviation of the digital number of all original bands in the study
area in 2020. Tea trees and natural forests show strong spectral similarity; therefore, in addition
to the original spectral features, other classification features, including remote sensing indices,
red-edge vegetation indices, TCT features, and topographic features, were utilized in this study.

3.1.2 Features of remote sensing indices

Due to the surface environment, the same objects may have different spectral features, and differ-
ent objects may have the same spectral features, which directly impacts the classification
accuracy.40 To overcome this issue, this study selected five commonly used remote sensing indi-
ces to improve classification accuracy. These indices were mainly used to enhance the distinction
among other LULC types, rather than tea plantations. Nevertheless, because of the strong spec-
tral similarity between tea trees and forests, eight red-edge vegetation indices were used to fur-
ther distinguish tea plantations from forests.

The five common remote sensing indices include the normalized difference vegetation index
(NDVI), soil adjusted vegetation index (SAVI), normalized difference water index (NDWI),
modified normalized difference water index (MNDWI), and normalized difference built-up
index (NDBI).41–45 The eight red-edge vegetation indices include the normalized difference veg-
etation index Red-edge1-3 (NDVIre1, NDVIre2, and NDVIre3), normalized difference Red-
edge1,2 (NDre1 and NDre2), inverted red-edge chlorophyll index (IRECI), MERIS terrestrial
chlorophyll index (MTCI), and red-edge chlorophyll index (CIre).

42,46 The equations to calculate
these indices are listed in Table 2.

3.1.3 Texture features

Different ground objects have different texture features; therefore, adding texture features helps
enable the full capabilities of remote sensing image information.47,48 To facilitate tea harvests and

Fig. 2 Overall workflow chart for the classification of tea plantations.
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obtain adequate nutrition (e.g., CO2 and soil nutrients), tea trees are planted at certain spatial
intervals.1 Due to this unique cultivation method, tea plantations have obvious textural features
that differ significantly from natural vegetation such as forests and grass.9 Currently, the most
common method of texture analysis is the gray-level co-occurrence matrix (GLCM).49 Because
the GLCM has demonstrated good adaptability and strong robustness, it was selected to extract
texture information.50

The GLCM method requires an appropriate band when calculating texture features.49

Because the texture features calculated based on Sentinel-2 MSI images are the most effective
for distinguishing tea plantations from forests, the selected band should be highly capable of
detecting vegetation changes. Considering that the resolution for our classification results was
10 m, we chose the 10-m resolution NDVI to calculate the GLCMmatrix. In addition, to manage
the interannual variation in NDVI, the median value of the annual NDVI was utilized in cal-
culating the GLCM matrix. This is calculated in GEE by applying the “glcmTexture()” function;
however, three parameters must first be set: size, kernel, and average.51 Because the individual
tea plantations in the study area were generally small and scattered, the size was set to 3, which
means that each neighborhood was a 3 × 3 area. The remaining parameters used default values.
We used 12 texture features with lower correlations, including angular second moment, contrast,
correlation, inverse difference moment, entropy, sum average, sum entropy, difference entropy,
information measure of correlation 1, information measure of correlation 2, cluster shade, and
cluster prominence.

3.1.4 Tasseled cap transformation features

TCT features refer to those obtained by TCT, which is a result of special principal component
analysis.52 Unlike general principal component analysis, the conversion coefficient of TCT is a
fixed transformation matrix.53 TCT transforms the original multispectral image into the actual

Table 2 Remote sensing indices used in this study and their equations for calculation.

Name Calculation equation Number

NDVI NDVI = (B8 – B4)/(B8 + B4) (1)

SAVI SAVI = (B8 – B4) × (1+0.5)/(B8 + B4 + 0.5) (2)

NDWI NDWI = (B8 – B11)/(B8 + B11) (3)

MNDWI MNDWI = (B3 – B11)/(B3 + B11) (4)

NDBI NDBI = (B11 – B8)/(B11 + B8) (5)

NDVIre1 NDVIre1 ¼ ðB8A − B5Þ∕ðB8Aþ B5Þ (6)

NDVIre2 NDVIre2 ¼ ðB8A − B6Þ∕ðB8Aþ B6Þ (7)

NDVIre3 NDVIre3 ¼ ðB8A − B7Þ∕ðB8Aþ B7Þ (8)

NDre1 NDre1 ¼ ðB6 − B5Þ∕ðB6þ B5Þ (9)

NDre2 NDre2 ¼ ðB7 − B5Þ∕ðB7þ B5Þ (10)

IRECI IRECI = (B7 – B4)/(B5/B6) (11)

MTCI MTCI = (B6 – B5)/(B5 - B4) (12)

CIre CIre ¼ B7∕B5 − 1 (13)

Note: NDVI, SAVI, NDWI, MNDWI, and NDBI represent the normalized difference vegetation index, soil
adjusted vegetation index, normalized difference water index, modified normalized difference water index, and
normalized difference built-up index, respectively. NDVIre1-3, NDre1;2, IRECI, MTCI, and CIre represent the nor-
malized difference vegetation index Red-edge1-3, normalized difference Red-edge1,2, inverted red-edge
chlorophyll index, MERIS terrestrial chlorophyll index, and red-edge chlorophyll index, respectively. B3,
B4, B5, B6, B7, B8, B8A, B11, and B12 are blue, green, red, red-edge 1, red-edge 2, red-edge 3, NIR,
red-edge 4, SWIR1, and SWIR2, respectively.
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physical meaning of brightness (comprehensive surface reflectance), greenness (integration of
the degree of surface vegetation coverage), and wetness (comprehensive surface water condi-
tions) three-dimensional feature space, which can fully reflect surface reflection, vegetation cov-
erage, and moisture information.32 The TCT process can reduce the feature dimensions and
enhance remote sensing image information. The specific transformation equation is as follows:

EQ-TARGET;temp:intralink-;e001;116;562Y ¼ CX þ a; (1)

where Y represents the image after TCT, C represents the coefficient matrix corresponding to the
TCT, X represents the original multispectral image before transformation, and a is a constant
added to avoid negative values. The coefficient matrix C is a fixed transformation matrix that
depends on the specific sensor. The TCT matrix coefficients of Sentinel-2 images are shown in
Table 3. A total of six bands are required for TCT, including blue, green, red, NIR, SWIR1,
and SWIR2.

3.1.5 Topographic features

Topographic features are widely used to distinguish ground objects.54 Tea trees have extremely
strict environmental requirements for growth; thus, the terrain in a tea tree plantation should be
neither too flat nor too steep.9 In flat areas, rainfall will accumulate at the bottom of the tea trees
and cause the roots to rot. In steep areas, it is difficult to maintain essential soil nutrients and
moisture for tea tree growth, and tea farmers have difficulty picking tea. Therefore, tea trees can
only grow in less steep mountainous or hilly areas. Therefore, terrain features can effectively
improve the recognition accuracy for tea plantations and other objects, owing to the different
terrain requirements for each object.2 For example, the objects in plains are typically cropland,
built-up land, and water bodies, whereas those in mountainous and hilly areas are mainly forests
and grasslands with only a small percentage of cropland and built-up land.

Three topographic features were considered in this study: elevation, slope, and aspect.
Elevation directly affects the temperature in mountainous areas, thereby indirectly affecting the
distribution of vegetation.11 The slope expresses the degree of steepness of a surface, which
affects not only the surface energy exchange rate but also human activities and ultimately the
spatial distribution of ground objects.55 The aspect, which is the facing direction of the slope,
indirectly affects the growth of vegetation and ultimately affects its spatial distribution.5 In GEE,
these topographic features can be directly calculated through the “ee.Algorithms.Terrain()”
function.

3.1.6 Optimization of classification features

Considering a phenological perspective, the maximum, minimum, median, and standard
deviation were calculated for the original spectral features, remote sensing indices, and red-edge
vegetation indices, resulting in a total of 110 classification features. Notably, strong correlations
can exist among these features, resulting in low classification accuracy and efficiency.56

Therefore, this does not mean that more features are better, and appropriate classification features
must be selected.

The J-M distance method is relatively simple and intuitive for directly measuring the dis-
tinguishability of different classes; therefore, we utilize it for feature optimization.57 Essentially,
the J-M distance uses the distance between samples of different classes to measure their

Table 3 TCT matrix coefficients for Sentinel-2 images.

TCT features Blue Green Red NIR SWIR1 SWIR2

Brightness 0.0822 0.1360 0.2611 0.3895 0.3882 0.1366

Greenness −0.1128 −0.1680 −0.3480 0.3165 −0.4578 −0.4064

Wetness 0.1363 0.2802 0.3072 −0.0807 −0.4064 −0.5602

Qu et al.: Mapping large area tea plantations using progressive random forest and Google Earth Engine

Journal of Applied Remote Sensing 024509-7 Apr–Jun 2022 • Vol. 16(2)



separability, thereby determining distinguishable features based on the training samples.58

The larger the J-M distance is, the higher the separability between classes is, and the easier
classification it is to them. The calculation method for J-M distance is shown as

EQ-TARGET;temp:intralink-;e002;116;699J-Mðci; cjÞ ¼
Z

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðxjciÞ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
pðxjcj

q
Þ2dx; (2)

where x is a time series, ci and cj are the two classes to be compared, and pðxjciÞ and pðxjcjÞ are
the conditional probability density functions for the time series x. When only considering the
separability between two classes, Eq. (27) can be simplified to

EQ-TARGET;temp:intralink-;e003;116;619J-M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − e−BijÞ

q
; (3)

EQ-TARGET;temp:intralink-;e004;116;568Bij ¼
1

8
ðMi −MjÞT

�
Vi þ Vj

2

�
−1
ðMi −MjÞ þ

1

2
ln

�����Vi þ Vj

2

����∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jVijjVjj

q �
; (4)

where Bij is the Bhattacharyya distance of classes i and j; Vi and Vj are the sample covariance
matrices of i and j, respectively; and Mi and Mj are the mean vectors of the corresponding

samples. The values of the J-M distance range from 0 to
ffiffiffi
2

p
. The larger the J-M distance

is, the stronger the separability between the two classes is, with
ffiffiffi
2

p
corresponding to the largest

separation. If JMij ≥ 1, there is no overlap between classes i and j; if JMij < 1, overlap exists
between classes i and j.

According to Bruzzone et al.,59 when performing multiclass cases, the most important clas-
sification features for classification accuracy are determined by the classes with the lowest dis-
crimination. In our classification process, tea plantations and natural forests were frequently
misclassified, whereas combinations of other LULC types were easy to classify. The distinguish-
ability between tea plantations and natural forests directly impacted the overall accuracy (OA) of
classification results; therefore, the J-M distance between tea plantations and natural forests was
calculated to optimize the classification features.

3.2 Progressive Random Forest Classification Approach

The progressive random forest classification method used in this study combines prior knowl-
edge and human intervention regarding the use of training samples for machine learning.
Progressive random forest classification is similar to classical supervised classification; the goal
of both is to obtain the highest possible accuracy through human–computer interaction. The
difference is that supervised classification improves classification accuracy by marking a large
number of samples before classification, whereas progressive random forest classification uses a
strategy based on classification accuracy. After a classification accuracy assessment, which sorts
the probability of correct classification for each pixel from low to high, some of the pixels with
probability values below a specific value (80% was used in this study) are manually added to the
training sample. From the perspective of practical application, progressive random forest clas-
sification assumes that the lower accuracy samples are always located in areas that are difficult to
discriminate, which can quickly and continuously promote the performance of the classifier. The
overall performance of the progressive random forest classification model is controllable and
does not fall into a local optimum.

The progressive random forest classification model reflects the human learning process, pro-
gressing from easy to difficult. The model is trained using a small number of training samples
based on classification accuracy, and complex samples are gradually added to improve the clas-
sification accuracy. In our study, a typical tea plantation distribution area was first selected, and a
small number of training samples were used for classification. Subsequently, the validation sam-
ples were used to calculate the OA and the confidence of each pixel. If the OA was high, the
classification area was expanded. If the OA was low, low-confidence pixels were added to the
training sample and reclassified. After reclassification, if the OA improved, the newly added
training samples were retained; if the OA decreased, the newly added training samples were
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removed and reselected. The above steps were repeated, expanding the classification area by
gradually increasing the number of training samples; thus, the classification accuracy was gradu-
ally improved until the entire study area achieved a satisfactory classification accuracy.

As this study aimed to classify tea plantations over a large area, it was preferable to add low-
precision tea plantation sample points before other types when applying the progressive random
forest method. This ensured that the classification result for each pixel point within a tea plan-
tation has high confidence. When applying the random forest model in GEE, two parameters
must be set: numberOfTrees and minLeafPopulation. After repeated verification, we set
numberOfTrees to 100 and minLeafPopulation to 10.

3.3 Postprocessing and Accuracy Assessment

There were a small number of blank values in the classification result, which directly impacted
the classification accuracy. There are two main reasons that blank values are generated. One
reason is that some pixels have classification features outside the normal range, resulting in
empty classification results. For these pixels, we rechecked the values for all classification fea-
tures, eliminated outliers, and then reclassified them. The other reason is that some pixels are
recognized as clouds by the cloud recognition method. For these, a multivalue within the 3 × 3

neighborhood of these pixels was assigned.
Tea trees prefer shade; hence, many tea plantations are in the shadows of hills. Thus, some of

these plantations were easily misclassified as natural forests; therefore, we also used the 3 × 3

neighboring pixels to eliminate the influence of the hill shadows.
After postprocessing, we used a 10-fold cross-validation to assess the classification accuracy.

We calculated the classification error matrix based on the classification results, which were quan-
tified using the OA. The OA is the sum of the diagonal elements divided by the sum of all of the
elements of the confusion matrix. Then, we calculated the producer’s accuracy (PA), user’s accu-
racy (UA), and F1-score. The F1-score is particularly useful for class-level accuracy assessment
because it assigns equal importance to the PA and UA. Finally, the above process was repeated
10 times, and the average OA, PA, UA, and F1-score were calculated. The PA, UA, and F1-score
are calculated for each class as follows:

EQ-TARGET;temp:intralink-;e005;116;375PAi ¼
Xr

j¼1

nii
nij

; (5)

EQ-TARGET;temp:intralink-;e006;116;313UAi ¼
Xr

j¼1

nii
nji

; (6)

EQ-TARGET;temp:intralink-;e007;116;272ðF1Þi ¼
2 × PAi × UAi

PAi þ UAi
; (7)

where r is the number of classes and nij is the element of the confusion matrix in the i’th column
and j’th row, that is, the count of elements of class j classified as class i. PAi, UAi, and ðF1Þi
stand for the PA, UA, and F1-score for class i, respectively.

4 Results

4.1 Optimized Classification Features

In this study, 110 classification features were optimized to ensure classification efficiency and
achieve a higher classification accuracy. Both the topographic and TCT features had only three
features and weak correlations; hence, they were excluded from the feature optimization process.
Therefore, the rest of the classification features, including the original bands, remote sensing
indices, and texture features, were optimized using the J-M distance. The feature optimization
process was conducted in the following two steps. First, 1000 tea plantation samples and 1000
natural forest samples were randomly selected from the training samples. Then, the J-M distance
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for each feature was calculated (see Table 8 for details), and the features with J-M distance values
lower than a certain standard were eliminated.

The J-M distance can determine the discrimination between different classification bands but
not the number of optimal features for classification. Here, we selected the optimal feature bands
based on Lorenzo Bruzzone et al.59 As shown in Table 8, the maximum, minimum, and median
values of the J-M distance of the original bands were 0.483, 0.085, and 0.229, respectively. Thus,
the tea plantations and natural forests were difficult to distinguish. The original bands with J-M
distance values greater than 0.2 were selected. Similarly, the characteristics of tea plantations and
natural forests were also very similar in the remote sensing indices. Those with J-M distances
greater than 0.2 were also selected. However, the distinguishability between tea plantations and
natural forests was very strong for the red-edge vegetation indices, which are more sensitive
concerning vegetation. Therefore, the red-edge vegetation indices with J-M distances greater
than 0.4 were selected. A brief description of the optimized classification features, including
the number and J-M distance values, is shown in Table 4 (for details, see Table 9). The total
number of classification features was reduced from 116 to 64, a 45% decrease, which dramati-
cally improved the classification efficiency. The overall J-M distance values varied from 1.414
for the original classification features to 1.412 for the optimized classification features, which is
a difference of 0.14%; therefore, a comparable result was obtained after the feature optimization
process. From the perspective of balancing the classification efficiency and accuracy, the feature
optimization process performed excellently.

4.2 Classification Results for the Tea Plantations and Other Land
Cover Types

Figures 3 and 4 show the results of the tea plantation classification using the progressive random
forest classification model from a regional and local perspective, respectively. As shown in
Fig. 3, tea plantations were scattered throughout in Anhui Province. Tea plantations were mainly
distributed in the southern and western study area, which predominantly have a mountainous
terrain. In the middle of the study area, there were a small number of tea plantations in hilly
terrain. There were few tea plantations in the northern study area or along the Yangtze River;
these places are plains that are not suitable for the growth of tea trees. The city with the most tea
plantations was Huangshan City, which was consistent with the statistical data.

Figure 4 shows the classification results for three typical regions. The tea plantations iden-
tified using the progressive classification model were generally consistent with reality. In hilly
areas, tea plantations were well identified, and the cropland and forest classifications were accu-
rate [Fig. 4(b)]. In the transitional regions between hills and mountains, the overall tea plantation
classifications were also relatively accurate; however, a small amount of forest was misclassified
as tea plantations [Fig. 4(d)]. The classification results for forests and water bodies were more
accurate; however, some cropland was misclassified as built-up land. In mountainous areas, the

Table 4 Optimization results for the classification features.

Before optimization After optimization

Number J-M Number J-M

Original bands 40 1.030 27 0.870

Remote sensing indices 20 0.983 15 0.895

Red-edge indices 32 1.399 7 1.320

Texture features 12 1.198 9 1.183

TCT features 3 0.528 3 0.528

Topographic features 3 0.370 3 0.370

Total 116 1.414 64 1.412

Qu et al.: Mapping large area tea plantations using progressive random forest and Google Earth Engine

Journal of Applied Remote Sensing 024509-10 Apr–Jun 2022 • Vol. 16(2)



classification results for tea plantations and forests were accurate; however, some cropland was
again misclassified as built-up land [Fig. 4(f)]. In general, tea plantations were accurately
classified in the main distribution areas.

4.3 Classification Accuracy Analysis

To test the classification accuracy for tea plantations, the OA, UA, PA, and F1-score were cal-
culated quantitatively using the confusion matrix. In the quantitative analysis, a 10-fold cross-
validation was used to determine the stability of the classification model. The calculation results
are presented in Table 5.

The average OA reached 89%. The classification accuracy for cropland, forest, and water
bodies was greater than 85%, and that for tea plantations reached 82%. With the spatial reso-
lution and the large area of Anhui Province, this result is generally satisfactory. However, the
classification accuracies for grassland and unused land were poor, which was mainly caused by
their small distribution areas within the study area and the small number of sample points used
during classification. Nevertheless, these low accuracies had little influence on the identification
of tea plantations because of their small areas and low probability of misclassification as tea
plantations.

Fig. 3 Map of the tea plantations in the study area in 2020.
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5 Discussion

5.1 Impacts of Different Feature Selection Schemes

To compare the impacts of different classification features on the classification accuracy for tea
plantations, this study designed 10 different classification feature combination schemes. Because
the red-edge bands had the largest J-M distance, comparisons with and without these bands were

Fig. 4 Comparison of the classification results in typical areas. (a), (c), (e) Sentinel-2 MSI true-
color images of a hilly region, hill-to-mountain transition region, and mountain region, respectively,
and (b), (d), and (f) the corresponding classification results.
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carried out to analyze whether they have prominent effects when designing the feature combi-
nation method. Due to the large study area and the number of comparative experiments, only
Huangshan City, which has the most tea plantations, was selected for comparative experiments.
The experimental results are presented in Table 6.

Table 6 shows that the combination of the original bands and the remote sensing indices
obtained a high OA value of 83.99% because the constructed classification feature space could
extract the phenological features of each class. The red-edge indices had the most significant
impacts on improving the classification accuracies for tea plantations due to their high sensibility
for vegetation. The topographical features had the second largest positive effect on classification
accuracy. Tea plantations have strict environmental requirements; therefore, elevation, slope, and
aspect all have direct effects on the growth of tea trees. The TCT features also showed positive
effects because they comprehensively reflect the brightness, greenness, and wetness of ground
objects. For example, the water in the roots of tea plantations and natural forests differs, resulting
in a difference in TCT features. Tea trees are planted at certain spatial intervals to facilitate both
growth and harvesting; thus, their greenness is generally lower than that of natural forests. The

Table 6 Classification accuracies of different classification feature combinations in Huangshan
city.

UA (%) PA (%) OA (%) F 1-score

Scene1 (original bands+ remote sensing indices) 86.10 96.03 83.99 0.9079

Scene2 (original bands+ remote sensing
indices+ red-edge indices)

87.45 96.1 85.39 0.9157

Scene1 + texture features 87.9 95.32 85.1 0.9146

Scene2 +texture features 88.61 95.17 85.9 0.9177

Scene1 + TCT features 87.47 95.08 84.58 0.9112

Scene2 + TCT features 88.49 95.02 85.65 0.9164

Scene1 + topographic features 86.89 95.81 84.63 0.9113

Scene2 + topographic features 87.8 96.1 85.82 0.9176

All 89.12 95.25 86.50 0.9208

Optimized features 88.67 95.33 86.41 0.9188

Table 5 Classification accuracy for results in the study area.

UA (%) PA (%) F 1-score

Tea plantations 82.04 ± 0.03 86.33 ± 0.02 0.8413

Cropland 88.67 ± 0.02 87.67 ± 0.01 0.8817

Forest 95.50 ± 0.02 94.74 ± 0.01 0.9512

Grassland 76.08 ± 0.04 64.95 ± 0.10 0.7007

Water bodies 90.15 ± 0.01 91.97 ± 0.01 0.9105

Built-up land 85.60 ± 0.02 87.58 ± 0.01 0.8658

Unused land 58.49 ± 0.06 46.56 ± 0.11 0.5185

OA = 89.27 ± 0.03%, Kappa = 0.8831

Note: UA, PA, and OA represent the user’s accuracy, producer’s accuracy, and overall accuracy, respectively.
The values of the UA, PA, and OA are the mean ± standard deviation.
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smallest improvement in the accuracy was from the texture features. This was mainly because the
spatial resolution of the Sentinel-2 data was 10 m, which does not fully reflect the textural fea-
tures of the tea plantations, resulting in a minor improvement.

When using all features, the UA for tea plantations was 89.12%, the PAwas 95.25%, and the
F1-score was 0.9208. In addition, these accuracy indices obtained using the optimized features
were 88.67%, 95.33%, and 0.9188, respectively. Although the UA is slightly decreased when using
the optimized features, the PA improved, and the F1-score, which measures the comprehensive
classification accuracy, dropped by 0.002. The OA using all features was 86.50%, whereas that
using the optimized features was 86.41%, which is a decrease of 0.09%. Although the use of
optimized features resulted in a slight loss of accuracy, the number of classified features was dra-
matically reduced from 116 to 64. A reduction in the number of features can significantly improve
the classification efficiency. When using the progressive random forest model, it is necessary to
continuously add training samples and then reclassify them. Therefore, compared with the slight
loss of accuracy, the improvement in the classification efficiency is more important.

5.2 Improvement in Classification Accuracy by Progressive Random Forest

In this study, we designed a progressive random forest model that combines random forest and
progressive models. The progressive random forest model improves classification accuracy by
gradually increasing the number of training samples on GEE. These newly added training sam-
ples were based on the probable classification result for each pixel. A total of 10 iterative clas-
sifications were performed, and the results are shown in Fig. 5.

Figure 5 shows that, in the process of iterative classification, the OA, UA, and PA of the tea
plantations constantly improved. This shows that the proposed progressive random forest model
was effective. For the first iteration, the samples were derived from the results of our field
surveys in Huangshan and Wuhu. Huangshan and Wuhu are typical mountainous and hilly
tea-producing cities in the study area, respectively. For the first iteration, the samples were con-
centrated in mountainous and hilly areas, resulting in low OA, UA, and PA for the tea planta-
tions. Then, the visually selected training samples for other cities were gradually added
according to the accuracies of the classification results. With additional training samples, the
OA, UA, and PA greatly improved. On the 10th iteration, the OA and PA exceeded 85%, which
met our objectives; hence, we stopped the classification process.

The first visual samples were from the areas surrounding Huangshan and Wuhu; sub-
sequently, the area was gradually expanded. The results of the visually selected additions and
land survey samples are shown in Fig. 6. The figure shows that there were more samples in the

Fig. 5 The accuracy of the progressive random forest classification with the number of samples
used during the classification process.
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southern study area but few samples in the northern region. This is because tea plantations and
natural forests were initially misclassified; thus, we added samples of tea plantations and natural
forests. With the increase in natural forest samples, tea plantations were mainly misclassified as
croplands. Therefore, we added samples of cropland in the middle of the study area. When the
UA and PA of the tea plantations exceeded 80%, we added samples from other classes to
improve the OA.

5.3 Advantages and Disadvantages

Because the spectral bands of tea plantations and natural forests are highly similar, obtaining
high-precision classification of tea plantations over a large area remains challenging. With ready-
made remote-sensing cloud platforms (e.g., GEE) and the use of nonparametric classifiers, the
main challenge becomes selecting suitable classification bands and training samples.

The high classification accuracy and F1-score for tea plantations and other main land use
classes demonstrate the practicality of the progressive random forest method. The effectiveness
of this method depends on accessing sufficient computing power. In this study, this was not a
problem because the GEE provided sufficient computing power.

In this study, a new method for the classification of sentinel-2 MSI data, which was combined
with a random forest and progressive model running on GEE, was proposed. This is advanta-
geous for the following reasons: (1) it retains the advantages of the random forest and the
progressive model, which can effectively and robustly run high-dimensional data for a large

Fig. 6 The results of the field survey and the addition of visually selected training samples.
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area. (2) It can classify sparse objects (such as the tea plantations in this study) with a high
classification accuracy. (3) The entire classification process is carried out on GEE to ensure
highly efficient overall workflow.

We used classification and regression trees (CART), support vector machine (SVM),
and deep neural networks (DNN) to verify the generality and reliability of our conclusions.
In the comparative experiments, the samples used for the CART, SVM, and DNN models were
the same as for the RF models. Default parameters were set for CART and SVM in GEE.
The Keras library was utilized for the DNN hyperparameter optimization in Google Colab, and
the key parameters of DNN were set as follows: 64–128–256 for the hidden layers, 10 for the
epochs, ReLU (the rectified linear units) for the activation function, Adam for the optimizer, and
20% for the dropout ratio. The OA values of the comparative experiment classifications are
shown in Table 7. In general, when a small number of samples was used, a low OA value was
obtained. In addition, the OA values of the compared classification models increased with the
increase in the number of samples, indicating that increasing the number of samples could sig-
nificantly improve classification accuracy, which was similar to the RF model. However, the
contributions of increasing samples to the OA were found to be different among the compared
classification models. The OA values of the CART model were moderately improved with the
increase of samples, but the highest OA of the CART model (79.52%) was significantly lower
than that of the RF model (89.27%). The SVM model only needs a small number of samples to
obtain high classification accuracy, but it easily overfits and its highest OA (83.89%) was also
lower than that of the RF model. Increasing the number of samples can dramatically improve the
classification accuracy of the DNN model, which needs a large number of samples to obtain high
classification accuracy. Although the highest OA of DNN (75.96%) was significantly lower than
that of the RF model, it is worth noting that the classification accuracy value of the DNN model
continuously improved as the samples increased, which means that it may be close to or exceed
the highest classification accuracy of the RF model if the number of samples is more than 6193.
For balancing the classification accuracy and the limit number of samples, the combination of the
progressive model and the RF model is the optimal choice.

Although our progressive random forest model has many advantages, it also has some dis-
advantages. First, because the GEE visualization interactive platform only provides current
remote sensing images, the training data added by manual visual inspection only utilizes the
current data, and the generation of sample points using historical data requires other platforms.
Second, progressive random forest is semiautomated. Manual assignment is required each time
that new samples are added to the training sample dataset. In future studies, we will consider
introducing models (such as LandTrender) to generate long-term sample data. We are also con-
sidering adding other existing land use/land cover products to reduce manual assignment and
improve the automation of the classification workflow.

Table 7 Overall accuracies of different comparative experiment models in Huangshan city.

Number of samples CART (%) SVM (%) DNN (%)

1128 44.05 65.37 10.19

2098 50.19 70.80 22.36

2980 55.05 76.56 30.50

3856 59.39 79.60 39.23

4563 62.24 83.08 46.77

5143 67.52 83.89 54.38

5532 72.76 83.08 62.56

5864 77.28 83.18 69.77

6027 79.52 83.08 73.83

6193 76.90 83.60 75.96
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6 Conclusions

A methodology was proposed for the classification of tea plantations in Anhui Province in 2020.
The J-M model distance was applied to the original bands, remote sensing indices, texture
features, TCT features, and terrain features to select the optimal combination of classification
features. A progressive random forest model was used to classify 3554 scenes from Sentinel-2
MSI images. Using these methods, we obtained a map of tea plantations in Anhui Province in
2020 and analyzed its classification accuracy.

The progressive random forest classification method used in this study combines the advan-
tages of the random forest and progressive models. First, remote sensing classification for a large
area was carried out quickly by utilizing random forest. Moreover, owing to the advantages of the
progressive model, the OA of classification remained high even with a small number of training
samples. Furthermore, the progressive random forest classification model accurately identified
the spatial distribution of tea plantations.

By comparing the J-M distance, the number of classification features was reduced dramati-
cally, which improves the classification efficiency. Moreover, high classification accuracy was
obtained using the reduced classification features.

In addition, when using only the original bands and remote sensing indices, good classifi-
cation results were still obtained. This is because the calculations of statistical values, such as the
maximum, minimum, and standard deviation, reflect the phenological characteristics of the veg-
etation. Furthermore, the red-edge indices are the most effective for the identification of tea
plantations, followed by topographical features. The TCT and texture features have minimal
positive effects on improving the classification accuracy for tea plantations.

In future studies, we will explore the effects of applying other machine learning models to the
classification process along with the progressive model to obtain a more precise map of tea
plantations. Meanwhile, we will consider extending our research workflow using Landsat
time-series data to obtain long-term spatial distributions and changes in tea plantations.

7 Appendix A

7.1 J-M Distance Results of Classification Features

Table 8 shows the details of the calculated J-M distance for each feature. The low value of the
J-M distance represents low separability and the features with J-M distance values lower than a
certain standard (i.e., 0.2) were further eliminated. Table 9 shows the details of the optimized
classification features, including the number and the J-M distance values. The total number of
classification features was reduced from 116 to 64, a 45% decrease, which dramatically
improved the classification efficiency.

Table 8 J-M distance results of classification features.

Name J-M Name J-M Name J-M Name J-M

B2-max 0.085 B2-min 0.351 B2-median 0.361 B2-std 0.124

B3-Max 0.093 B3-Min 0.341 B2-median 0.400 B3-Std 0.125

B4-Max 0.095 B4-Min 0.347 B3-median 0.400 B4-Std 0.116

B5-Max 0.116 B5-Min 0.311 B4-median 0.450 B5-Std 0.114

B6-Max 0.171 B6-Min 0.316 B5-median 0.440 B6-Std 0.150

B7-Max 0.207 B7-Min 0.321 B6-median 0.453 B7-Std 0.148

B8-Max 0.213 B8-Min 0.306 B7-median 0.446 B8-Std 0.104

B8A-Max 0.229 B8A-Min 0.309 B8-median 0.455 B8A-Std 0.120
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7.2 Optimization Results of Classification Features

Table 8 (Continued).

Name J-M Name J-M Name J-M Name J-M

B11-Max 0.451 B11-Min 0.264 B8A-median 0.483 B11-Std 0.387

B12-Max 0.350 B12-Min 0.263 B11-median 0.473 B12-Std 0.347

NDVI-Max 0.279 NDVI-Min 0.171 B12-median 0.291 NDVI-Std 0.297

SAVI-Max 0.279 SAVI-Min 0.170 NDVI-median 0.292 SAVI-Std 0.296

NDWI-Max 0.206 NDWI-Min 0.307 SAVI-median 0.374 NDWI-Std 0.281

MNDWI-Max 0.141 MNDWI-Min 0.253 MNDWI-median 0.452 MNDWI-Std 0.238

NDBI-Max 0.216 NDBI-Min 0.049 NDBI-median 0.238 NDBI-Std 0.163

NDVIre1-Max 0.164 NDVIre1-Min 0.160 NDVIre1-median 0.195 NDVIre1-Std 0.265

NDVIre2-Max 0.283 NDVIre2-Min 0.234 NDVIre2-median 0.296 NDVIre2-Std 0.294

NDVIre3-Max 0.636 NDVIre3-Min 0.438 NDVIre3-median 0.226 NDVIre3-Std 0.568

NDre1-Max 0.221 NDre1-Min 0.158 NDre1-median 0.243 NDre1-Std 0.293

NDre2-Max 0.139 NDre2-Min 0.174 NDre2-median 0.174 NDre2-Std 0.272

IRECI-Max 0.256 IRECI-Min 0.243 IRECI-median 0.296 IRECI-Std 0.133

MTCI-Max 0.920 MTCI-Min 0.286 MTCI-median 0.153 MTCI-Std 0.583

CIre-Max 1.09 CIre-Min 0.163 CIre-median 0.152 CIre-Std 0.947

ASM 0.411 CONTRAST 0.428 CORR 0.171 IDM 0.421

ENT 0.370 SAVG 0.325 SENT 0.468 DENT 0.466

IMCORR1 0.432 IMCORR2 0.584 SHADE 0.476 PROM 0.589

Note: Max, Min, median, and Std represent the maximum, minimum, median, and standard deviation,
respectively.

Table 9 Optimization results of classification features.

Type

Before optimization After optimization

Original features Number J-M Optimized features Number J-M

Original
bands

The maximum, minimum,
median, and standard
deviation of the original
bands 2-8, 8A, 11, 12

40 1.03 B7-Max, B8-Max, B8A-Max,
B11-Max, B12-Max, B2-Min,
B3-Min, B4-Min, B5-Min,B6-
Min, B7-Min, B8-Min, B8A-Min,
B11-Min, B12-Min, B2-median,
B3-median, B4-median, B5-
median, B6-median, B7-
median, B8-median, B8A-
median, B11-median, B12-
median, B11-Std, B12-Std

27 0.870

Remote
sensing
indices

The maximum, minimum,
median, and standard
deviation of NDVI, SAVI,
NDWI, MNDWI, and
NDBI

20 0.983 NDVI-Max, SAVI-Max, NDWI-
Max, NDBI-Max, NDWI-Min,
MNDWI-Min, NDVI-median,
SAVI-median, NDWI-median,
NDBI-median, MNDWI-
median, NDVI-Std, SAVI-Std,
NDWI-Std, MNDWI-Std

15 0.895
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