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Abstract. Accelerated urbanization creates challenges of water shortages, air pollution, and
reductions in green space. To address these issues, methods for assessing urban expansion with
the goal of achieving reasonable urban growth should be explored. In this study, an improved
slope, land use, exclusion, urban, transportation, hillshade (SLEUTH) cellular automata model is
developed and applied to the city of Tangshan, China, for urban expansion research. There are
three modifications intended to improve SLEUTH: first, the utilization of ant colony optimiza-
tion to calibrate SLEUTH to simplify the calibration procedures and improve their efficiency;
second, the introduction of subregional calibration to replace calibration of the entire study area;
and third, the incorporation of social and economic data to adjust the self-modification rule of
SLEUTH. The first two modifications improve the calibration accuracy and efficiency compared
with the original SLEUTH. The third modification fails to improve SLEUTH, and further experi-
ments are needed. Using the improvements to the SLEUTHmodel, forecasts of urban growth are
performed for every year up to 2020 for the city of Tangshan under two scenarios: an inertia trend
scenario and a policy-adjusted scenario. © 2012 Society of Photo-Optical Instrumentation Engineers
(SPIE). [DOI: 10.1117/1.JRS.6.061709]
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1 Introduction

Urban areas are complex systems, with characteristics of openness, nonlinearity, self-organiza-
tion, randomness, hierarchy, and dissipation. The cellular automata (CA) method was first intro-
duced by Tobler1 to model the rapid urban sprawl of the city of Detroit in 1979, and it remains
one of the most important methodologies used to study complex systems. In the 1980s,
Couclelis2,3 provided a generalization of the theory of CA and outlined the interaction between
urban structure and individual behavior. Beginning in the 1990s, a series of typical CA models of
urban expansion were developed: dynamic urban evolution model, by Batty and Xie;4,5 slope, land
use, exclusion, urban, transportation, hillshade (SLEUTH), by Clarke and colleagues,6,7 which
was named after its model inputs, namely, slope, land use, exclusion, urban, transportation, hill-
shade; and land use evolution and impact assessment model by Deal and Sun.8 Among these
three models, SLEUTH is preferred for urban expansion studies due to its more readily available
input data, its few parameters for calibration, and its relatively good simulation accuracy.9–17

CA models are discrete in time, space, and state. The classic CA model consists of four
parts:18 (1) a cell space with grid cell as the basic unit; (2) cell states, i.e., the land use type
(urban or nonurban) of a cell; (3) the neighborhood, which is composed of a set of cells in
a defined area that surround some central cell (it is the neighborhood cells that have an influence
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on the state of their center cell at the next time step); and (4) transition rules, the core of CA
models, which determine how cells change from one state to another at each time step. In actual
applications, the classic CA model is adapted to better simulate real urban systems by adjusting
attributes such as the homogeneity of the cell space, the uniformity of the neighborhood
interactions, and universal transition functions.12

SLEUTH is characterized by a series of rules in a nested loop to simulate urban growth,
focusing on the transition from nonurban to urban land use. SLEUTH’s inputs require four
or more historic urban seed images, two or more transportation network images, one slope
image, one hillshade (background) image, and an exclusion image. Urban images, even trans-
portation images, can be derived easily from remote-sensing data; slope and hillshade layers can
be produced by a digital elevation model (DEM) with a geographic information system (GIS).
Only five calibration parameters are needed for SLEUTH. Despite these advantages, three major
problems associated with SLEUTH can be summarized as follows: (1) the calibration procedure
is time-consuming, and although the calibration accuracy is gradually improved by using the
three-level calibration (coarse, fine, and final), the resulting parameters are generally suboptimal;
(2) there is only one set of parameters for a whole urban area, which is insufficient for multicore
cities; and (3) the model predicts urban growth based on a simple extrapolation of inert historic
growth trends calibrated by at least four time control points, without taking account of influences
caused by macro driving forces, such as social and economic factors.

To address these three issues, this paper introduces three modifications to SLEUTH. First, ant
colony optimization (ACO) is adopted to calibrate SLEUTH and improve its calibration efficiency
and accuracy. ACO is a type of artificial intelligence algorithm that simulates the food-hunting
behaviors of ants to optimize parameters. Second, the whole study area is divided into several
subareas, and different parameter sets are obtained for each subarea. Third, macro social economic
factors are incorporated into SLEUTH to adjust the self-modification rule of SLEUTH.

2 Study Area

The city of Tangshan, China, is selected for the study to validate the improved SLEUTH model.
Tangshan was completely destroyed by a massive earthquake in 1976. Rapid development in the
30þ years since the earthquake has led to the recovery of Tangshan, which is now a modern city
with an urban population of >3million. The city is also an important part of the Beijing-Tianjin-
Tangshan metropolitan area, the third largest metropolitan area in China, which means Tangshan
may undergo considerable further development in the future. The study area is illustrated by the
blue-bordered rectangle box in Fig. 1, which covers an area of 3445 km2.

3 Data and Methods

3.1 Introduction of SLEUTH

Urban dynamics are simulated by four growth rules in SLEUTH: spontaneous growth, new
spreading center growth, edge growth, and road-influenced growth. Spontaneous growth sim-
ulates the random urbanization phenomenon. New spreading center growth is oriented to the
generation of new urban centers, which results in further growth. Edge growth characterizes
the tendency of cities to expand outward while experiencing infilling growth. Road-influenced
growth simulates the tendency of urbanization to occur next to and along transportation lines.
Each growth rule is controlled by the five model coefficients of diffusion, breed, spread, road
gravity, and slope resistance. All five parameters are represented by integers ranging from 0 to
100 and are dimensionless. With the exception of slope resistance, each of the parameters reflects
the relative contribution to urban growth. The last important rule of SLEUTH is the self-modi-
fication rule for parameter adjustment. According to the rule, the model parameters will be multi-
plied by a value (BOOM)>1when the simulation growth rate of an urban area is greater than the
threshold CRITICAL_HIGH, and the model parameters will be multiplied by a value (BUST) <1
when the simulation growth rate is lower than the threshold CRITICAL_LOW. Without the
self-modification rule, SLEUTH would produce only linear or exponential growth.14
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SLEUTH uses a brute-force method, making attempts on sufficient combinations of model
parameters to perform a calibration and derive a set of parameters that can best capture the his-
toric growth trend of a study area. The calibration procedure includes three phases: coarse, fine,
and final. Each phase includes several Monte Carlo iterations to ensure the robustness of the
resulting parameters. During the three-level calibration, the value ranges of the parameters
are narrowed level by level, and the calibration accuracy is improved step by step.

Thirteen indices can be used to assess the calibration results of SLEUTH modeling. All indi-
ces range from 0 to 1. The greater an index, the higher the calibration accuracy. Indices pop-r2,
edges-r2, clusters-r2, and leesalee were chosen for this study, with leesalee used as the metric to
measure calibration accuracy. Pop is the amount of urbanized cells, and pop-r2 is the least square
regression score of the modeled urban area compared with the actual urban area for the control
years. The same is true for edges-r2 and clusters-r2, the total number of edges and urban clusters.
Leesalee is a shape index that measures the spatial fitness between the modeled growth and the
known urban extent for control years and can be formulated as

leesalee ¼ ðA ∩ BÞ∕ðA ∪ BÞ; (1)

where A is the modeled urban extent, and B is the observed urban extent.

3.2 Model Input and Macro Factors

3.2.1 SLEUTH input

Landsat TM and ETMþ images of 1992, 1999, 2005, and 2009 were collected to derive four
urban layers, four transport layers, and one exclusion layer. The urban layers were extracted from

Fig. 1 Study area. The location of the study area in China is outlined in red in the sub-map at the
top left corner.
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land cover maps of Landsat images, with a support vector machine classification method and an
overall accuracy >80%; the transport layers were produced using on-screen digitization of the
same images, with references of two history transportation maps,19,20 and the resulting vector
layers were converted into raster images. The exclusion layer, which covers lands that are par-
tially or fully protected from urban development, consists of local parks and water bodies from
the 2009 land cover map. The exclusion-layer value ranged from 0 (no constraints) to 100 (100%
excluded). Slope and hillshade layers were created from an ASTER GDEM (http://lpdaac.usgs
.gov/get_data, with a spatial resolution of 1 arc s), which is a product of Japan Ministry of
Economy, Trade, and Industry and U.S. National Aeronautics and Space Administration
(NASA). All SLEUTH input layers have a spatial resolution of 30 × 30 m in this study.

3.2.2 Macro factors

The macro factors of society and economy drive urban sprawl.21 The behavior of a city is directly
dependent on its economy and its changing internal mix of industry, housing, and population.22 It
is often the case that higher urban population concentration promotes the urban economy. Due to
urban economic development, more and more people are attracted to the cities for higher income,
which leads to more urban land demand. This pattern fuels the need to introduce macro factors
to the SLEUTH model.

Population (POP), gross domestic product (GDP), investment in fixed assets (FAI), urban
per-capita income (UPI), and rural per-capita income (RPI) were chosen to reflect the influence
of macro factors on urban sprawl in this study. The macro factor data span from 1992 to 2007 and
cover areas designated as urban center (UC), Fengrun District (FRD), and Fengnan District
(FND) (Fig. 1). Data from Luan County and Luannan County were excluded because their
built-up areas are not within the study area.

The derivatives per-capita GDP (GDP_P), per-capita FAI (FAI_P), and the ratio between
UPI and RPI (INCOME_RATIO) were the final macro factors for this study. For an easy usage
of macro factors, logistic regression equations for the five raw statistics were established
(Table 1).

3.3 Improvements to SLEUTH

3.3.1 ACO calibration algorithm

In the wild, a colony of ants has the ability to establish the shortest path from their nest to food
without any clues. An ant can secrete a chemical called a pheromone on its way to search for
food and on the return path. As the ant moves, it can sense the existence and concentration of
pheromones, which help it make decisions about which direction to take; the ant always tends to
choose the direction with the highest pheromone concentration. A second ant can follow the
same pheromone-covered path to find the food source and will also secrete pheromones.
The path taken by a single ant may not be the shortest, but the food hunting behavior of a
crowd of ants has the capacity to find the shortest route. Inspired by the food hunting behavior
of ants, Dorigo and Di Caro23 were the first to systematically utilize the ACO algorithm and
apply it to a series of combinatorial optimization problems.

It is possible to use ACO to calibrate SLEUTH and explore a set of optimal parameters. The
set of optimal parameters is the shortest path, and the calibration accuracy corresponds to the
food source. The key is to find a way to map ACO to calibrate SLEUTH, and the transformation
can be summarized in the four steps described below:24

1. Walk path. The walk path of ant k can be expressed as ½diffusion; breed; spread; slope;
road gravity�k, and each parameter ranges from 0 to 100. For a detailed realization of
ACO, there are five variables on behalf of the five parameters, and each variable is
expressed as a three-decimal-digit number (one decimal place). There exists a 10-by-
10 array to indicate pheromone concentrations on all possible paths between the previous
digit and current digit. The digit preceding the first is set to zero for each variable, and the
last digit of each variable has no subsequent digit.
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2. Local update of pheromone concentration. At time t, ant k moves from digit a to b and
leaves an amount of Δτ pheromone on path ab. Meanwhile, the pheromone concentra-
tion at time t − 1 of ab evaporates at a ratio of ρ(value range [0, 1]), so pheromone τtab on
ab at time t can be expressed as

τtab ¼ ð1 − ρÞτt−1ab þ Δτ: (2)

3. Rule of decision making for movement. The greater the pheromone concentration on a
path, the greater the probability the path will be picked, which makes the ants converge to
a current local optimal path quickly from the beginning of their search. To explore more
paths, a random method is adopted to decide whether the path with the highest concen-
tration is selected. This rule is formularized as

b ¼
�
maxðτabÞ; ifðrandnum <¼ λÞ
pab ¼ τab∕

P
9
i¼0 τai; else

; (3)

where randnum and λ are uniform random numbers ranging from 0 to 1, and i represents
the possible digit to be picked.

4. Global update of pheromone concentration. Global update occurs when a search of all
ants ends, and it only updates the pheromone concentration of the current best path of
this search. The global update rule and the strategy for movement together ensure that the
ants implement a sufficient number of searches around the current optimal path, largely
accelerating the optimization speed. The global update rule is expressed as

τab ¼ α · τab þ ð1 − αÞ∕leesaleemax; (4)

where α is the global evaporation ratio, a constant ranging from 0 to 1, and leesaleemax is
the calibration accuracy of the current optimal path.

Table 1 Regression equations for five raw statistics of each subregion.

Subregion Data Equation R2

FRD POP y ¼ 1∕ð5 × 10−7 þ 7:201 × 10−7 × 0:989ðt−1991ÞÞ 0.987

GDP y ¼ 1∕ð1 × 10−7 þ 5:893 × 10−6 × 0:831ðt−1991ÞÞ 0.954

FAI y ¼ 1∕ð1 × 10−6 þ 2:308 × 10−5 × 0:834ðt−1991ÞÞ 0.968

UPI y ¼ 1∕ð1 × 10−5 þ 3:575 × 10−4 × 0:914ðt−1991ÞÞ 0.946

RPI y ¼ 1∕ð1.25 × 10−5 þ 8:334 × 10−4 × 0:900ðt−1991ÞÞ 0.838

FND POP y ¼ 1∕ð1 × 10−6 þ 9:946 × 10−7 × 0:985ðt−1991ÞÞ 0.979

GDP y ¼ 1∕ð1 × 10−7 þ 5:035 × 10−6 × 0:834ðt−1991ÞÞ 0.962

FAI y ¼ 1∕ð1 × 10−6 þ 1:838 × 10−5 × 0:835ðt−1991ÞÞ 0.950

UPI y ¼ 1∕ð1 × 10−5 þ 3:410 × 10−4 × 0:913ðt−1991ÞÞ 0.939

RPI y ¼ 1∕ð1.25 × 10−5 þ 7:265 × 10−4 × 0:904ðt−1991ÞÞ 0.833

UC POP y ¼ 1∕ð2 × 10−7 þ 5:612 × 10−7 × 0:99ðt−1991ÞÞ 0.987

GDP y ¼ 1∕ð5 × 10−8 þ 3:519 × 10−6 × 0:867ðt−1991ÞÞ 0.984

FAI y ¼ 1∕ð5 × 10−7 þ 1:890 × 10−5 × 0:829ðt−1991ÞÞ 0.947

UPI y ¼ 1∕ð1 × 10−5 þ 3:218 × 10−4 × 0:915ðt−1991ÞÞ 0.959

RPI y ¼ 1∕ð1.25 × 10−5 þ 6:342 × 10−4 × 0:914ðt−1991ÞÞ 0.844

Note: Levels of significance of all equations are <0.001. t stands for year since 1992.
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The parameter initialization of ACO depends on the specific problem to be solved and has a
large influence on ACO performance. The greater the number of ants, the greater the probability
of obtaining the shortest path and the more time is required; the higher or lower the local evapo-
ration ratio ρ, the poorer the efficiency to converge, which is the same condition for global evapo-
ration ratio α; and the greater the probability of random decision-making λ, the faster the
convergence speed. In this study, the total number of one group of ants was set to 40;
ρ ¼ 0.2; λ ¼ 0.6; α ¼ 0.2; and pheromone increment Δτ ¼ 0.01.

3.3.2 Introduction of subregional calibration

SLEUTH uses only one set of parameters for a whole study area, which may be suitable for cities
with a single core. For multicore cities, however, in which each core region may have different
natural conditions and macro driving factors, the subregions have distinct urban growth rates.
The aim of subregional calibration is to produce multiple sets of parameters for multicore cities,
making the calibration of SLEUTH zone-based. It is also important to introduce a zoning mecha-
nism for single-core cities, since there exists spatial heterogeneity in their urban growth rates
as well.

The zoning mechanism used here does not actually divide an entire study area into several
subareas and then run SLEUTH subarea by subarea. Specifically, the zoning was achieved by
addition of a new input data, the subarea layer (Fig. 2). Multiple sets of optimal parameters for
different subregions were obtained by having ACO employ multiple groups of ants, meaning that
one group was in charge of one subregion.

The study area was divided into four subregions according to administrative boundaries
(Fig. 2): urban center (UC), Fengrun District (FRD), Fengnan District (FND), and suburban
area (referred to as SA, which is the sum of Luan County and Luannan County).

3.3.3 Modification of the self-modification rule of SLEUTH

The self-modification rule of SLEUTH calls for the multipliers of BOOM and BUST to be con-
stant, so the modification of this rule occurs by making constants into variables. The modified
self-modification rule can be described with pseudocode as follows.

Fig. 2 Regional division of Tangshan study area.
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X ¼ GDP P � FAI P � INCOME RATIO �GROWTH RATE∕10

IFðGROWTH RATE > CRITICAL HIGHÞ

X ¼ X∕CRITICAL HIGH

BOOM ¼ 1þ C1 � ð1 − expð−X ÞÞ∕ð1þ expð−X ÞÞ

Coeff ¼ Coeff � BOOM

IFðGROWTH RATE < CRITICAL LOWÞ

X ¼ X∕CRITICAL LOW

BUST ¼ 1 − C2 � ð1 − expð−X ÞÞ∕ð1þ expð−X ÞÞ

Coeff ¼ Coeff � BUST

In the above code, GDP_P, FAI_P and INCOME_RATIO are macro factors (introduced in
Sec. 3.2.2); GROWTH_RATE is the current urban growth rate of a region; and Coeff represents
the SLEUTH parameters. Influences on urban growth stemming from macro factors are based on
the assumption that an urban growth rate for the next year is positively correlated with the
GDP_P, FAI_P, and INCOME_RATIO of the current year. The product of the macro factors
is mapped into the value range [0, 1] by a hyperbolic function, and that constants C1 and
C2, ranging from 0 to 1, limit the maximum value of BOOM and the minimum value of
BUST, respectively. In this study, taking the default value of BOOM 1.01 and BUST 0.09
as base values, C1 and C2 were determined by means of trial and error: Taking C1 as an example,
C2 was fixed first, then C1 varied between its base value and some effective upper bound, e.g.,
0.05. Every time a better result was obtained than the last time, C1 increased slightly; otherwise,
C1 decreased. Specifically, C1 was set to 0.03, and C2 was set to 0.91, that is, BOOMmax ¼ 1.03

and BUSTmin ¼ 0.09.
The hyperbolic function is formularized as follows:

fðxÞ ¼ ð1 − e−xÞ∕ð1þ e−xÞ: (5)

This function monotonically increases in domain ½0;þ∞�. When x ¼ 7, the function value
becomes very close to 1. Thus, in the above code, x is divided by 10 to expand the convergence
range of the hyperbolic function.

3.4 Scenario Predictions to 2020

Scenario prediction takes into account a range of factors that restrict future urban development,
and it predicts the corresponding urban morphologies that result from those diverse back-
grounds. Specific influencing factors include resources (water, land), policies, topography, geo-
logical environment, ecosystem protection, and urban planning.

Two different scenarios were developed for Tangshan. The first scenario, the inertia trend
scenario, assumed no change in the exclusion layer. The second scenario, the policy-adjusted
scenario, took account of another three constrained factors for Tangshan: the reservoir’s pro-
tected buffer zone, a polluted industry and mining area that had little appeal for urbanization,
and a fragile area around the 1976 earthquake center. Changes were added to the exclusion layer
to reflect these factors. For the modified exclusion layer, the middle and northern parts of a 5-km
buffer zone around the largest reservoir of Tangshan was given a value of 50 considering the
reservoir’s great importance as a clean water source for the city. The contaminated area and a
10-km buffer zone around the historic earthquake center were both set to 20 due to their equiv-
alent lower appeal for urbanization. A comparison between the original and modified exclusion
layer can be seen in Fig. 3.

Two scenarios were run on two improved versions of SLEUTH: one improved by ACO and
subregional calibration (referred to as AS), the other improved by ACO, subregional calibration,
and the introduction of macro factors (referred to as ASM), making a total of four scenario
prediction results for Tangshan.
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4 Results

4.1 Performance of Calibration Algorithms

4.1.1 Brute-force calibration

The calibration details of the brute-force method are illustrated in Table 2. As shown in the table,
leesalee is improved level by level, and the final accuracy is 0.47491. In the resulting optimum
set of parameters, diffusion has a low value of 1, indicating a small contribution of the sponta-
neous rule to urban growth. The three-level calibration took approximately 14 days and 9 h.
Clearly, the brute-force method is extremely time-consuming.

The urban forms of the control years were simulated by initializing SLEUTH using the opti-
mal set of parameters described above, with the urban extent of the starting year 1992 as the
basis. Statistics of the simulation results for the four growth rules can be seen in Tables 3 and 4.
In Table 3, the simulated pop is slightly greater than that of the observation for each control year,
and the derived statistics are edges-r2 ¼ 0.315, clusters-r2 ¼ 0.983, and pop-r2 ¼ 0.975.
Although edges-r2 is low, the absolute difference of the edges between the simulation and obser-
vation is not that notable compared with the total, at 7456, 6684, and 10886 for 1999, 2005, and
2009, respectively. Table 4 shows that the edge growth rule dominates SLEUTH, which is in
accordance with the findings of Jantz and Goetz.25

4.1.2 ACO calibration

As seen in Table 5, the calibration accuracy leesalee is 0.47547, which is slightly better than that
calibrated by the brute-force method in Table 2. The time cost for ACO is approximately 14 days
and 21 h, suggesting no efficiency improvement. An in-depth analysis of the ACO performance
is given in Sec. 4.1.3. For the resulting five optimal parameters, diffusion and spread are similar
to the results in Table 2. The high values for breed and road gravity reveal the enhanced con-
tributions of new spreading-center growth and road-influenced growth; the low value of the slope
demonstrates a small slope resistance for urban growth.

The simulation results for the control years were generated by SLEUTH with initialization
of the best parameters (Table 5). Table 3 shows the evaluating indices of simulation results.
The pop index with ACO is slightly greater than that with the brute-force method for each year.
The derived statistics are edge-r2 ¼ 0.316, clusters-r2 ¼ 0.983, and pop-r2 ¼ 0.978.

4.1.3 Comparison between ACO and brute force

For calibration accuracy, ACO is slightly better than the brute-force method, as shown in
Tables 2 and 5. In fact, ACO also outperforms brute force in terms of calibration efficiency.

Fig. 3 Exclusion layers for two prediction scenarios. (a) Exclusion layer for the inertia scenario.
(b) Exclusion layer for the policy-adjusted scenario.
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This better performance is demonstrated in two ways. First, Figs. 4 and 5 show that the five
parameters and the consequent leesalee converged to their limits at the 15th of a total of
100 runs; that is, it took approximately 2 days and 6 h to obtain the final parameters by
ACO. Second, the time cost of the subregional calibration by ACO, shown in Table 6, is
less than 2 days and 4 h, also proving the advantage of ACO.

4.2 Subregional Calibration

The calibration results from the zoning mechanism are illustrated in Table 6. As shown in the
table, each subregion has distinct parameters and acquires different calibration accuracies. The
leesalee for the whole study area is 0.48067, which is a slight improvement compared with
Table 5. The total calibration time taken with 60 runs is just under 2 days and 4 h.

The convergence process of the parameters and leesalees of the four subregions can be seen
in Fig. 6. The figure shows that, with the exception of UC, the parameters of the subregions
converge to limits in 60 runs.

Simulated urban forms of the control years were also produced by the improved SLEUTH,
with parameter initialization for four subregions. Table 3 (subregional part) shows the simulation
result statistics. Compared with ACO, the pop index is somewhat greater for each year than that
shown in ACO; the leesalee is also greater than or equal to the leesalee in ACO. The derived
statistics are edge-r2 ¼ 0.200, clusters-r2 ¼ 0.978, and pop-r2 ¼ 0.980.

Table 2 Three-level calibration and detailed information for the brute-force method.

Parameter Coarse calibrate Fine calibrate Final calibrate optimum

Monte Carlo iterations 5 8 9

Combination No. 3125 4500 5400

leesalee 0.47343 0.47484 0.47491

Time 2d:10 h:32 m:59 s 5d:01 h:37 m:02 s 06d:21 h:18 m:28 s

Diffusion 1

Range 0–100 0–20 1–5

Step 25 5 1

Breed 40

Range 0–100 25–75 30–55

Step 25 10 5

Spread

Range 0–100 15–35 18–23 20

Step 25 5 1

Slope 39

Range 0–100 40–60 38–42

Step 25 5 1

Road gravity

Range 0–100 25–75 45–70 50

Step 25 10 5

Note: Time means time taken by one calibration phase.

Liu et al.: Simulating urban expansion using an improved SLEUTH model

Journal of Applied Remote Sensing 061709-9 Vol. 6, 2012



T
ab

le
3

M
or
ph

ol
og

ic
al

in
di
ce

s
an

d
ca

lib
ra
tio

n
ac

cu
ra
cy

of
th
e
si
m
ul
at
io
n
re
su

lts
an

d
co

rr
es

po
nd

in
g
in
di
ce

s
of

th
e
ob

se
rv
at
io
ns

of
th
e
co

nt
ro
ly

ea
rs
.

M
et
ric

B
ru
te

fo
rc
e

A
C
O

S
ub

re
gi
on

al
M
od

ifi
ed

se
lf-
m
od

ifi
ca

tio
n

O
bs

er
va

tio
n

19
99

20
05

20
09

19
99

20
05

20
09

19
99

20
05

20
09

19
99

20
05

20
09

19
99

20
05

20
09

E
dg

es
32

27
02

33
30

09
33

64
77

32
42

98
33

47
74

33
83

16
32

02
91

32
59

70
32

67
55

32
15

89
32

80
66

32
95

08
33

01
58

32
63

25
34

73
63

C
lu
st
er
s

42
13

9
38

15
0

35
46

9
41

95
4

37
92

3
35

23
0

41
69

5
37

53
8

34
95

0
41

78
1

37
80

0
35

37
1

49
83

2
36

66
5

22
71

2

po
p

70
58

47
84

92
57

95
45

52
71

62
24

86
40

05
96

91
10

72
40

89
87

47
58

97
87

53
72

87
07

87
74

98
97

81
69

59
87

08
81

14
49

89
52

06

le
es

al
ee

0.
48

0.
48

0.
47

0.
47

0.
48

0.
47

0.
47

0.
49

0.
48

0.
47

0.
49

0.
48

N
ot
e:

B
ru
te

fo
rc
e
fo
r
S
ec

.
4.
1.
1,

A
C
O

fo
r
S
ec

.
4.
1.
2,

su
br
eg

io
na

lf
or

S
ec

.
4.
2,

m
od

ifi
ed

se
lf-
m
od

ifi
ca

tio
n
fo
r
S
ec

.
4.
3.

Liu et al.: Simulating urban expansion using an improved SLEUTH model

Journal of Applied Remote Sensing 061709-10 Vol. 6, 2012



4.3 Calibration of Modified Self-Modification Rule

Another calibration experiment was conducted using the modified self-modification rule with
macro factors. Table 7 shows the calibration result. As is seen from the table, UC maintains the
greatest spread value, in line with Table 6, but all subregional leesalees, except FND, are less
than what is shown in Table 6. Consequently, the leesalee for the entire study area is not
improved as expected. The accuracy difference is not significant, however, suggesting a
need for further experiments with parameters BOOM and BUST to achieve confidence regarding
the modified self-modification rule.

Urban extent for the control years was simulated using the additional improvements to
SLEUTH, and the statistical metrics for the simulation results are shown in Table 3 (modified
self-modification part). As shown, the pop index in the self-modification part is approximately
equal to that in the subregional part for each year, and the leesalee is the same as that shown in

Table 4 Simulation results using the four growth rules for the control years.

Year Spontaneous growth New spreading-center growth Edge growth Road-influenced growth

1999 10 9 22416 35

2005 11 10 25021 41

2009 12 11 27246 33

Table 5 Calibration results and run information of ACO.

Parameter Optimum ACO information

Diffusion 1 Monte Carlo iterations ¼ 10

Breed 88 Run no: ¼ 100

Spread 19 Ants population ¼ 40

Slope 1 leesalee ¼ 0.47547

Road gravity 65 time ¼ 14d∶21h∶11m∶38s

Note: Run no. means the number of total searches executed by a group of ants.

Fig. 4 Variation of calibration accuracy, leesalee index with ACO.
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Fig. 5 Variations of the five model parameters with ACO calibration. Diff, Brd, Sprd, Slp, and RG
are the abbreviations of diffusion, breed, spread, slope, and road gravity, respectively.

Table 6 Subregional calibration results by ACO and run information of ACO.

ACO information

Monte Carlo
iterations ¼ 10 Run no: ¼ 60 Ants pop ¼ 40

Time ¼
02d∶03h∶51m∶42s

leesaleeall ¼
0.48067

Subregion Parameter Optimum leesalee

SA Diffusion 1 0.38260
Breed 26

Spread 15

Slope 24

Road gravity 44

UC Diffusion 1 0.567833
Breed 16

Spread 29

Slope 2

Road gravity 10

FRD Diffusion 2 0.495857
Breed 6

Spread 21

Slope 28

Road gravity 36

FND Diffusion 1 0.396705
Breed 27

Spread 18

Slope 42

Road gravity 22

Note: leesaleeall is leesalee for the whole study area.
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the subregional part. The derived statistics are edge-r2 ¼ 0.250, clusters-r2 ¼ 0.976, and
pop-r2 ¼ 0.982.

A comparison between the simulated and corresponding observed urban extent is illustrated
in Fig. 7. The red color in Fig. 7 represents area in which SLEUTH failed to simulate the actual
growth. Green represents the common set of the observed and simulated urban extent. Blue
represents commission errors by SLEUTH. To assess the simulation accuracy, the traditional
image classification accuracy metric was adopted: the resultant overall accuracy is 75.3%,
73.7%, and 75.2% for 1999, 2005, and 2009, respectively, and the corresponding κ coefficients
are 0.53, 0.49, and 0.52. The figure shows that the simulated result of each control year has a
more compact internal form than the observed. In addition, the simulations of 2005 and 2009
maintain the shape of 1999, with infill at the urban center and no directional differences in urban
growth. These SLEUTH simulation results are largely determined by the edge-growth rule.

4.4 Urban Growth Forecasts for Tangshan to 2020

4.4.1 Forecasts of inertia trend scenario

The inertia trend scenario was run on two versions of the improved SLEUTH, AS and ASM, to
compare their simulation results. Using the urban extent of 2009 as the basis, forecasts from
2010 to 2020 were generated by the two improved SLEUTHs. The simulated urban forms
of 2015 and 2020 were used to establish a comparison, as shown in Table 8 (inertia scenario
part). As seen in the table, the urban area predicted by AS for 2015 will be 1.19 times that for
2009, and that of 2020 will be 1.35 times that of 2009. Correspondingly, for ASM, 2015 and
2020 will be 1.20 and 1.38 times, respectively. The introduction of macro factors produces a
slight increase in urban growth.

Comparisons of urban growth from 2010 to 2020 can be seen in Fig. 8. The figure shows that
for all prediction years the annual urban growth rate is higher for ASM than AS, leading to a
greater slope for ASM pop. At the same time, the urban growth rate for both ASM and AS
decreases from 2010 to 2020. Despite the incorporation of macro factors for ASM, the predicted
urban growth maintains a linear trend.

Fig. 6 Variations of the five model parameters and leesalee for the four subregions. Diff, Brd,
Sprd, Slp, and RG are the abbreviations of diffusion, breed, spread, slope, and road gravity,
respectively.
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4.4.2 Forecasts of the policy-adjusted scenario

Two types of urban growth forecasts were produced by AS and ASM. Table 8 (policy-adjusted
scenario part) shows the statistical metrics of the simulation for 2015 and 2020. The pop index in
the policy-adjusted scenario is slightly lower than that in the inertia scenario for both reference
years, indicating an insignificant influence on urban growth caused by the policies tested in
this study.

Table 7 Calibration results with modified self-modification rule and run information.

ACO information

Monte Carlo
iterations ¼ 10 Run no: ¼ 60 Ants pop ¼ 40

Time ¼
02d∶04h∶36m∶39s

leesaleeall ¼
0.48067

Subregion Parameter Optimum leesalee

SA Diffusion 3 0.382261
Breed 1

Spread 16

Slope 19

Road gravity 39

UC Diffusion 14 0.567622
Breed 34

Spread 30

Slope 5

Road gravity 23

FRD Diffusion 2 0.495328
Breed 10

Spread 20

Slope 11

Road gravity 20

FND Diffusion 1 0.396723
Breed 10

Spread 19

Slope 33

Road gravity 70

Fig. 7 Comparison between simulated and observed growth of Tangshan for control years 1999,
2005, and 2009.
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Table 8 Morphological indices of simulated urban forms of 2015 and 2020.

Metric

Inertia scenario Policy-adjusted scenario

AS ASM AS ASM

2015 2020 2015 2020 2015 2020 2015 2020

Edges 359395 357551 359303 354546 359257 359438 359430 357423

Clusters 26582 26696 25115 23504 26748 27098 25406 24085

Pop 1065990 1209481 1077347 1238644 1052662 1186125 1062618 1212749

Note: Inertia scenario for Sec. 4.4.1, policy-adjusted scenario for Sec. 4.4.2.

Fig. 8 Comparisons of urban growth of Tangshan from 2010 to 2020 for the inertia scenario,
where pop is the population of urban pixels, and grw_rate is the annual growth rate of urban area.

Fig. 9 Comparisons of urban growth of Tangshan from 2010 to 2020 for the policy-adjusted sce-
nario, where pop is the population of urban pixels, and grw_rate is the annual growth rate of urban
area.
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Detailed results of the two series of forecasts are shown in Fig. 9. There are no significant
differences between Figs. 8 and 9. Urban extents for 2015 and 2020 as predicted by AS and ASM
are shown in Fig. 10.

5 Discussion

This study demonstrates improvements to SLEUTH, but many important questions remain that
require further study. Generally, these questions can be summarized as calibration efficiency,
accuracy improvement, sensitivity analysis of parameters, and methodologies for introducing
macro factors.

5.1 Calibration Efficiency

Two aspects require further study: the calibration algorithms and the model rules. This study
tested the former for SLEUTH. Jantz et al.12 attempted an alternate method to improve the
road-search algorithm for the road-influenced growth rule of SLEUTH, resulting in a significant
efficiency improvement for calibration. In terms of the algorithms, the ACO employed could be
further improved, specifically regarding ways to achieve massively parallel processing.

5.2 Accuracy Improvement

Model rules contribute significantly to model performance. The simulation produced by
SLEUTH is characterized by edge growth and infill growth, which makes the city morphology

Fig. 10 Forecasts of urban extent for 2015 and 2020 under the policy-adjusted scenario.
(a) Forecasts by AS SLEUTH. (b) Forecasts by ASM SLEUTH.
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more compact. These characteristics are determined by the edge-growth rule of SLEUTH.
Suggested improvements to this rule should address two issues: how to control compact growth
and how to reflect the direction difference of growth; an alternative solution for the latter is to
take spatial autocorrelation into consideration.

5.3 Sensitivity Analysis of Parameters

In addition to the five basic parameters for controlling growth rules, SLEUTH has several other
parameters, such as the upper bound of the urban growth rate (CRITICAL_HIGH), the lower
bound of the urban growth rate (CRITICAL_LOW), the influence threshold of slope
(CRITICAL_SLOPE), and BOOM and BUST in the self-modification rule. These additional
parameters also contribute to the model accuracy, and the significance of their influence and
the determination of a method to calibrate them need to be addressed.

5.4 Approaches to Incorporating Macro Factors

At present, there are two methods for combining urban growth models with macro factors. In the
first, urban models are loosely coupled with models of macro information, establishing the quan-
titative relationship between the amount of urban growth and the macro factors (the early urban
models of system dynamics);26,27 in the second, macro factors are spatialized to become inputs of
urban CA models.28 The first method involves a one-way interaction between macro factors and
urban growth, where macro factors control urban growth. In fact, urban growth counteracts
macro factors, thus creating the need to establish feedback mechanisms between the factors
and urban growth. The second method is challenging because of the limited availability of
high-resolution macro data, which means that spatialized macro inputs are usually calculated
by a spatial distribution model, and the resultant macro layers generally have the feature of spa-
tial symmetry. For this reason, the introduction of isotropic macro factors cannot provide valu-
able changes to the CA simulation results.

Aside from the general questions discussed above, four issues remain. First, for subdivisions
of the Tangshan study area produced by administrative boundaries, it is preferable to divide the
area along borders with gravity equilibrium among different urban cores, according to the law of
universal gravitation. The term mass of the law can be replaced by an economic indicator, such as
regional GDP. Second, for the modified self-modification rule, on one hand, SLEUTH is more
sensitive to the adjustment of C1 when simulating the urbanization of Tangshan because the
growth rate is maintained at a high level, leading to BOOM growing faster or maintaining
its maximum, which gives positive feedback to the growth rate in return. The higher the
BOOM value, the larger the C1 and the poorer the simulation accuracy will be. The same con-
dition may hold true for C2 if simulation growth rate remains low. The issue is when to meet the
condition to transform the growth state from BOOM to BUST. On the other hand, the trial-and-
error selection of constants C1 and C2 is complex, so automated calibration would be a good
option for determining them. Third, again related to the modified self-modification rule, because
the relationship between the macro factors and model parameters was bridged by a hyperbolic
function, it is likely that this function did not match the practical situation of the urban growth
trend due to the function’s fast convergence rate. Other mapping functions should be the subject
of further study. Fourth, the influence of the scenario prediction strategy on urban simulation in
SLEUTH is static. Different exclusion layer inputs play the role of scenarios whose ultimate goal
is to decrease the amount of nonurban land. If the percent ratio between the current available
nonurban land and urban land is far beyond CRITICAL_HIGH, then exclusion will have no
impact on the simulation regardless of any exclusion values. If the percent ratio is lower
than CRITICAL_LOW, the simulation will enter the BUST or stagnation state; if neither,
the simulation state may first be intermediate between BOOM and BUST and then BUST,
or it may keep BUST.

6 Conclusion

This study is primarily devoted to the improvements of the SLEUTH model. The city of
Tangshan, China, a rapidly urbanizing region, is chosen as the study area for the model
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experiments. Scenario forecasts of urban growth to 2020 are also performed. The conclusions are
as follows:

1. ACO outperforms the brute-force method for SLEUTH calibration in both efficiency and
accuracy. ACO is equal to or faster than coarse calibration, and it achieves more accurate
parameters, improving the calibration efficiency and accuracy of the SLEUTH model.

2. The introduction of a zoning mechanism is a further improvement for the SLEUTH cal-
ibration, according to the leesalee index. The urban growth amount of the subregional
simulation, however, is slightly higher than that of the total area.

3. The incorporation of macro factors should theoretically improve the performance of
SLEUTH, but in this study it fails to do so. The causes of this failure may be attributed
to the mapping function, a hyperbolic function that converges rapidly. In addition, the
urban growth rate decreases more slowly after modifying the self-modification rule with
macro factors compared to the unmodified rule.

4. Constraint factors, such as environment, policy, terrain, and geological conditions, will
not change the forecast trends of the SLEUTH model and can only produce a slight
reduction of the urban growth amount.

5. The prediction results of ASM under inertia-trend scenario indicate that Tangshan
will maintain a high annual rate of area growth, >2.6%, from 2010 to 2020 and
that in 2015 and 2020, the urban area will be 1.20 and 1.38 times that of 2009,
respectively.
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