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Abstract. Spatial variation of phenology is a central feature of global change research. Satellite
remote sensing is used for continental to global monitoring due to the limitations of long-term
field observations of plant phenology. A threshold method was used to estimate the start of the
season, length of the season, maximum normalized difference vegetation index (NDVI), and
integral NDVI for selected tree species using remote sensing based NDVI data acquired by
the VEGETATION instrument on board Satellite Pour l’Observation de la Terre (SPOT
VGT NDVI). Afterward, the spatial patterns in the satellite-derived phenological metrics for
four dominant tree species (i.e., beech, birch, pine, and spruce) across Europe were character-
ized. The results indicate that: (1) The SOS occurs 1.6–2.9 days later and the average LOS is 2.7–
3 days shorter per 1 deg of latitude increase from south to north. (3) The SOS occurs 0.7–
1.8 days later and the LOS was 0.6–2 days shorter per 100-m increase in altitude for the
four species. (4) The SOS and LOS across Europe are well correlated with the mean annual
air temperature (1°C correlates with a 4.5-day advance in the SOS and a 7-day extension in
the LOS). Our research is the first one to characterize the spatial and temporal variations of
phenology for different tree species across Europe using remote sensing. © The Authors.
Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or repro-
duction of this work in whole or in part requires full attribution of the original publication, including its
DOI. [DOI: 10.1117/1.JRS.7.073485]
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1 Introduction

Phenology includes the study of annual rhythms of biological phenomena mainly in relation to
climatic parameters.1 When applied to plants, phenology includes such critical events as the
beginning of the season, end of the season, or start of such major growth phases such as budding
and flowering. The research on plant phenology has improved the understanding of the varia-
tions in lifecycle events in the past centuries2–6 using site- and species-specific phenological
measurements.7,8 However, phenological data from many parts of the world are comparatively
scarce. Moreover, ecological models relating to climate-change studies require phenological
information at large spatial scales rather than inventory data that focus mostly on specific
plant species and are mostly point observations. As a result, the use of remote sensing data
for inferring the phenological characteristics of vegetation is increasingly regarded as a key
to understanding large-area seasonal phenomena.9 Among all remote-sensing indices, the nor-
malized difference vegetation index (NDVI) is the index most often used in studying seasonal
variations, in growing vegetation, and the shifts between vegetation covers.10–12

The study of vegetation phenology using remote sensing has been called land surface phe-
nology (LSP) by de Beurs and Henebry.13 Over the past two decades, LSP has served as a useful
tool for many purposes, including monitoring biospheric activity,14 developing prognostic phe-
nological models,15 and deriving land-cover maps.16 Myneni et al.17 presented evidence from
satellite data to show that the photosynthetic activity of terrestrial vegetation yielded an increase
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in plant growth associated with a lengthening of the active growing season. Tucker et al.18 used
NDVI data from NOAA satellites from 1982 to 1999 to estimate variations in photosynthetic
activity and growing season length at latitudes above 35°N and achieved the same results as did
Myneni et al.19 Wang et al.20 revealed patterns and trends of landscape dynamics, LSP, and eco-
system production along the Appalachian Mountains using the time series data from global
inventory modeling and mapping studies and advanced very high resolution radiometer global
production efficiency model datasets. Dunn and de Beurs21 used the MODIS satellite 8-days
500 m Nadir BRDF Adjusted Reflectance product to quantify the LSP. They presented that
the elevation and latitude exhibit the most significant influences on the timing of start of the
season throughout the North American mountainous area.

Phenology as a major indicator of forest ecosystem status22 is pivotal in forest practices and
strategies. Forests cover 44% of Europe’s land area and they continue to expand. However, as
explained by Alley et al.,23 forest ecosystems seem to be especially prone to climate change, and
European forests are among the most intensively used forests in the world. Against this back-
ground, analyzing the status of forest ecosystems and their dynamics builds a substantial basis
for future conservation practices and strategies. Furthermore, with the Kyoto protocol, interest
has been focused on trees for their potential role in mitigation of greenhouse gasses and carbon
sequestration.24 Therefore, studying phenological variations among various tree species at a
continental scale is of great importance.

The primary objective of this study was to use remotely sensed phenological data derived
from SPOT-VGT time-series NDVI profiles to characterize the spatial pattern of LSP for
four dominant tree species across Europe. Specifically, our strategies and objectives were as
follows:

1. To calculate average phenological metrics [start of the season (SOS), length of the season
(LOS), maximum NDVI (MaxNDVI), and integral NDVI as specified in our research]
for different tree species using NDVI profiles.

2. To quantify the differences in phenological metrics among various tree species along the
geographical (latitude/longitude/altitude) gradients.

3. To establish relationships between phenological metrics and mean annual temperature on
a continental level.

2 Study Areas and Methods

2.1 Study Area

The forests in this study were scattered across 34 European countries ranging across 38 deg of
latitude (from southern Greece to northern Sweden) and across 56 deg of longitude (from Ireland
to Finland in the north and from Portugal to Moldova in the south). The continent of Europe,
extending from the Arctic Circle in the north to the Mediterranean Sea in the south, is a land of
varied topography. Forested areas in Europe have a total 1.02 billion ha, i.e., 45% of Europe’s
land area. Four dominant tree species, i.e., beech, birch, pine, and spruce, account for 70% of all
forest areas in Europe.25

2.2 Materials and Methods

2.2.1 Data source and data preprocessing

In this study, the SPOT-VGT S10 NDVI data (1 km × 1-km resolution) acquired from 1999 to
2005 across the study area were used. The high-temporal resolution of 10 days allowed for image
selection according to the highest quality, least cloud cover, and the optimal phenological stage
of vegetation cover.26 Atmospheric corrections were routinely done using the SMACmodel27 for
evaporation, ozone, and aerosol effects. Cloud masking was applied using the 8-bit status map
provided by the SPOT-VGT website to eliminate the influence of clouds and atmospheric
variability.
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The presence of snow and the polar night during winter complicated the use of NDVI time
series for modeling vegetation activity at high latitudes. As snow has a negative effect on the
NDVI, the disappearance of snow at the end of winter causes the NDVI to rise. In addition, the
NDVI values are missing due to the polar night in northern Europe. Hence, the NDVI values
outside of the growing season needed to be calculated to cover the shortage of data due to these
effects.28 We first used the Pan-European Map of Biogeographical Regions from the European
Environment Agency to mask the NDVI data.29 Depending on the climatic characteristics, the
ecoregions are separated into three categories: boreal, continental, and Mediterranean. Then, the
winter NDVI for the boreal region was calculated using the method proposed by Beck et al.28

In addition, an up-to-date tree species inventory map of Europe with a resolution of 1 km and
a set of global climate layers with a spatial resolution of about 0.25°C were used in this
research.30 The overall accuracy of the classification amounts to 86.6% across Europe.25 We
selected four tree species widely used in the timber industry and with a widespread natural dis-
tribution across Europe. To reduce the influence of mixed pixels for a single tree species due to
the 1-km resolution, we used 100-m resolution coordination of information on the environment
(CORINE) land-cover data to refresh the tree species map and chose only the pure pixels (with a
100% of correspondence to tree species), as shown in the map in Fig. 1. There are around 30,000
pure pixels selected. The CORINE data are the only Pan-European land-cover maps based on
remote sensing data with a spatial resolution finer than 100 m. The CORINE land cover 2000,
with the abbreviated name CLC2000, was derived using Landsat TM and ETM+ imagery and
visual interpretation. The CORINE land-cover maps 2000 were adopted in this research for
refreshing the tree species map. The majority of the training data were derived via overlaying
of co-registered coarse-resolution novel tree species maps and the interpreted high-resolution
datasets from CORINE.

A set of global climate layers (climate grids) with a spatial resolution of about 1 km were
acquired from a gridded observational dataset for precipitation and temperature measured daily

Fig. 1 Samples of different tree species across Europe.
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in Europe (E-OBS) based on the information from the European Climate Assessment and
Dataset spanning the period 1999–2005.31 The temperature resolution of the E-OBS data is
approximately 0.25°C. The data files contain gridded data for five elements (daily mean temper-
ature, TG; daily minimum temperature, TN; daily maximum temperature, TX; daily precipitation
total, RR; and daily averaged sea level pressure, PP).

2.2.2 Calculation of phenological metrics

Awidely used time-series analysis program, TIMESAT, was used to calculate the LSP metrics
based on the SPOT-VGT data.32–34 TIMESAT uses three processing methods, i.e., adaptive
Savitzky-Golay, Gaussian, and double logistics, for time-series smoothing. However, as
explained by Beck et al., many of the algorithms used for vegetation monitoring are ill-suited
to boreal regions,28 whereas double logistics are the most suitable for describing vegetation
dynamics at high latitudes. During the process of deriving phenological metrics, we eliminated
NDVI spikes larger than two times the standard deviation of the median values of the closest
neighbors in the time series and fitted the remaining upper envelope.35 SOS is defined as the
interpolated composite period when the NDVI has increased by 20% of the seasonal amplitude
above the growing season minimum level.34–36

The seasonality metrics are shown in Fig. 2. In Fig. 2, points (a) and (b) represent, respec-
tively, the start and end of the vegetative growing season. Points (c) and (d) are plotted at the 80%
level of NDVI. Point (e) indicates the largest value. The label (f) indicates the seasonal amplitude
and (g) indicates the seasonal length. The labels (h) and (i) indicate the integrals showing the
cumulative effect of vegetation during the season.

To assess the spatial variability in phenological metrics among different tree species, we
computed the date of SOS, the annual MaxNDVI, the LOS, and the integral NDVI for different
tree species. For preliminary analyses, the region was divided into areas of 1 degree of latitude by
1 degree of longitude. Elevation zones with the intervals of 100 m were assigned using the
UNEP-WCMC37 data. For each species and in each spatial region, naturally established pop-
ulations were sampled using the 100% species-pixel criterion explained above, as indicated by
the tree species map. The relationships between the annual timing of a phenological phase and
altitude, latitude, longitude, and climate factors were then determined using a linear regression.38

3 Results

3.1 Phenological Metrics

To examine the spatial variability of the phenological metrics, four different NDVI metrics were
mapped, as shown in Fig. 3. These metrics were averaged over 7 years to show the general
gradient along the geographical transitions. As seen in Fig. 3, phenological parameters vary

Fig. 2 Phenological metrics captured by an NDVI profile.
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from east to west and north to south. Pixels that correspond to water surfaces, rock, deserts, or
other surface features with insufficient NDVI dynamics, where phenological metrics could not
be calculated, are shown in white.

Figure 3(a) shows the dates for SOS as estimated from SPOT-VGT data between 35°N and
70°N and averaged over the years 1999–2005. The phenological patterns depend strongly on
latitude in the mid- to high-latitude regions. The dates of the SOS advance northward from
March to early June and eastward from March to early May. The growing season starts in
most parts of central Europe between the 20th of March and the 15th of April. Note that a
late date of the SOS after June was observed in most of the coastal areas next to the
Mediterranean Sea because heat stress and seasonal precipitation patterns differ in these
areas versus those in neighboring areas. In mountainous regions (Fig. 4), such as the Alps
Mountains, great differences in the phenological metrics can be seen: the growing season starts
much later than in nearby areas of lower altitude. The latest dates of the SOS, i.e., after the 1st of

Fig. 3 Spatial distributions of four phenological metrics across Europe: dates of the start of the
season (a), length of the season (b), the maximum NDVI (c), and the integral of NDVI (d).
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June, are observed in the Alps and correspond to similar dates in Norway and north of the Arctic
Circle.

Almost the same gradient was found with regard to the LOS. The longest growing seasons,
i.e., over 220 days, can be found in the coastal regions of southern Europe. In large parts of
central Europe, except for the mountainous regions, the growing season lasts between 180
and 220 days. Shorter growing seasons, i.e., <170 days, are seen in zones of high altitude
and in nearly all of Scandinavia (55°N–70°N). High-altitude zones in Scandinavia and the
areas north of the Arctic Circle show growing seasons as short as 120 days (Fig. 4).

The mean MaxNDVI is lower in the northern hemisphere (boreal area) and the Mediterranean
area than in the central continental areas, while the value of MaxNDVI over the central
continental area is relatively consistent [Fig. 3(c)]. The pattern of mean integral NDVI is the
combined function of MaxNDVI and LOS,39 and the largest value of integral NDVI was
found in Eastern Europe. The integral NDVI increases when moving from the
Mediterranean area to the central continental area and decreases again when moving farther
north from the central continent to the boreal areas. The integral NDVI also generally increases
moving from Western to Eastern Europe [Fig. 3(d)].

3.2 Phenological Characteristics of Different Tree Species

To evaluate whether the differences in phenology are caused by the tree species or by geographi-
cal factors, samples of the four main tree species were selected at representative locations for
each species and tested by one-way analysis of variance in SPSS. Since beech and birch trees
tend to show little overlap in their locations, two groups of analyses were carried out: one for
beech, pine, and spruce and the other for birch, pine, and spruce. The results indicate that the
variability introduced by species is not significant in the case of beech/pine/spruce, i.e., they
exhibit the same phenological characteristics within a given region. However, in the case of

Fig. 4 Elevation map of Europe.
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birch, the dates of the SOS and LOS are significantly different from those of pine and spruce
even at the same latitude (Table 1).

3.3 Spatial Variations for Four Tree Species Along the Geographical Gradient

The results of the regression analysis for different phenological phases are listed in Table 2. The
Mediterranean areas are excluded, considering the fact that the vegetation cycle begins at end of
the year.40 The dependence of the SOS, LOS, maxNDVI, and integral NDVI on altitude, lon-
gitude, and latitude, averaged over the years 1999–2005, can be derived from the regression
coefficients.

As we can see from the results, the dependence of phenological metrics on latitude is ap-
parent except in the case of beech trees, whose metrics are more dependent on altitude. The start

Table 1 Analysis of variance for beech/pine/spruce and birch/pine/spruce.

Beech/pine/spruce Birch/pine/spruce

DF F value Prob > F Significant DF F value Prob > F Significant

SOS 41 1.81 0.18 23 5.3037 0.01366 *

LOS 41 0.30 0.74 23 9.10145 0.00142 *

MaxNDVI 41 11.2345 1.4027E − 4 * 23 2.29 0.13

Integral NDVI 41 0.76833 0.47068 23 1.88599 0.17649

Note: * indicates that at the level 0.05 the means are significantly different.

Table 2 The results of the multiregression analysis are derived from the means over the period
1999–2005. αx represents latitude, αy represents longitude, and αz represents altitude. Numbers
shown in bold indicate where the influences on phenological variation are significant.

Metrics Species ax R2 ay R2 az R2

Beech SOS 0.7 0.16 −0.05 0.005 1.0 0.7

LOS 0.7 0.06 −0.05 0 −1.3 0.45

MaxNDVI −0.03 0.15 0.01 0.3 0.02 0.2

Integral NDVI −2.1 0.54 −0.3 0.002 0.7 0.06

Birch SOS 1.6 0.35 0.7 0.45 0.7 0.36

LOS −2.7 0.45 0.7 0.45 −0.6 0.24

MaxNDVI −0.08 0.72 −0.04 0.48 0.1 0.61

Integral NDVI −1.8 0.69 −0.8 0.68 0.8 0.60

Pine SOS 2.9 0.79 0.4 0.07 0.3 0.02

LOS −2.8 0.56 −1.2 0.34 −0.6 0.03

MaxNDVI −0.02 0.34 −0.003 0.006 0.01 0.003

Integral NDVI −0.8 0.2 0.03 0.002 −0.2 0.05

Spruce SOS 2.3 0.60 0.4 0.13 1.8 0.54

LOS −3 0.55 −1.9 0.53 −2 0.43

MaxNDVI −0.02 0.48 0.01 0.004 −0.03 0.57

Integral NDVI −1.3 0.30 0.4 0.08 −1.3 0.29
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of the growing season starts 1.6 days later in the case of birch, 2.3 days for spruce, and 2.9 days
for pine with each 1 deg of latitude increase. The length of the season exhibits a trend similar to
that of the SOS, i.e., 2.7 days shorter for birch, 2.8 days for pine, and 3 days for spruce per 1 deg
of latitude. Maximum NDVI stays nearly constant, while the integral NDVI slightly varies with
changes in latitude.

The relationship between SOS and longitude is significant only in the case of birch: SOS
occurred later moving from west to east by 0.7 day per 1 deg of longitude. The LOS was 0.7 day
shorter, the maximum NDVI showed a steady gradient, and the integral NDVI decreased by 0.8
with each 1 deg increase in latitude.

In addition, the dependence of phenological metrics on altitude was also significant, espe-
cially for beech. The SOS occurs 1 day later, except for beech, 0.7 day later for birch, and
1.8 days for spruce with each 100-m increase in altitude. The LOS was 1.3 days shorter for
beech, 0.6 day for birch, and 2 days for spruce with each 100-m increase in altitude. Any gra-
dients in the maximum NDVI and integral NDVI were not significant, i.e., no single later or
earlier phenological gradient was observed.

3.4 Relationship Between Satellite-Derived Phenology and Temperature

To assess the relationship between annual air temperature (Tmean) and phenological metrics, the
linear correlations between them [Figs. 5(a)–5(d)] for different tree species were accessed. The
Mediterranean area is excluded considering the different vegetation cycles.40 The correlations
suggest that the temperature is a more significant controlling factor in NDVI response than in
precipitation. Figure 5 shows that all species show a negative correlation between the SOS and
Tmean and a positive correlation between the LOS and Tmean, meaning that higher temper-
atures promote an earlier SOS. The regression between the SOS and Tmean indicates that a
1°C increase in mean air temperature is associated with an earlier start of the season by
about 4.5 days. Similarly, a 1°C increase in mean air temperature tends to extend the length
of the season by 7 days (Fig. 5). Compared to the SOS and LOS, the maxNDVI and integral
NDVI show less correlation with the temperature (Fig. 5).

In order to investigate the relationships between the phenological metrics and temperature,
regression analysis using phenological metrics with several temperature factors are carried out:

Fig. 5 Relationship between mean annual air temperature (Tmean) and SOS, LOS, maximum
NDVI, and integral NDVI for all four main types of tree species of Europe.
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temperatures at the month of SOS (T0), mean temperature of the following two months of SOS
(T1, T2), mean temperature of the month of SOS and the following two months (T012), mean
temperature of the preceding two months of SOS (T-1, T-2), and mean temperature of the month
of SOS and the two preceding months (T0-1-2) (Table 3). Table 3 shows that the phenological
metrics are mainly influenced by the air temperature during the month of the start of the season.
Also, during two months preceding the SOS, significant correlation coefficients between temper-
ature and phenological metrics were found.

4 Discussion

In this paper, remote sensing data were used to monitor the phenological variations among and
between four tree species at a continental scale in Europe. With the assumption that NDVI pro-
files of natural vegetation can be characterized by a main growing cycle, the evolution of veg-
etation phenology (SOS, LOS, MaxNDVI, and integral NDVI) was assessed using SPOT-VGT
NDVI data. To obtain continental-scale NDVI data, eliminating the influence of spurious factors
like snow or polar light was crucial, and the winter NDVI was first calculated for boreal regions.
Then, a double logistics algorithm was chosen to estimate the phenological metrics for the whole
area. Finally, the spatial variations seen in four dominant tree species (beech, birch, pine, and
spruce) were evaluated, and climatic data were introduced as possible explanatory factors for
those variations.

4.1 Phenologic Metrics Derived from Time Series NDVI Data

The maps of the phenological metrics (Fig. 3) are derived using 7 years of averaged data rather
than just one year of data. This decision may have excluded the influence of external bias, such

Table 3 Correlations between phenological metrics and mean monthly temperatures (p < 0.05).

T0 T1 T2 T(012) T-1 T-2 T0-1-2

SOS Beech 0.72 0.05 0.05 0.12 0.41 0.16 0.45

Birch 0.22 0.03 0.1 0 0.26 0.4 0.3

Pine 0.87 0.81 0.71 0.79 0.8 0.8 0.8

Spruce 0.8 0.8 0.67 0.76 0.65 0.61 0.63

LOS Beech 0.02 0 0 0 0.02 0.01 0.02

Birch 0.45 0 0.03 0.1 0.45 0.5 0.5

Pine 0.8 0.8 0.67 0.76 0.65 0.61 0.63

Spruce 0.76 0.89 0.83 0.89 0.81 0.71 0.83

MaxNDVI Beech 0 0.33 0.32 0.22 0.32 0.5 0.37

Birch 0.5 0 0.2 0.03 0.5 0.4 0.5

Pine 0.45 0.4 0.3 0.31 0.41 0.44 0.43

Spruce 0.47 0.57 0.5 0.55 0.47 0.46 0.5

Integral NDVI Beech 0.01 0.52 0.48 0.38 0.31 0.55 0.35

Birch 0.5 0 0.2 0.01 0.5 0.6 0.55

Pine 0.42 0.40 0.38 0.39 0.33 0.29 0.30

Spruce 0.21 0.46 0.50 0.49 0.26 0.17 0.31

Note: Correlations in bold are statistically significant (p < 0.05)
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as extremely abnormal years with high temperatures or an unexpected NDVI error when
using data obtained from remote sensing. Note that the main period of growth of
vegetation in Mediterranean regions is in the winter and spring because of heat stress at
other times and seasonal precipitation patterns. These interpretations coincide with our findings
presented in several published studies.41,42 The average length of the growing season in Europe
[Fig. 3(b)], matches well with the results modeled by Chmielewski and Rotzer.43 At the same
time, we also developed the same finding reported by Köble and Seufert44 of a gradual west-to-
east spread of spring phenophases across Europe in warmer years. However, among the four
species of trees we studied, only birch displayed a clear west-to-east gradient (Fig. 3 and
Table 2).

4.2 Phenological Characteristics of Different Tree Species

The timing of the phenological events of different species on a large (continental) scale is an
interesting phenomenon. Which factors dominate the phenological metrics may still be poorly
understood. This study revealed large differences in phenological metrics between different tree
species, in common with other studies.45,46 Deciduous forests types can clearly be distinguished
from evergreen forests, which are mostly present in the boreal zone and alpine areas. The results
from Table 1 suggest that site-specific factors, tree species, and phenology display a complex set
of interrelationships. Tree species may be locally adapted to their particular environments, but
variations in species still account for part of the phenological variations, especially on a large
scale, i.e., birch/pine and spruce exhibit widely differing phenological patterns within the same
selected area.

The dependences of phenological metrics on spatial factors varies with the tree species.
Rötzer and Chmielewski47 explained that the growing season starts after the 25th of April in
Scandinavia and the Baltic Sea region, which was confirmed with our findings. The SOS
observed between latitudes 39°N and 49°N is generally 12 days later compared to that observed
in the latitude zone 49°N–55°N, due to the presence of the Alps which can lead to a significant
differences between the plant phenology observed on the south side of this mountain range ver-
sus that observed nearby to the north.48 We were unable to develop consistent estimates of the
SOS in the Mediterranean area, an ecoregion with pronounced, regular wet and dry seasons
(Fig. 3). The switch from dry to wet occurs around the end of the December to early
January, which means that the SOS occurs much later here than in other areas.49 The dependence
of phenological metrics on altitude was significant, especially in the case of beech trees. The
findings of König and Mayer, specifically a beginning of spring phenophases that was 1 to 3 days
later with each 100-m increase in altitude across various parts of Europe, corresponds well with
our results.50

4.3 Relationship Between Phenology and Climate Factors

In our results, phenological metrics are correlated with the temperature variables. Thus, we
can deduce that analyses of the phenological data reveal evidence of climate change, although
the plant responses may sometimes be inhomogeneous due to the local microclimate conditions,
natural variations, genetic differences, or other nonclimatic factors.51 Similar results
were obtained by Chmielewski and Rotzer.43 Those authors concluded that the length of the
season depends highly on the mean annual air temperature. Several authors have established
some relationships between phenology and climatic conditions at continental or regional
scales.52–54

Our results suggested that the phenology corresponds well with changes in air temperature
associated with the onset of spring, especially with the mean temperature during the month of the
start of the season. This finding was also described by several other researchers. Chmielewski
and Rötzer indicated that most phenological phases correlate significantly with the mean
monthly temperatures of the month of onset and the two preceding months.52 Tryjanowski
et al. also described the manner in which the SOS mainly depends on the temperatures
from February to May.45
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5 Conclusions

Remote sensing is a useful tool for generating consistent estimates of the phenological metrics
over large areas. In general, the phenology estimated using remote sensing is coarser than that
derived from direct observations of individual plant phenology, such as bud burst or first leaf;
yet, this method can yield useful pixelated representations of the constituents of vegetation
variations.55

Our results highlight both the challenge and potential for using remote sensing as a tool in
phenological analysis. No other technology aside from remote sensing offers consistent long-
term monitoring, yet its validation poses obstacles due to limitations in using existing historical
datasets. Establishing consistent plant phenological monitoring networks is therefore essential.
We ultimately conclude that remote sensing is a valuable tool for estimating phenological metrics
over large areas. Thus, our research may represent the first characterization of the spatial and
temporal variations in the phenology of various tree species across Europe using remote sensing.
An understanding of how phenological variations occur for different tree species is important to
the tree breeder, entomologist, physiologist, ecologists, and so on. Moreover, ful comprehen-
sions of tree species phenology provide guidance on carbon and species distribution modeling in
the future.
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