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Abstract. There is an intense necessity for the development of new hardware architectures for
the implementation of algorithms for hyperspectral image compression on board satellites.
Graphics processing units (GPUs) represent a very attractive opportunity, offering the possibility
to dramatically increase the computation speed in applications that are data and task parallel. An
algorithm for the lossy compression of hyperspectral images is implemented on a GPU using
Nvidia computer unified device architecture (CUDA) parallel computing architecture. The par-
allelization strategy is explained, with emphasis on the entropy coding and bit packing phases,
for which a more sophisticated strategy is necessary due to the existing data dependencies.
Experimental results are obtained by comparing the performance of the GPU implementation
with a single-threaded CPU implementation, showing high speedups of up to 15.41. A profiling
of the algorithm is provided, demonstrating the high performance of the designed parallel
entropy coding phase. The accuracy of the GPU implementation is presented, as well as the
effect of the configuration parameters on performance. The convenience of using GPUs for
on-board processing is demonstrated, and solutions to the potential difficulties encountered
when accelerating hyperspectral compression algorithms are proposed, if space-qualified GPUs
become a reality in the near future. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full
attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.7.074599]
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1 Introduction

Hyperspectral images are collected by sensors on a very high number of wavelengths forming
a three-dimensional cube. These cubes represent a large amount of data and are usually
acquired on board a satellite and sent afterward to a ground station. The available transmission
bandwidths are limited; hence an efficient compression is usually necessary. Hyperspectral
images, as most scientific data, have been traditionally compressed by means of lossless meth-
ods. An example of these is the recent standard for lossless hyperspectral image compression
developed by the Consultative Committee for Space Data Systems.1 However, lossy compres-
sion of hyperspectral images has recently become very popular as it can achieve higher com-
pression ratios.

Among the already proposed methods for lossy hyperspectral image compression, it is
possible to find generalizations of existing two-dimensional image or video compression algo-
rithms.2–5 Although these techniques achieve satisfactory performance, the existing compression
standards are usually too complex to be implemented on the on-board hardware. Therefore, some
algorithms have been specifically designed for on-board compression in order to reduce the
computational and memory resources requirements.
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Therefore, for this work, we consider the algorithm presented in Ref. 6, which was proposed
for the European Space Agency’s Exomars mission and is in the following referred to as lossy
compression for Exomars (LCE). The primary motivation for opting for this algorithm is that it
meets several requirements that are crucial for on-board compression, such as low complexity
and error resilience. Moreover, it was designed in such a way that it can be easily parallelized in
order to speed up the compression process for high-data-rate sensors.

In addition to proposing new methods for on-board data compression, it is also mandatory to
take into consideration the hardware where the algorithms are physically implemented and
executed. In this sense, nowadays graphics processing units (GPUs) represent a very attractive
opportunity, offering the possibility to dramatically increase the computation speed in data and
task-parallel applications, which is the case of certain types of hyperspectral data compression
methods. We note that GPUs cannot be used for on-board compression yet because of their large
size, power consumption, and not being radiation-tolerant; however, the performance improve-
ments obtained when GPUs are utilized for satellite image processing have already been
addressed for different applications, including compression.7–10

The LCE algorithm is inherently data and task-parallel; therefore during this exploration, it is
implemented on a GPU using Nvidia computer unified device architecture (CUDA) parallel
computing architecture11 in order to demonstrate the feasibility of GPUs for remote sensing
applications and contribute to identify and propose solutions to the the potential difficulties com-
monly encountered when trying to accelerate algorithms for hyperspectral image compression, if
space-qualified GPUs become a reality in the near future. Promising results have already been
shown in Ref. 7, and Ref. 12, where a GPU implementation of a lossless compression algorithm
for on-board compression is presented. These previous studies serve as a motivation to continue
exploring the capabilities of parallel processing applied to on-board processing, showing how
well a lossy compression algorithm specifically designed for on-board compression would per-
form on a GPU and providing a profiling and performance evaluation.

A CUDA implementation of the different compression stages of the LCE algorithm is pre-
sented, with a detailed description of the parallelization of the entropy coding and bit packing
phases of the algorithm, for which a more sophisticated strategy is needed due to the existing
data dependencies. Several experimental results are designed in order to show the performance
of the GPU implementation of the algorithm, comparing it with a single-threaded CPU imple-
mentation. Moreover, the accuracy of the GPU implementation is addressed, as well as the in-
fluence of the user-defined configuration parameters of the LCE algorithm on the performance.

The remainder of this paper is organized as follows: Secs. 2 and 3 present the LCE algorithm
and its software implementation, respectively. A brief description of the GPU architecture
and Nvidia CUDA is given in Sec. 4 and the parallelization strategy for the LCE algorithm
is presented in Sec. 5. Finally, Sec. 6 shows the experimental result and Sec. 7 draws the
conclusions.

2 Lossy Compression for Exomars Algorithm

The LCE algorithm6 was specifically designed to be able to perform on-board compression,
achieving high coding efficiency and meeting other very important requirements for on-
board compression at the same time, namely low complexity, error resilience, and hardware
friendliness. The algorithm applies a scheme consisting of a prediction plus a Golomb
power-of-two entropy coder. It partitions the data into units, which are portions of the hyper-
spectral cube of size N × N pixels with all bands and can be compressed independently. The
different stages of the LCE algorithm are explained below.

2.1 Prediction

The algorithm compresses independent nonoverlapping spatial blocks of size 16 × 16 with
all bands in the hyperspectral cube, which are processed separately. In the following, xm;n;i

denotes the pixel of a hyperspectral image sample in the m’th line, n’th column, and i’th
band. For the first band (i ¼ 0), 2-D compression is performed using a predictor defined as
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x̃m;n;0 ¼ ðx̂m−1;n;0 þ x̂m;n−1;0Þ ≫ 1, where x̃ denotes the predictor, x̂ denotes the decoded value,
and ≫ stands for right shift.

For all other bands, the samples xm;n;i are predicted from the decoded samples x̂m;n;i−1 in the
previous band. The predicted values are computed for all samples in a block as x̃m;n;i ¼
m̂i þ α̂ðx̂m;n;i−1 −mi−1Þ, where α̂ stands for quantized least-square estimator and mi and
mi−1 represent the average value of the colocated decoded blocks in band i and i − 1, respec-
tively. Finally, the prediction error is computed as em;n;i ¼ xm;n;i − x̃m;n;i.

2.2 Rate-Distortion Optimization

Once the prediction error samples are obtained, they are quantized. With the purpose of
obtaining higher compression ratios and reducing the number of computations, the algorithm
checks if the prediction is so close to the actual pixel values that it makes sense to skip the
encoding of the prediction error samples. Instead, a one-bit flag is raised, indicating that the
prediction error samples of the current block are all zero.

2.3 Quantization and Mapping

The prediction error samples are quantized to integer values eqm;n;i and dequantized to recon-
structed values erm;n;i. For the first band, this process is performed pixel by pixel using a scalar
uniform quantizer. For the other bands, it is possible to choose between a scalar uniform quan-
tizer and a uniform-threshold quantizer (UTQ).13 Finally, the reconstructed values are mapped to
non-negative values.

2.4 Entropy Coding

The 16 × 16 residuals of a block are encoded in raster order using a Golomb code14 whose
parameter is constrained to a power of two, except for the first sample of each block, which
is encoded using an exponential Golomb code of order zero. The quantized first sample of
the first band is not encoded and saved to the compressed file with 16 bits. The compressed
file is a concatenation of coded blocks, which are read spatially in raster order, and each
block is coded with all bands.

3 Software Implementation of the LCE Algorithm

The LCE algorithm was originally implemented in C programming language, to be executed on a
single-threaded CPU. It operates independently in every N × N block with all its bands. For the
specific case of this study, we consider a block size ofN ¼ 16, which as stated in Ref. 6 typically
optimizes the algorithm performance. Each block in the image is identified with two coordinates
in the horizontal and vertical spatial directions, namely bo and bv. In the following, Bbo;bv;i

denotes a 16 × 16 pixel block in coordinates ðbo; bvÞ and band i. A single pixel in Bbo;bv;i

is denoted as xm;n;i. Additionally, nbo and nbv are the total number of 16 × 16 blocks that
can be found in the image in the horizontal and vertical spatial dimension.

The LCE compressor consists basically of a chained loop, which iterates to cover all hori-
zontal and vertical blocks in the image, and all bands in a block. The innermost loop reads a
16 × 16 block Bbo;bv;i and performs the different stages of the LCE algorithm presented in Sec. 2
for every single pixel xm;n;i, namely the prediction, rate-distortion optimization, quantization,
entropy coding, and bit packing to create the compressed file. The pseudocode showing the
chained loop and the different compression stages is shown in Fig. 1.

3.1 Generation of the Compressed File

The result of the previously described chained loop is a bit stream that represents the compressed
image. The codewords resulting from the entropy coding stage are written by the software in a
single file, in the same order that they are obtained. Since Golomb codes produce codewords of
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variable length, they are buffered in a bit-by-bit fashion to a 32-bit variable. When the buffer is
full, it is written to the compressed file, generating the bit stream.

3.2 Configuration Parameters

The software implementation allows the user to configure the algorithm by selecting different
parameters to set the functionality mode (baseline or advanced) and the quality of the resulting
compressed image. The baseline algorithm performs compression using a scalar quantizer, fully
implemented with integer arithmetic; an advanced algorithm replaces the scalar quantizer with
the UTQ,13 which uses floating-point arithmetic. The parameter UTQ can be set by the user to
select the functionality mode. Setting UTQ ¼ 1 enables the UTQ quantizer and settingUTQ ¼ 0

uses the baseline functionality mode.
The quality of the resulting compressed image can also be set by the user by assigning values

to a parameter named delta, making it possible to find a trade-off between quality and bit rate.
Delta sets the quantization step size of the quantizer; therefore, increasing delta yields higher
compression ratios, but lower quality of the reconstructed image. Delta has to be an integer >1,
with delta ¼ 1 providing the maximum possible quality.

4 GPU Architecture and Nvidia CUDA

GPUs are structured as a set of multiprocessors, each composed of a set of simple processing
elements working in single-instruction multiple data mode. The use of GPUs for general-purpose
computation has become popular recently, as well as the computer architecture developed by
Nvidia named CUDA.11 This architecture provides a scalable programming model and a soft-
ware environment for parallel computing, including a set of application programming interfaces,
which makes it possible to manage the device and its memory, but hides the real hardware from
the developers.

The function that is executed in parallel is typically called a kernel. A CUDA kernel executes
in parallel across a set of parallel threads. The programmer organizes these threads into a hier-
archy of grids of blocks. A CUDA block is a set of concurrent threads that can cooperate among
themselves. The grid is the set of blocks, which may be executed independently. The number of
blocks and threads is set by the programmer in the kernel call.

The necessary data has to be made available for the GPU by copying it from the CPU.
Threads may access different memory spaces during their execution. Each single thread has
a private local memory consisting of registers (low-latency on-chip memory) private to each
thread. Shared memory is partitioned in such a way that it is visible and accessible for all threads
in a specific block. This makes it possible for threads to exchange information and cooperate
among themselves. Finally, global memory is visible to all threads of all blocks, and it is allo-
cated in the high-latency DRAM of the GPU.

Fig. 1 Pseudocode of the software implementation of the LCE algorithm.
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5 Parallelization of the LCE Compressor with CUDA

In order to parallelize the LCE compressor to implement it on a GPU, several facts are consid-
ered, specifically:

• The compression of every Bbo;bv block with all its bands can be performed independently.
• The prediction of all samples xm;n;i in a block Bbo;bv;i in a specific band can be performed

independently, except for the first band (i ¼ 0), where 2-D prediction is employed.
• There is a dependency between bands for the prediction, rate-distortion optimization, and

quantization phases. This means these operations have to be finished for band i before they
can be started for the next band, iþ 1.

• The entropy coding operations can be performed in every spatial 16 × 16 block Bbo;bv;i

independently, as there is no dependency between bands for this operation. However, there
is a data dependency between codewords for obtaining the Golomb parameter. A strategy
is designed and presented in Sec. 5.3 to make it possible to obtain the Golomb parameter
and create the codewords in parallel for all the samples in a block.

Several parallel kernels are designed to perform the different stages of the LCE algorithm.
One performs the prediction, rate-distortion optimization, and mapping, conserving the existing
dependency between bands. A separate one, for which more parallelization can be obtained,
accomplishes the entropy coding stage, and finally, a third one executes the bit packing and
creates the final compressed bit stream. The number of CUDA threads and blocks called in
each kernel is established in such a way that the CUDA application is suitable to compress
any hyperspectral image, regardless of its spatial or spectral size in short compression times.
Nevertheless, the presented kernel dimensionality might be further optimized for a specific
image, taking into consideration its size and adjusting the number of threads and blocks
accordingly.

Before parallelizing an algorithm using the CUDA abstractions, the user has to take into
account the limitations of the GPU where it is going to be executed. Specifically, the main lim-
itations refer to the amount of dedicated memory storage, computation capability, and maximum
number of CUDA blocks and threads that can be launched by a single kernel. In this exploration,
the LCE algorithm is implemented in an Nvidia Tesla C2075 GPU and a GeForce GTX 480,
which have 6144 and 1536 MB of dedicated memory, respectively, and both restrict the number
of CUDA blocks and threads to a maximum of 65,535 and 1024, respectively.

5.1 Allocation of the Image Data in the GPU

The necessary image data have to be sent and stored to the GPU dedicated memory in order to
make it possible to perform operations on them. It is decided to copy the whole hyperspectral
cube to the GPU before executing any of the kernels in order to minimize the number of trans-
actions between the CPU and GPU. Once the necessary data are stored in the GPU, an efficient
use of the different memory spaces is necessary to hide latency. When data are copied from the
CPU to the GPU, they are initially stored in the global memory; however, CUDA local or shared
memory spaces are used whenever it is convenient to accelerate memory accesses.

5.2 Prediction, Rate-Distortion Optimization, Quantization, and Mapping

The first kernel that is executed performs the aforementioned stages of the compression. As it
was already stated, parallelization can be obtained by exploiting the fact that every 16 × 16 block
with all bands can be processed in parallel and that the samples xm;n;i can also be treated inde-
pendently when spectral prediction is employed, i.e., for all bands except the first one.

Therefore, as shown in the pseudocode of Fig. 2, the loops that iterate to cover all horizontal
and vertical blocks can be executed in parallel. Besides, the loops that are used to cover all
samples in a 16 × 16 block in band i can also be avoided, except for the first band.
However, it is still necessary to keep the loop that covers all bands in a block.

The designed CUDA parallel kernel will perform the prediction on every 16 × 16 block
Bbo;bv with all bands in parallel; therefore, the number of CUDA blocks that will be launched
will be calculated as CUDAblocks ¼ ðlines × columnsÞ∕ð16 × 16Þ.
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Each CUDA block will launch 256 threads, each of them able to access and perform oper-
ations on a sample xm;n;i of the image in parallel. The hyperspectral image is stored in CUDA
global memory. As the threads are going to access the same sample many times, the necessary
data are copied to the local memory to make accesses faster. Specifically, every iteration of the
loop that covers all bands, a 16 × 16 block, i.e., 256 samples, are copied from global to local
memory. Local memory is only visible for a thread; however, there are times when not all oper-
ations can be performed independently on every xm;n;i. Particularly, the computation of some
operations require the summation of all samples in a block. For these specific cases, CUDA
shared memory is used, which is visible for all threads in the same block. Besides, in those
situations where the use of sequential loops cannot be avoided, the number of iterations is
reduced using tree reduction strategies.

5.3 Entropy Coding

Unlike the prediction stage previously described, the entropy coding phase can be performed on
every 16 × 16 block of a specific band in parallel, without any information from neighbouring
bands, which makes it possible to process more data in parallel.

A kernel is designed to perform the entropy coding of the mapped prediction residuals, which
processes each 16 × 16 block of prediction residuals in parallel. For optimization purposes, it is
established that each kernel launches the maximum number of possible threads allowed by the
Tesla C2075 and GeForce GTX 480 GPUs, which is 1024. Therefore, the number of CUDA
blocks to be launched can be calculated as CUDAblocks ¼ ðlines × columns × bandsÞ∕1024.

We note that the maximum number of CUDA blocks is limited to 65,535. If the number of
CUDA blocks obtained with the previous equation is higher than this maximum, then the kernel
has to be called more than once, which negatively affects performance. Setting the number of
threads to the maximum also serves to minimize the number of CUDA blocks called and, there-
fore, reduces the impact of having to invoke the kernel repeatedly.

Several facts are considered when designing the GPU implementation of the entropy cod-
ing stage:

• The codewords shall be obtained in parallel for each mapped prediction error sample.
• It is not possible to directly write on a file from the GPU; consequently, the codewords

have to be saved to variables in the CUDA memory spaces.
• The codewords are of variable length, which can be >32 bits.

The strategy followed to generate the codewords and pack them to a bitstream must be differ-
ent from the one followed in the CPU implementation, which is based on the sequential ordered
generation of the codewords, as it is explained in Sec. 3. For the GPU implementation, the
approach is to preprocess the Golomb parameters of all mapped prediction error samples in
a 16 × 16 block, and afterward compute the codewords for every sample in parallel.

A strategy is designed to compute the Golomb parameter of every j’th sample of the block,
kj, in parallel. This parameter is computed from a running count Rj of the sum of the magnitude

Fig. 2 Pseudocode of the parallel implementation of the LCE predictor.
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of the last 32 unmapped prediction errors of the block, ej; for samples with index less than 32,
only the available values are used. This implies that the Golomb parameter of a specific pre-
diction error in a block depends on the accumulated sum of the previously unmapped prediction
errors. The running count is obtained for every sample as Rj ¼ Rj−1 − jej−33j þ jej−1j. In order
to be able to obtain R in parallel, the prefix-sum of all the unmapped values is computed as
Ej ¼

Pj−1
0 jej−1j. This is implemented in CUDA following the scheme proposed in Ref. 15,

utilizing tree strategies to reduce the number of necessary iterations by taking advantage of
CUDA shared memory.

Once kj is known for every prediction error sample, the codewords can be created in parallel
by the CUDA threads. Each thread computes and saves a codeword in its local memory. The size
in bits of the obtained codewords is also saved by every thread, in order to be able to create the
encoded buffer, as is explained in the following.

The encoded prediction residuals have to be saved in raster order to produce the final encoded
16 × 16 block, which contains the ordered sequence of codewords, without leaving any bits
unused between them. The strategy presented in Ref. 16 is followed to write every codeword
of a 16 × 16 block in a single output buffer, as shown in Fig. 3. First, the final position of a
codeword in the output buffer is calculated. This final position is given by two coordinates:
the word position where the codeword is saved, word_position, and the bit position in that
word where the codeword starts, starting_bit of every codeword. The result of the prefix-
sum is the bit position of the codeword in the final output buffer. Dividing this result by 32
and obtaining the remaining yields the desired word_position and starting_bit. Once the two
coordinates are calculated, the codewords are shifted in such a way that they start in the obtained
starting_bit. Afterward, a logic OR is performed between the codewords with the same word_
position, with CUDA atomic operations, which makes it possible for a thread to perform an
operation without interference from any other threads, to avoid having threads with the
same word_position accessing the output encoded buffer at the same time.

5.4 Bit Packing Kernel

Once the encoded blocks corresponding to a 16 × 16 pixel portion of the image are obtained,
they have to be written to a single output buffer, which represents the compressed image. As each
block has been processed independently in the entropy coding kernel, the resulting encoded
blocks have been written to a specific position of the global memory. To construct the final
output bit stream, the encoded blocks have to be saved in sequential order and, as it happened
with the codewords, in such a way that no space is left unused between them.

A strategy similar to the one used by the entropy coder is followed: the word position and
starting bit is calculated for every compressed block. Afterward, the compressed block is shifted
and an atomic OR is performed. However, this time it is necessary to perform the operations on

Fig. 3 Parallel generation of a compressed 16 × 16 block.
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complete encoded blocks (conformed by more than one 32-bit variable), which are allocated in
the CUDA global memory, as shown in Fig. 4. Once again the word_position and starting_bit are
obtained. This time they are computed for every encoded block. The blocks are copied from the
global to the shared memory, where they are shifted according to the starting_bit in parallel.
Finally the atomic operations are used to perform the logic OR and create the compressed
bit stream.

6 Experimental Results

Different experimental results are designed to evaluate the performance of the GPU implemen-
tation of the LCE algorithm with respect to the software implementation executed on a single-
threaded CPU. The Nvidia Tesla C2075 is used to execute the CUDA implementation of the
LCE algorithm. All the experiments are performed on a 3.19-GHz Intel Xeon W5580, running
on a 64-bit operating system with 12 GB of RAM. Two different GPUs are used to execute the
CUDA implementation of the LCE algorithm, an Nvidia Tesla C2075 and a GeForce GTX 480.
Both GPUs are based on the Fermi17 architecture. The most important features of these GPUs are
shown in Table 1. The main difference between them is the amount of dedicated memory storage,
which is much higher for the Tesla GPU. In the following experiments, only the Tesla GPU will
be used to run the LCE algorithm for those images that need more dedicated memory than it is
available in the GeForce GPU.

The hyperspectral images targeted for compression throughout the experiments are as
follows:

• 128 × 80 pixels granule taken by atmospheric infrared sounder (AIRS), comprising
1501 bands.

Fig. 4 Parallel generation of the final compressed bit stream.

Table 1 Description of the GPUs used for compression.

Description Tesla C2075 GeForce GTX 480

Nvida CUDA cores 448 480

GPU memory 6144 MB 1536 MB

Maximum memory bandwidth 144 GB∕s 177.4 GB∕s

Peak double-precision floating
point performance

515 Gflops 672.48 Gflops

Frequency of CUDA cores 1.150 GHz 1.401 GHz

Memory speed 1.500 GHz 1.848 GHz

Power consumption 225 W thermal design power (TDP) 250 W TDP
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• 1952 × 608 pixels portion of the Indian Pines scene acquired by airborne visible/infrared
imaging spectrometer (AVIRIS), which comprises 220 bands.

• 1984 × 1344 pixels image taken by moderate-resolution imaging spectrometer (MODIS),
comprising 17 bands.

As in the software implementation, the GPU application performs all the operations using
single-precision integer variables, except for the quantization stage, which needs double-
precision floating point operations when the UTQ is enabled.

6.1 Accuracy of the GPU Implementation

Before any experiment is performed, the accuracy of the GPU implementation is tested. For
this purpose, the images are compressed and decompressedwith theGPU and the CPU implemen-
tation. The resulting compressed files are compared bit by bit, demonstrating that the results of
both implementations are identical. Furthermore, both implementations are compared in terms of

• Compression ratio in bits per pixel per band

Size of compressed imageðbitsÞ
L × C × B

• Maximum absolute error (MAE)

MAE ¼ maxðjxm;n;i − x̂m;n;ijÞ

• Mean-squared error (MSE)

MSE ¼
P jxm;n;i − x̂m;n;ij

L × C × B

• Peak signal-to-noise ratio (PSNR)

PSNR ¼ 10 log ð215 − 1Þ2
MSE

The aforementioned values were obtained for all images under evaluation, showing that there
was no difference between the accuracy of the compression for the CPU and the GPU
implementation.

6.2 Performance Evaluation

In order to evaluate the performance of the GPU implementation, the application is profiled by
compressing a subimage of the AVIRIS cube of size 512 × 512 comprising 220 bands. This
hyperspectral cube is compressed with the GPU implementation and profiled with the tools sup-
plied by Nvidia, in order to detect which of the kernels is the most time-consuming and where the
main bottlenecks of the implementation are. The results in Fig. 5 show short compression times
of 394 and 376 ms for the Tesla and GeForce GPU, respectively, which is almost a quarter of the
time achieved with the GPU implementation of JPEG2000 presented in Ref. 18. The most time-
consuming operations for both GPUs are the memory transactions between the CPU and the
GPU. The strategy designed for the bit packing, which is used to create the final bit stream,
shows very good performance, taking only 4.73% of the total compression time for the
Tesla GPU and 2.21% for the GeForce GPU.

Afterward, the computation time of the prediction and entropy coding and bit packing stages
of the GPU implementation is compared with the same stages in the CPU implementation. The
results in Fig. 6 show the high acceleration obtained with the GPU implementation in both
stages. The strategy designed to parallelize the entropy coding and bit packing stages shows
very good results. This stage is executed more than 10 times faster in the GPU than in the CPU.
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The performance of the GPU implementation of the LCE algorithm is also evaluated in terms
of the speedup obtained with respect to the CPU implementation, which is calculated
as Speed up ¼ CPU time∕GPU time.

The speedup gives an idea of how many times the GPU execution is faster than that of the
CPU. For a more accurate evaluation, several hyperspectral subimages are created with different
spatial size, ranging from 64 × 64 to the maximum possible size of the original images men-
tioned above. Figure 7 shows the speedup results for the AVIRIS image, against the total number
of samples. The results obtained for both GPUs are similar. It can be observed that there are
variations in the speedup obtained. The speedup is lower when the number of samples in
the image—and hence the number of blocks that can be processed in parallel—is small. As
the number of samples in the image increases, the speedup also increases until it becomes almost
stable.

Fig. 5 Profiling of the CUDA implementation of the LCE algorithm.

Fig. 6 Comparison of the GPU profiling with the CPU profiling.

Fig. 7 Speedup obatined for the AVIRIS image against the number of samples.
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Although the performance of the kernel initially increases with the number of samples, the
time necessary to transfer data between GPU and CPU is proportional to the amount of samples
in the image, which limits the possible speedup improvement. The observed peaks and slight
variations of the speedup are caused by the fact that some combinations of spatial and spectral
dimensions produce a more effective configuration of the CUDA kernels, resulting in a better
performance of the GPU multiprocessors. This is more noticeable in the Tesla GPU, where
higher speedup peaks are achieved. A similar curve was obtained for the AIRS and MODIS
images. To summarize the speedup results, Table 2 shows the range of widths and lengths
selected for generating the subsets of the hyperspectral images to be compressed, and the average
speedup achieved.

6.3 Effect of the Configuration Parameters on the Performance

Finally, the effect of the configuration parameters of the LCE compressor on the performance of
both implementations is presented. The parameters UTQ and delta can have an impact on the
compression time of both the CPU and the GPU implementations of the algorithm. In the fol-
lowing, it is analyzed how the variation of these parameters affects the performance of the GPU
implementation, with respect to the CPU implementation. Only the results obtained with the
Tesla GPU are shown, because the results obtained with the GeForce were very similar.

To evaluate the effect of varying UTQ, the set of images shown in Table 1 is compressed with
the CPU and GPU implementation with UTQ ¼ 1 and then with UTQ ¼ 0. Besides, two pos-
sible configuration parameters of delta are configured, namely delta ¼ 1, which provides the best
possible results in terms of quality and the lowest compression ratio, and delta ¼ 60, which
decreases the quality and increases the compression ratio.

In order to better assess the effect of the parameters, the performance is evaluated in terms
of the number of samples computed per second, calculated as lines columns bands∕
compression timeðsÞ.

This value is calculated for all the subimages, and the average is computed. The results are
summarized in Fig. 8.

Both the GPU and CPU show better results when UTQ is disabled, since with UTQ
enabled, double-precision operations have to be performed in the quantization stage of
the LCE compressor. On the other hand, for parameter delta, it is observed that when
delta is high, the performance improves, and this improvement is more noticeable in the
CPU implementation, particularly for the AIRS image. This is explained by the fact that
when delta is increased, the number of blocks that skip quantization is also high; therefore,
the CPU implementation can avoid part of the operations and complete the processing of the
image in a shorter time. Although the number of skipped blocks is the same for the GPU
implementation, as data are processed in parallel, the fact that some of the blocks can be
skipped does not make such a big difference in the processing time of the whole hyperspec-
tral cube.

To better depict this fact, in Fig. 9, the 512 × 512 AVIRIS image with 220 bands is com-
pressed with the CPU and the GPU implementation of the LCE algorithm for increasing values
of delta, starting with delta ¼ 1 up to delta ¼ 100. For both implementations, it can be observed
that smaller compression times are achieved when delta is higher and that the number of samples
computed per second for the GPU implementation is always around 10 times greater than the

Table 2 Average speedup obtained with the GPU implementation.

Sensor

Range

Bands

Average speedup

Lines Columns Tesla GeForce

AIRS 64 to 128 64 to 80 1501 13.35 11.78

AVIRIS 64 to 1952 64 to 608 220 15.41 14.66

MODIS 64 to 1984 64 to 1344 17 12.50 14.50
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number of samples per second achieved by the CPU. It can be observed that the variation of the
number of samples computed per second is more noticeable for the CPU implementation.
However, even for great values of delta, the performance of the GPU is still significantly better
than that of the CPU.

7 Conclusions

The LCE algorithm is implemented on a GPU using Nvidia CUDA parallel architecture and
compared with a software implementation executed on a single-threaded CPU in terms of accu-
racy of the results, compression speedup, and effect of the configuration parameters.

A strategy is conceived in order to parallelize the different stages of the LCE algorithm to be
executed in a GPU, with special emphasis on the acceleration of the entropy coding phase, where
parallelization is crucial to obtain speedup.

It is proved that the output bit stream produced by both implementations is identical. The
GPU implementation shows short compression times, with an average speedup of up to 15.41
times the CPU compression time. The effect of the configuration parameters is also addressed,
showing that the best performance results for the GPU are obtained when UTQ is disabled and
the parameter delta is high.

This study contributes to demonstrate that although GPUs are not suited to be used on-board
a satellite, they still are very advantageous for hyperspectral image processing, including

Fig. 8 Effect of the configuration parameters of the LCE algorithm in the performance of the GPU
implementation (a) and the CPU implementation (b).

Fig. 9 Effect of varying delta in the performance of the GPU and CPU for the AVIRIS image.
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compression, when short execution times are desired, also providing very flexible
implementations.
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