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Abstract. A binary segmentation scheme, based on the Markov random field theory, is pre-
sented. In order to obtain a more integrated label field, the simulated annealing schedule is modi-
fied for performing a joint conditional estimation of model parameters. To reach a finer
detection, the pixel neighborhood system of the a priori model is continuously updated at
each cycle of the optimization algorithm. Maximum a posteriori is the central criterion of
these algorithms. The proposed processing scheme is applied to a sequence of Envisat/
ASAR images of the Deepwater Horizon disaster of the Gulf of Mexico in the spring of
2010. Initial oil spills statistical parameters are extracted by visual analysis, but they are updated
during the minimization cycles. The proposed scheme, when compared with a conventional
Markov random field one, provides a better detection of fine structures. In addition, facing
the complex ocean phenomena reflected in the synthetic aperture radar images, the final
label field results are extremely well defined. © The Authors. Published by SPIE under a
Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JRS.8.083553]
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1 Introduction

The Deepwater Horizon (DWH) oil spill in the Gulf of Mexico, which flowed unabated for three
months in 2010, was the largest accidental marine oil spill in the history of the petroleum indus-
try; its source was a sea-floor oil gusher resulting from the April 20, 2010, DWH explosion
which claimed 11 lives. The gushing wellhead was capped only after 87 days, on July 15,
2010. Beginning with the first days after the accident, all the Earth observing satellites focused
their image acquisitions over the Gulf of Mexico. Among the many sensors on board the sat-
ellites, the synthetic aperture radar (SAR) is certainly the most powerful one for imaging differ-
ent ocean phenomena, like waves, surface winds, oil spills, and sea-ice in all-weather conditions.
Thanks to a European Space Agency (ESA) project for studying ocean phenomena, among the
various SAR products covering the DWH accident, the Envisat/ASAR wide swath (WS) ones
were chosen; in particular, two significative ASARWS images were selected: the first available
after the accident, on April 26, and the second one when the oil spill was already fully developed,
on May 2. The interaction of the highly coherent radiation of a radar signal with the ocean
elements combined with the atmospheric conditions produces a very complex backscatter.1,2

The geophysical system collaterally creates the speckle phenomenon, which produces the char-
acteristic grainy appearance of SAR images. While speckle can even be exploited to analyze
SAR oil spills at full resolution,3 it generally causes difficulties in image interpretation and
is usually removed with specialized filters4,5 but at the risk of degrading the spatial resolution.
Heavily oil-polluted ocean surfaces provide a specular reflection and a reduced Bragg scattering.
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Compared with the semispecular backscatter of the open sea surfaces, pixels of oil spills produce
darker signatures in SAR images. Several other natural phenomena, such as low tides, low wind
areas, biogenic material, and oceanic or atmospheric fronts, produce the so-called look-alikes of
oil slicks.6,7 Various papers have been presented in the literature describing semiautomatic para-
metric and nonparametric algorithms for oil spill detection, for instance, adaptive thresholding
segmentation methods,8,9 neural networks,10 fractal algorithms,11 and multiscale wavelet repre-
sentations.12 A different group of algorithms based on geometric and statistical features have also
been used,13 while those based on the physical modeling of complex systems require oil vis-
coelastic properties and external data such as scatterometer wind fields.14 Finally, a recent review
paper15 provides a comprehensive analysis of all the issues related to oil spill detection with SAR
images. A relevant paper16 has demonstrated that only dual- and/or full-polarimetric SAR images
can give precise oil spill detection, clearly distinguishing between oil and look-alikes; in the case
of single-polarimetric images, the same objective can only be attained if external information is
attached to the image.17 Unfortunately, regular acquisitions by SAR observing satellites are
mainly single-polarimetric, while dual- and/or full-polarimetric ASAR images are extremely
rare in the ESA archive. This paper presents a processing scheme based on binary segmentation
whose aim is to provide an efficient tool to measure the marine oil spill extent in SAR images; for
the reasons explained above, it was decided to apply the processing scheme to single-polari-
metric images, with an approach that only makes use of the radiometric information of the
SAR scene. The segmentation process is modeled by taking into account the Bayes formulation.
The optimization of the probability functions by means of the Markov random field (MRF)
theory is defined by the maximum a posteriori (MAP) criterion. The stochastic minimization
algorithm is modified in order to update both the parameters of the a priori label model and its
system neighborhood.

2 Methods

2.1 Bayesian Framework

Many events in nature show a behavior that is difficult to predict as they are affected by different
variables. During the process of acquisition of an SAR image, a given pixel may take an unpre-
dictable value, even when it belongs to objects with a well-known nature. This random behavior
justifies the application of probability theory in SAR image analysis. Making use of probability
theory and statistics, in this section, different observations are integrated in order to define spe-
cific parametric models. Let X be the image to be segmented and W the segmentation result,
where wi ∈ f1;2; : : : ; mg and m is the number of classes (or labels). Bayes’ rule,

pðwjjXÞ ¼ pðXjwjÞpðwjÞ∕
Xm
i¼1

PðX;wiÞ; (1)

allows the computation of the posterior probability pðwjjXÞ of class wj. The conditional prob-
ability pðXjwjÞ must be derived and the a priori probability of event wj must be known before
solving the problem. MRFs have the property that the conditional distribution of a particular
pixel given the values of all the other pixels in the whole image, is equal to the conditional
distribution obtained by only considering the pixel values in its neighborhood.

In order to incorporate the pixel information to the terms of probability of Bayes’ rule, the use
of some topological definitions is required. The sites in a grid S are related to one another via a
neighborhood system. A neighborhood system for S is defined as N ¼ fNij∀ i ∈ Sg, where N is
the set of sites of neighboring pixel i. A random region X on a lattice S with neighborhood
system N is said to be an MRF if ∀ i ∈ S, pðxijxr∀ r ≠ iÞ ¼ pðxijxNrÞ. A clique C for
ðS; NÞ is defined as a subset of sites in S. It consists either of a single site C1 ¼ fig, or a
pair of neighboring sites C2, or a triplet of neighboring sites C3, and so on. The collections
of single-site, pair-site, and triple-site cliques will be denoted by C1, C2 and C3, respectively.
The collection of all cliques for ðS; NÞ is C ¼ C1 ∪ C2 ∪ C3: : : . The Bayes’ rule can be applied
in order to define the equations of the random field model. The joint probability of radiometric
information is pðX;WÞ ¼ pðXjWÞpðWÞ and is derived from the observed data. The image
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acquisition process is described by means of the equation pðXjWÞ ¼ Q
s∈SpðxsjwsÞ. The MAP

approach uses the posterior probability in order to obtain an optimization of the segmentation
process.

W
∘

MAP
¼ pðWjXÞ ¼ arg max

W

pðXjwjÞpðwjÞP
m
i¼1 PðX;wiÞ

≈ arg max
W

½log pðXjWÞ þ log pðWÞ�: (2)

The law of the total probability
P

m
i¼1 PðX;wiÞ can be ignored and the MAP equation can be

approached using the numerator term. In a pixel-based segmentation approach, every xs pixel is
assigned to the wj class that maximizes Eq. (2). Given the local heterogeneity of SAR images, a
good strategy is to take into account the information of the set of sites neighboring pixel xs. In a
contextual-based approach, a discrete MRF is applied for modeling the segmentation problem.
The a posteriori energy function is derived from Eq. (2) and results in

W
∘

MAP
¼ arg min

W
UðWjXÞ ≈ arg min

W
½UðXjWÞ þ UðWÞ�; (3)

where UðWÞ is the a priori energy function and UðXjWÞ is the energy function of the observed
data model. The Bayesian formulation requires that assumptions are made about prior proba-
bilities PðWÞ. A simple Potts model is used to define the a priori energy function UðWÞ.18 The
potential function is given by

Vðwi; wsÞ ¼
�
β δðwi ≠ wsÞ
−β δðwi ¼ wsÞ ; (4)

where β is a model parameter which indicates the convergence of the solution, and δ is the
Dirac’s delta function which has a unitary value when the classes of pixels xi and xs are
equal. The joint image model integrates both the label field to be obtained and the acquisition
process of the image. Data can be modeled by a Gaussian function fxðxÞ ¼ Nðμi; σ2i Þ.

fxðxÞ ¼ 1∕
ffiffiffiffiffi
2π

p
σ exp½−ðx − μiÞ2∕2σ2i �; (5)

with mean values μi and variance σ2i . The Hammersley-Clifford theorem defines the probability
density for an MRF under the form of a Gibbs distribution,19 but the ill-posed problem is to
calculate Eq. (3). The solution by a stochastic approach needs a minimization method, for exam-
ple, the simulated annealing20 given by the Metropolis sampler.21 The probability to belong to a
particular class is calculated by means of the posterior energy functionUðWjXÞ, and considering
Eqs. (4) and (5), the operation is

UðWjXÞ ¼ arg min
W

�X
s∈S

½lnð
ffiffiffiffiffi
2π

p
σÞ þ ðx − μiÞ2∕2σ2� þ

X
c∈C

VðcÞ
�
; (6)

where C is the clique system. Equation (6) exposes an ill-posed problem: the class field is
degraded by noise such that the observed SAR images are considered as incomplete data, so
Eq. (6) can generate a family of nonoptimal solutions. In a classical solution, a set of a priori
information is provided. As a first step, the parameters belonging to the set Θ ¼ fμi; σ2i g, i ¼
1;2; : : : ; m are derived from the existing data and are set as constants for the rest of the process.
Then, the MAP approach is applied to the image X and the label field W is obtained. The min-
imization method is summarized as follows:

1. Initialization of parameters (N, n, W0, T0)
2. Do n iterations:

(a) Sample X in order to obtain UðXjWÞ
(b) Sample Wi in order to obtain UðWÞ
(c) Compute UðWjXÞ
(d) Apply the Metropolis criterion
(e) Decrease Ti after each iteration

3. Return Wn,
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where N is the neighboring pixel system, n is the number of iterations, W0 is a proposed initial
random solution, and T0 is the initial temperature parameter. Related to thermodynamic systems,
the applied segmentation process takes into account a cooling schedule where the image pixels
go slowly from high temperature to zero temperature distributions. For this reason, the method is
known as simulated annealing and T is just a symbolic representation of temperature. In a recur-
sive minimization, T0 has a high value and the probability distribution of the label field W0 is
uniform. Labels wi are randomly assigned with uniform probability, where wi ∈ f1;2; : : : ; mg
and m is the number of classes (or labels). After a number of iterations, when n → ∞;, Tn → 0,
Wn is the segmentation result and Eq. (6) attains a minimum value. The configuration of the Wi

label field is generated with the Metropolis criterion and assumes a Gibbs distribution. Figure 1
shows a conceptual block scheme. The segmentation is obtained by iterations: at a given iter-
ation, both the original SAR data for deriving the energy term, UðXjWÞ, and the result of the
previous segmentation field, UðWÞ, are required. The update stage is described in the following
section and is part of the proposal of this paper.

3 Parameter Estimation

The Gaussian model parameters are unknown but the ergodic property of the stochastic process
can be assumed so that the mean values μi can be estimated from training windows. The variance
for every class is approached by

σ2j ≈ ðμj − μi∕2Þ2; (7)

where μj > μi. Inflection points of adjacent probability density functions are crossed in the point
ðμj − μiÞ∕2. This is a kind of data-driven term designed to be evasive, letting the model take
control of the probability decision. Simulated annealing can be applied in order to obtain binary
segmentations, but the quality of the label field heavily depends on the parameters provided to
the energy model. Ideally, the training windows must be assigned to prototype regions of the
label field which is going to be determined. The statistical disadvantage is that the training win-
dows use data whose joint distribution functions are the sum of several distribution functions.
Pixel values are random variables and a training window gives a partial statistical representation
of a given class. In the conventional parameter estimation approach, X denotes the noisy
observed image and W is the free-noise version of X (or the label field obtained by a segmen-
tation process) with a parameter vector Θ. The problem is to find the labeling field W, and in an
MAP approach, the biased solution can be described by

ðW∘ ;Θ
∘
Þ ¼ arg max

W;Θ
pðW;XjΘÞ; (8)

Fig. 1 Conceptual block scheme of the recursive segmentation process.
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where ðW∘ ;Θ
∘
Þ are the estimated parameters. To work out a joint solution using incomplete data

from Eq. (8) is a difficult task.22 Alternative solutions are the algorithms of expectation maxi-
mization and the stochastic expectation maximization.23,24

A simpler solution of Eq. (8), obtained by a suboptimal criterion, is preferred.

W
∘ ¼ arg max

W
pðWjΘ

∘
Þ; (9)

Θ
∘
¼ arg max

Θ
pðW∘ jΘÞ: (10)

In SAR images, oil slicks produce a low backscatter, which is expected to be different from
the open sea signature. Our proposal is to simultaneously update the Θ

∘
parameters of the

Gaussian model and to perform an iterative adaptive segmentation in order to obtain theW
∘
field.

The pseudo code for solving Eqs. (9) and (10) is as follows:

1. Initialization of parameters

(a) Place training windows by visual inspection.
(b) Initialize vector Θ

∘
¼ fμi; σ2i g from training windows.

(c) Set the neighborhood system to N8.
(d) Set the number of iterations n.

2. Do n iterations: Apply minimization by stochastic relaxation [Eqs. (6) and (9)].
3. Update vector Θ

∘
from the previous n label field [Eq. (10)].

4. Update neighborhood

(a) Set the neighborhood system to N4.
(b) Set n ¼ n2.

5. Repeat steps 2 and 3 until convergence of Θ
∘
.

4 Materials

As stated in the Introduction, among the many ASARWS images of the DWH oil spill, two of
them were selected for testing our processing scheme: the first image available after the accident
(April 26) and the second onewhen the oil spill was already fully developed (May 2). Figures 2(a)
and 2(b) show the two images after being ingested into the commercial software TeraScan of
Seaspace Corp® and projected onto an equidistant cylindrical geographical reference. The
geo-referenced images are shown with the lat/long grid labels to provide their geo-location.
The size of the resampled pixel is 150 × 150 m ¼ 22;500 m2. Table 1 gives the technical
data of the ASAR WS images, which are the standard products systematically generated by
the ESA Payload Data Handling Station using the ScanSAR technique.

5 Results

From the two speckled images of Fig. 2, a window covering a large part of the oil slick was
extracted. The two windows, after the correction of the slant range effect on the backscatter,
became our test images [Figs. 3(a) and 3(b)]; their sizes are 750 × 800 pixels and
850 × 700 pixels, covering an area of ∼13; 500 and 13;388 km2, respectively.

The processing scheme can now start with the adaptive algorithm parameters fixed to n ¼ 30

and n2 ¼ 10. With regard to the algorithm and to its parameters, some elucidations are needed.

Step 1 is just computing the parameters (mean and variance) of the Gaussian model by the
training data chosen by an expert. The initial distribution of samples takes into account
two training windows of 30 × 30 pixels, which are assigned at pattern regions of classes
w1 and w2, where w1 is the sea class and w2 is the oil spill class. The variance is approached
by Eq. (7). For the image of April 26, the initial parameters are μ1 ¼ 35, μ2 ¼ 45, and
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Fig. 2 Geo-referenced ASAR wide swath images of the Deepwater Horizon oil spill after projec-
tion onto an equidistant cylindrical projection: (a) April 26 and (b) May 2.

Table 1 Wide swath medium-resolution image (ASA WSM 1P) product.

Product ID ASA WSM 1P

Name ASAR wide swath standard image

Description ASAR product generated from level 0 data collected when the instrument is in wide swath
mode. The product
includes slant range to ground range corrections and it covers a continuous area along the
imaging swath

Coverage 400 km × 400 km (approximately) for a scene 400 km × 4000 km max

Geometric
resolution

∼150 m × 150 m

Radiometric
resolution

Product equivalent number of looks > 11.5

Pixel spacing 75 m × 75 m

Size 59 Mbytes for a scene; 584 Mbytes for a stripe

Fig. 3 Test images as subsets of the two ASAR raw images after correction of the slant range
effect on the backscatter: (a) April 26 and (b) May 2.
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σ2 ¼ 25, while for the image of May 2, the initial parameters are μ1 ¼ 50, μ2 ¼ 70,
and σ2 ¼ 100.

Step 2 computes the first n iterations of the simulated annealing method. Each iteration con-
tributes to minimize the energy UðWjXÞ, providing a less noisy label field.

Step 3 updates the Gaussian parameters from the n’th MAP label field. The updated parameters
for the image of April 26 are μ1 ¼ 29.7, μ2 ¼ 58.5, and σ2 ¼ 207.3, and that for the image
of May 2 are μ1 ¼ 47, μ2 ¼ 79.7, and σ2 ¼ 267.3. With this recursive method, for n ¼ 1,
the result is just random noise with a uniform distribution. For n < 10, the segmentation
results are still strongly affected by the noise, but for n ≈ 20, some homogeneous dominions
are distinguished, which indicates that the value of the so-called critical temperature of the
cooling schedule has been exceeded. By the visual inspection of the obtained field distri-
bution, in a number of n ¼ 30 iterations, the existence of homogeneous regions can be
verified, leaving the remaining small noisy regions to be regularized.

Step 4 aims to obtain fine detections. The neighborhood system applied in the first iterations
provides good detection of objects of greater size with an eight-connexity window. The
topology described above may oversegment fine structures; by empirical analysis, it
was decided that a four-connexity neighborhood system is more adapted to the spatial con-
text of the label model. The number of iterations for the simulated annealing was, thus, fixed
to n2, where n2 < n. As a consequence, vector Θ

∘
is updated every n2 ¼ 10 iterations (during

the iteration numbers 30, 40, and 50), see Fig. 1.

Finally, steps 2 and 3 are repeated until vector Θ
∘
convergence, which happens in a maximum

of 50 iterations. Partial results, shown in Figs. 4 and 5, allow the comparison of the performances
of the two algorithms: the conventional MRF (CMRF) segmentation and the new proposed MRF
(NMRF) scheme. CMRF and NMRF algorithms were run with the same set of initial parameters

Fig. 4 Performance of the Markov random fields (MRF) algorithms using an image subset of
150 × 180 pixels: (a) subset of the original synthetic aperture radar (SAR) window of April 26,
(b) result of a conventional MRF segmentation, and (c) result of the proposed new MRF scheme.

Fig. 5 Same as Fig. 4 but with the original SAR window of May 2.
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on subsets of the original test images, Figs. 4(a) and 5(a). Using a constant second-order neigh-
borhood system, results of CMRF segmentation are shown in Figs. 4(b) and 5(b), where a sat-
isfactory binary discrimination is obtained but detection of fine structures is absent. Results of
the NMRF are shown in Figs. 4(c) and 5(c), where oil slick particle pathways are preserved and
an improved detection of fine structures and details is clearly observed. The recurring sampling
simulation was carried out with β ¼ 0.35, an initial temperature parameter T0 ¼ 2, and second-
order cliques. The interaction coefficient β determines the contribution of each element of the
neighborhood to maintain the convergence of the solution. The Boltzmann annealing regards the
relaxation process, to which, in order to allow a faster convergence, the following schedule for
decreasing T is applied: Tn ¼ qTn−1, where q takes the value of 0.95. The numerical simulations
were conducted using a PC with Pentium Core(TM) i7-2670QM CPU of 2.2 GHz and memory
of 4 GB. The language used to implement the algorithms was MATLAB®. In each simulation,
51 iterations were applied. The computation time of the proposed algorithm was 860.482 and
849.994 s, for the images of April 26 and May 2, respectively.

Figures 6 and 7 show the segmentation result obtained with NMRF. In Figs. 6(a) and 7(a), the
detected contours are overlapped to the original test images: contours are closed forms and the
derived label field is integrated into homogeneous regions, while both regularities of the oil spill
distribution and the contextual constraints of the open sea regions are adequately modeled.

Fig. 6 Segmentation results with the image of Fig. 2(a): (a) with the contour between the two
regions of interest, oil spill and sea, overlapped to the original image and (b) binary detection
with data of Fig. 2(a).

Fig. 7 Same as Fig. 6 but with the image of Fig. 2(b).
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Figures 6(b) and 7(b) show the binary map of the oil spill detection, while Table 2 gives the
figures of the oil slick pixels and area in the two test images.

It is confirmed that the contextual functionality of the NMRF model provides a great flex-
ibility in facilitating the reduction of the effects of speckle random behavior.

6 Conclusions

An MRF scheme to model the contextual labeling of oil-polluted ocean surfaces is presented. In
a conventional MRF approach, the set of parameters of the related model is fixed before the
computation of the minimization solution and they remain unchanged along the recurring cycles.
A model with constant parameters is only partially suited to face the statistical characteristics of
SAR data. In the proposed scheme, the conditional distributions are estimated from training sets
and their parameters are updated during the stochastic relaxation of the posterior energy func-
tion; only the pixel values are considered for deriving the probabilistic dependencies of the
Bayesian approach. By incorporating an updated neighborhood system, the NMRF model offers
better performances than the conventional one in detecting fine structures and provides very
satisfactory results in tackling the stochastic features of the sea phenomena.
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