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ABSTRACT. Significance: Fiber photometry (FP) is a widely used technique in modern behav-
ioral neuroscience, employing genetically encoded fluorescent sensors to monitor
neural activity and neurotransmitter release in awake-behaving animals. However,
analyzing photometry data can be both laborious and time-consuming.

Aim: We propose the fiber photometry analysis (FiPhA) app, which is a general-
purpose FP analysis application. The goal is to develop a pipeline suitable for a wide
range of photometry approaches, including spectrally resolved, camera-based, and
lock-in demodulation.

Approach: FiPhA was developed using the R Shiny framework and offers interac-
tive visualization, quality control, and batch processing functionalities in a user-
friendly interface.

Results: This application simplifies and streamlines the analysis process, thereby
reducing labor and time requirements. It offers interactive visualizations, event-
triggered average processing, powerful tools for filtering behavioral events, and
quality control features.

Conclusions: FiPhA is a valuable tool for behavioral neuroscientists working with
discrete, event-based FP data. It addresses the challenges associated with analyz-
ing and investigating such data, offering a robust and user-friendly solution without
the complexity of having to hand-design custom analysis pipelines. This application
thus helps standardize an approach to FP analysis.
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1 Introduction
Monitoring neurotransmission in the brain of freely moving animals is important to understand
how real-time neuronal activity and specific behavioral events are correlated. Identifying this
relationship can help elucidate the underlying circuitry of various brain regions, and how that
circuitry is manipulated by various toxins, diseases, etc. One way to monitor neurotransmission is
fiber photometry (FP), which is an optical technique used for recording cellular activity by
detecting bulk fluorescence signals within cell populations or brain regions.1 Cells are fluores-
cently labeled using viral vectors or transgenetic approaches either at cell bodies2 or within axon
terminals.3 While FP was first developed as a tool to measure intracellular calcium,4–6 it has
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recently been used to detect the binding of specific neurotransmitters to fluorescently labeled
post synaptic receptors.7–10 Recording within multiple brain regions simultaneously is also pos-
sible with FP due to the relatively small size of the implantable optical probes and lightweight
fiber cables.8,11

There has been increased interest in the use of FP for neuroscience, and researchers primarily
depend on lock-in demodulation systems [e.g., Tucker David Technology (TDT) photometry
system] or other custom setups. These systems produce an immense amount of data, which were
conventionally analyzed using custom MATLAB or Python scripts. Several open-source meas-
urement tools and analysis packages have since been developed that operate on all major oper-
ating systems and commonly used programming languages.12–14 These packages helped to
standardize FP analysis, but: (1) these packages are optimized for lock-in demodulation systems
and have either limited or absent support for other systems, and (2) they can easily analyze stimu-
lus triggered-events through transistor-transistor-logic (TTL) pulses (e.g., tone, light, shock, and
drinking), but require additional data preprocessing to analyze experiments that have events
not easily triggered through TTL pulses (e.g., freezing, wheel running, grooming, rotating,
rearing, etc.).

We introduce the fiber photometry analysis (FiPhA) app, which enables researchers to ana-
lyze behavioral data and FP data within the same user interface. FiPhA makes it possible for users
to import multiple data formats from many photometry systems currently available on the mar-
ket. We have validated that FiPhA can analyze data from a lock-in demodulation system (TDT
photometry system),15 a camera-based system (Plexon multi-wavelength photometry system),
and a spectrally resolved system, allowing users to flexibly define fluorescent activity during
events and intervals of interest. FiPhA can also easily incorporate behavioral data collected using
commercially available tracking systems, with the advantage that all of these datasets require
little to no preprocessing before being imported into the app. Additionally, FiPhA can not only
quickly align behavioral and FP data but also offers aesthetically pleasing visualizations. FiPhA
thus helps standardize an approach to FP analysis that is both robust and user-friendly.

2 General Overview of FiPhA
FiPhA was developed using RStudio (v2022.x) and R (v4.2.x). It uses the Shiny framework to
provide user interface functionality and the Plotly package for its interactive data visualizations.

A pipeline for jointly analyzing behavioral and photometry data using the FiPhA app is
illustrated in Fig. 1. This pipeline contains common steps for analyzing behavioral and photom-
etry data in tandem, including preprocessing data, creating event-triggered averages, filtering
behavioral events, and execution of various data analysis tasks. Analysis functionality includes

Fig. 1 Typical workflow for analysis with the FiPhA app.
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the calculation of mean event-triggered averages, summary statistics of event intervals and their
visualization in box-and-whisker plots, and graphics depicting of fluorescence activity by event
across time in the form of heatmaps. The data can be saved as an “.rds” file for future analysis and
the analysis of the event-triggered averages can be exported as an “.xlsx” file.

2.1 Datasets

2.1.1 Importing recordings

During FP experiments, experimenters typically collect photometry signal and behavioral
tracking data using separate software packages. The FiPhA app allows importing data from vari-
ous formats (.xlsx,.csv,.txt,.tsq, etc.).

2.1.2 Spectrally resolved fiber photometry import

Prior to analysis, photometry signals collected using spectrally resolved photometry systems
necessarily undergo a decomposition into signals of interest through the application of either
a linear unmixing algorithm or a “summary statistic”-based option with user-defined ranges
of wavelengths for optimal signal identification when using fluorophores with overlapped emis-
sion spectra (Fig. 2). FiPhA simplifies the linear unmixing step by allowing import of the raw
spectrometer file, set the selected wavelength row, data row, and collection frequency, and then
the import of a specific spectrometer reference file within a single interface. This spectrometer
reference file contains standard fluorescence spectrograms specific to the wavelengths of the
experimentally collected fluorescence signals.

The “summary statistic” option allows for the creation of a ratio of two fluorescence signals
derived from user-specified wavelength ranges via application of a summary function (i.e., area
under the curve, mean, and median), followed by automatic signal detrending. Spectrometer and
behavioral data can then be plotted in the “preview” tab located within the “datasets” view.

Fig. 2 Import options for data collected using spectrally resolved photometry systems. (a) The
linear unmixing algorithm showing a GCaMP and tdTomato fluorescence peak as well as a refer-
ence spectrum. (b) Importing data using the summary statistic option with calculating the area
under the curve. (c) Dataset preview of a 900 s photometry recording session aligned with
TTL pulses of five tone presentations.
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2.1.3 Import of lock-in demodulation and camera-based photometry

Data collected from the lock-in demodulation systems (e.g., TDT photometry system) are
typically saved in “.tsq” or “.tev” formats, which can be imported into the FiPhA app using
the “fiber photometry Gizmo” located under the “import” tab drop-down menu. Users specify
the “.tsq” or “.tev” files by selection of a target directory and the desired fluorescence channel
using the “available streams” drop down menu

Some FP collection systems will save the raw data as a tabular dataset in a “.xlsx” or “.csv”
format. These can be easily imported into the FiPhA app using the “tabular dataset” function
under the “import” tab drop-down menu. To use this feature, the header row numbers, data row
numbers, collection frequencies, and workbook sheet number will need to be specified. Data can
then be similarly visualized using the “preview” tab in the “datasets” view.

Previous analysis sessions using the FiPhA app can be saved as a “.rds” file and reimported
using the “previous session” import option in the drop-down menu.

2.1.4 Preview

After the data are imported into the FiPhA app, the recordings can be observed in the “preview”
tab. Additional recordings can then be added by simply selecting another recording to import,
which then appear as a list under the top drop-down menu. In the “preview” tab, the recording
time is typically depicted on the x-axis, but can be changed on the left drop-down menu.
Manipulating the y-axes can be done under the right drop-down menu. Two datasets can be
viewed at once using the left and right y-axes.

2.1.5 Signal analysis

Signal analysis and investigation of periodic components of a given recording’s continuous var-
iables can be performed using the “signal analysis” tab. Selection of a dataset will produce a lag
autocorrelation plot, a power density spectrum plot, and a spectrogram along with options to
customize the resulting figures (Fig. 3). Lag-N autocorrelation is a measure of a signal’s corre-
lation with a delayed (by N time points) copy of itself, while the power density spectrum and
spectrogram both visualize the overall individual frequencies that contribute to a signal and how
these change over time. Although FP data is a slow signal, typically collected at 25 to 30 Hz,
spectral analysis can reveal oscillatory information at or below the Nyquist frequency (approx-
imately 12 to 15 Hz). This includes important frequencies such delta waves which are indicative
of slow wave sleep.16

2.1.6 Transforms

Recordings can be combined with additional datasets from external hardware (such as behavior
information derived from video recordings) after a dataset has been imported. This functionality
is available under the “transform” menu. Alignment of datasets which do not begin simultane-
ously or those which have been recorded at different collection frequencies are addressed by
nearest neighbor sampling of the behavioral dataset and concatenation of the resulting data
as a new column.

Additional operations available under the “transform” menu include the ability to append
two datasets (row-wise), renaming either the dataset itself or any of its constituent variables,
and calculating a ratio of two dataset variables Low-pass filters can be applied in tandem with
down-sampling of larger datasets. Linear scaling transformations can also be applied, which
helps adjust the magnitude of a variable to that of another and is a necessary step in recreating
the “robust z-score” transformation (see Sec. 2.2.3).

Photobleaching/photoswitching is a common phenomenon seen in FP experiments whereby
the magnitude of fluorescent activity decreases over time [Fig. 4(a)]. To account for this effect,
activity can be modeled as a decreasing function of time via linear or exponential models under
the “detrending” transformation option. Model parameters may be either manually specified or
estimated using least squares fits, and model residuals; predicted values can be returned.
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The detrended fluorescence activity (calculated by subtracting the model’s predicted values from
their raw values) can then be used for subsequent analysis. A ratio of the detrended variables can
be created using the “create ratio” transformation option and the signal can be visualized in the
“dataset preview” tab (Fig. 4).

2.1.7 Custom scripts

Users familiar with the R programming language may optionally apply custom transformations
to imported datasets before event detection. A dialog box provides a text field for users to execute
snippets of code in an environment that has been set up to contain the dataset as a “data.table”
object, an extension of the standard “data.frame” class in base R. Any transformations made are
then carried over to the imported dataset. This functionality allows for the inclusion of complex
operations in workflows that are not already features of FiPhA.

2.2 Events

2.2.1 Binary, binned, and peak events

Binary events. An event series may be defined using a binary (TTL-like) indicator variable
contained within a dataset. Events of this type will correspond to continuous periods which begin
at each rising edge transition (0 to 1) through to the following falling edge (1 to 0). An inverted
type is also available which performs the same identification strategy but instead with the logical
complement of the specified variable.

Fig. 3 Functions located within the signal analysis tab (a), power density spectrum (b), lag auto-
correlation (c), and spectrogram.
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Binned events. In some experimental setups, it may be desirable to divide a time series into
equally sized bins for tasks such as peak counting. This type is parameterized by a starting time t
and bin length L. Beginning at t, each successive interval of length L corresponds to a new
event.

Peak events. Events may be identified using a peak detection method that uses a moving
window of length L to identify periods of a continuous variable that exceed a user-defined thresh-
old in terms of the number of standard deviations away from the window’s mean value.

Timestamped events. For certain experimental setups, events may not be suitably
described using variables within the same dataset. In such cases, FiPhA enables users to man-
ually input a list of start/end timestamps, which correspond to the desired events [Fig. 5(a)].

2.2.2 Normalizations

The FiPhA app provides the choice of three normalization methods based on the distributional
properties of the signal [Fig. 5(b)].

Z-score. The z-score is calculated by subtracting the mean of the interval of interest from the
observation and dividing the resulting value by the standard deviation. This normalization is best
suited to normally distributed, uncorrelated observations.

ΔF∕F . This normalization is commonly used when processing FP data and is the percent
change in intensity relative to a baseline period. Here, the standard deviation is replaced by the
average value. Because the average may be sensitive to large values, the ΔF∕F normalization
may not be appropriate for noisy signals.

Fig. 4 Isosbestic import and photobleaching/photoswitching corrections. (a) Detrending variables
is possible using either an exponential or linear model and predicted values are provided. (b) Raw
data showing two signals undergoing photobleaching/photoswitching over time. (c) The corrected
channels can be visualized simultaneously in the “dataset preview.” (d) A ratio of the corrected
signals can be created using the “create ratio” transformation.
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Robust z-score. A more robust z-score is calculated by subtracting the median percent
change in intensity of the interval of interest from the observation and dividing by the median
absolute deviation.12 This method is less sensitive to outlying observations than the standard z-
score, but may be difficult to interpret since its reference period is no longer centered at zero.

2.2.3 Custom filters

Conditions. Potential events may be conditioned on other variables within a dataset by
specifying a valid R expression (e.g., ‘(time)’ < 360 & cond == T) that returns a logical value.
This expression is evaluated within the context of the dataset for each time step, controlling the
state of inclusion for any potential events prior to filtering. Any valid R function may also be
used in the statement, and an option is available to control whether a potential event must meet
the specified conditions over its entire length, or more loosely at one or more points within its
length.

Filters. An event series definition may also include additional filters, which successively
modifies the list of potential events depending on the signal type. Spurious events introduced
by noisy measurements (such as those derived from video recordings of animal behavior) may be
removed using some combination of these filters.

• Exclusion/inclusion of the first or last events.
• Temporal shifting of events by a constant time.
• Padding of events such that they meet a minimum length.
• Restriction of events to a maximum length of time.
• Exclusion of events that do not meet a specified minimum length.
• Exclusion of events that exceed a maximum length.
• Aggregation of events which occur within a specified amount of time of one another.
• Coalescing of overlapping events.
• Inclusion based on a minimum rate of occurrence.
• Exclusion/inclusion of events based on occurrence before/after a given timestamp.
• Exclusion of successive events which occur within a given time of one another.

Fig. 5 Event-triggered averages for a mouse hearing five separate tone presentations.
(a) Screenshot of events window depicting events being created with a 3 s baseline and 5 s after
the end of the tone. (b) Visualizations of the signal can bemade using different normalization meth-
ods, such as Δ F/F, z-score, and the robust z-score. Equations for computing these quantities are
in Sec. 2.2.2.
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2.2.4 Custom interval times

Intervals of interest can be manually specified in a table, where each entry specifies the name,
reference point, and start/end times in relation to the reference point. Available choices include
the beginning of the event signal, the end of the event signal, the raw event signal itself, or a
“beginning” variant that ensures no overlap occurs with preceding events or their intervals by
adjusting the interval’s start time if necessary.

2.3 Analysis
The “analysis” tab within FiPhA enables users to create several different visualizations of proc-
essed event series. Each plot highlights various features of the resulting data, allowing users to
investigate the full range of events in several different contexts (Fig. 6).

2.3.1 Event heat maps

Heatmaps, which visualize all processed events, are produced under the “analysis” tab. Events
are aligned such that their event signals all start at time zero, with options to sort events by their
order, total length, or area under the curve between either the full event or two specified
points [Fig. 6(b)].

Fig. 6 Data analysis options for viewing event-triggered averages. (a) Normalized z-score of the
data traces of all event-triggered averages calculated during five tone presentations. (b) Event
heatmap of same five tone presentation. (c) Interval summaries depicting box and whisker plots
of the mean values of all events for each interval and normalization scheme.
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2.3.2 Dataset traces

Likewise, visualizations of averaged event responses are also available using the “analysis” tab.
For a given dataset, multiple event series may be plotted simultaneously with options to also
include a shaded area that represents the mean plus or minus a user-provided number of standard
deviations (or standard errors).

2.3.3 Interval summaries

Boxplots containing summary values of event interval across multiple dataset and event series
can be found under the “analysis” tab. In addition to the mean interval value, the median interval
value can also be plotted, as well as the area under the curve value between two time points of
each event [Fig. 6(c)].

2.4 Export
The “export” tab within FiPhA allows for production of Excel workbooks, which contain all
processed event data. Individual tabs corresponding to each dataset and columns for each event
are included. By default, these notebooks are more machine-readable to ensure compatibility
with software that deals with post-processed event data; however, several options exist to control
the formatting of the resulting workbooks and produce more human-readable files. Response
variable names, interval labels, and numerous timestamps (raw dataset time, time within each
interval, and time relative to the start of an event signal) can also be included. Alignment of the
resulting columns can also be done across events by time or interval type to assist in the com-
parison of events within Excel. It is also possible to save the active session as an R object, which
can later be re-imported or manipulated in R without needing to use FiPhA (Fig. 7).

3 Example Workflow
The FiPhA application can analyze data without an associated TTL pulse, for example: freezing,
wheel running, grooming, rotating, rearing, etc. that is derived from a synchronized video from
which behavioral states are extracted. Here, an experiment was performed where ventral hippo-
campal acetylcholine levels during wheel running in mice was analyzed before and after receiv-
ing an intraperitoneal dose of clozapine N-oxide to alter the activity of a physical activity-related
neural circuit. Two separate recordings were taken (before and after the intraperitoneal dosing)
and wheel running analysis was scored using EthoVision XT 16 [Fig. 8(a)] and the raw data was
exported having a timestamped binary output where “0” would be off the wheel and “1” would
depict times running on the wheel. With FiPhA, photometry recordings from the ventral hippo-
campal acetylcholine levels can be aligned to the timestamped binary behavioral output, even if
the collection frequencies are different from the two datasets. Additionally, these two separate

Fig. 7 Various export options within the FiPhA app. The user can export as an excel workbook
or an R data format file to be used for further analysis. The export options enable users to easily
copy and paste the data into other graphing software.
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recordings containing both the behavioral and photometric recordings can be combined and
jointly analyzed [Fig. 8(b)]. From here, event triggered averages can be computed, where indi-
vidual events are filtered, and interval lengths specified [Fig. 8(c)]. This experiment uses behav-
iorally triggered events, unlike data from previous figures which examined stimuli presented by
the experimenter, so there are various lengths for each wheel running event. The ΔF∕F normali-
zation was then performed, and two different views of the event triggered averages were visu-
alized: (1) a trace of the normalized average and deviation across all events [Fig. 8(d)] and (2) a
chronological heatmap of each normalized wheel running event over time [Fig. 8(e)]. This pro-
vides an example of the flexibility with which FiPhA can be used for event-triggered averaging
for behaviorally triggered events.

4 Discussion and Conclusion
Overall, FiPhA is a flexible and multi-purpose FP analysis tool that is broadly useful to the field.
It is compatible with a broad range of photometry system data types, provides powerful visu-
alization tools and enables customizable event definition and filtering. It is fully open source and
developed to meet the needs of the community. While FiPhAwas initially developed to provide
an integrated approach for spectrally resolved FP, we have put extensive effort in to making
it broadly applicable to various photometry methodologies and data formats. Although, not
demonstrated in this manuscript, it will also be useful as the field moves increasingly toward

Fig. 8 A possible workflow for computing event-triggered averages in the FiPhA app using data
collected from a mouse running on a wheel before and after having a drug manipulation.
(a) Behavioral tracking (blue) and photometry signal (black) were collected from two separate
recordings (before and after injection) and later joined within the FiPhA app (b). (c) Events were
then computed with a 20 s baseline and various filtering options, including aggregating smaller
running events. Two separate graphs were then created in FiPhA by plotting (d) a normalized and
averaged trace graph of all wheel-running events and (e) a heatmap of each normalized running
wheel event.
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multi-site recordings as processing of multiple photometry data streams simultaneously was
built-in early in the design.

Future directions include plans for a standalone R package that allows for integration of
FiPhA functionality into user scripts, which do not require the interactivity of the Shiny appli-
cation, as well as the release of FiPhA in an executable format that will be far more user-friendly
to those unfamiliar with R and RStudio. We plan to extend features as requested by the com-
munity and provide tutorials and training to help increase uptake and usage by interested
researchers. Due to its flexibility, wide variety of features, and our plans for continued develop-
ment and support, we hope that that FiPhA will prove to be of broad utility to the photometry
community.

5 Appendix: Equations and Algorithms

5.1 Equations
Several transformations are provided for convenience when normalizing event responses. Each
baseline period is unique, and values are not pooled across events.

5.1.1 Z-score

A standard z-score transformation of x relative to a baseline, r, where r is the mean of the refer-
ence interval, and σr is its standard deviation

EQ-TARGET;temp:intralink-;sec5.1.1;117;483ziðxÞ ¼
xi − r
σr

:

5.1.2 Delta F/F

The relative change of x to a baseline, r, where r is the reference mean. This quantity is also often
expressed as a percentage12

EQ-TARGET;temp:intralink-;sec5.1.2;117;392

ΔF
FiðxÞ

¼ xi − r
r

;

EQ-TARGET;temp:intralink-;sec5.1.2;117;344%
ΔF
FiðxÞ

¼ 100% ×
xi − r
r

:

5.1.3 Robust z-score

A robust z-score-like transformation is described by Bruno et al.,12 which is based on medians
rather than means and uses the median absolute deviation as a measure of dispersion, calculated
as MADðxÞ ¼ medianðjx −medianðxÞjÞ. Consequently, this normalization is less sensitive to
baseline noise, but it is not as straightforward to interpret as baseline values become centered
about their median rather than their mean

EQ-TARGET;temp:intralink-;sec5.1.3;117;234RZiðxÞ ¼
%ΔF∕FiðxÞ −medianð%ΔF∕FðrÞÞ

MADð%ΔF∕FðrÞÞ :

5.2 Algorithms
Processing raw spectrometer data requires a transformation that decomposes wavelengths of
interest into usable time series. Two such methods are available when importing raw spectral
recordings:

5.2.1 Linear spectral un-mixing algorithm

As described by Meng et al.,17 normalized reference spectra of each signal’s peak emission is fit
to every frame of spectral data, which gives sets of linear regression coefficients as a measure of
the change in fluorescence intensity over time. FiPhA’s implementation supports any number of
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reference spectra provided in a simple comma separated value (CSV) format with a column for
wavelength bins followed by a column for each signal’s normalized response over that range of
wavelengths [Fig. 2(a)].

5.2.2 Summary statistic method

In cases where reference spectra are not available or the response in a particular range of wave-
lengths is of interest, an alternative method allows users to select ranges of wavelengths and
calculate summaries based on them over time, such as their mean, median, or integrated area
under the curve. This is essentially a simple deconvolution of the multidimensional spectrometer
readout at each time point. These values can then be used in place of the linear unmixing process
to determine the activity-dependent sensor values (e.g., GCaMP) versus the control fluorophore
(e.g., tdTomato) values for calculating the final signal [Fig. 2(b)].

5.2.3 Animals

All procedures related to animal use were approved by the Animal Care and Use Committee of
the National Institute of Environmental Health Sciences. Animal procedures were performed in
accordance with the recommendations in the Guide for the Care and Use of Laboratory animals
of the National Institutes of Health (NIH).
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