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Abstract. Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique that uses low
levels of light to measure changes in cerebral blood oxygenation levels. In the majority of NIRS functional brain
studies, analysis of this data is based on a statistical comparison of hemodynamic levels between a baseline and
task or between multiple task conditions by means of a linear regression model: the so-called general linear
model. Although these methods are similar to their implementation in other fields, particularly for functional mag-
netic resonance imaging, the specific application of these methods in fNIRS research differs in several key ways
related to the sources of noise and artifacts unique to fNIRS. In this brief communication, we discuss the appli-
cation of linear regression models in fNIRS and the modifications needed to generalize these models in order to
deal with structured (colored) noise due to systemic physiology and noise heteroscedasticity due to motion arti-
facts. The objective of this work is to present an overview of these noise properties in the context of the linear
model as it applies to fNIRS data. This work is aimed at explaining these mathematical issues to the general
fNIRS experimental researcher but is not intended to be a complete mathematical treatment of these concepts.©
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1 Introduction
Functional near-infrared spectroscopy (fNIRS) is a noninvasive
brain imaging technique that uses low levels of red to near-infra-
red light to measure changes in oxy- and deoxy-hemoglobin in
the brain.1 Biological tissue in the range of around 650 to
900 nm (termed the “near-infrared window”) has low intrinsic
absorption and allows light to remain detectable after passing
through up to centimeters of tissue. In this wavelength range,
tissue is highly turbid (scattering), which results in a stochastic
and diffuse path as the photons migrate through the tissue.
fNIRS brain imaging is accomplished by placing light sources
on the scalp of the head. These transmit light into the tissue,
where it diffuses through the volume and can reach around 5
to 8 mm into the cortex of the brain before exiting the tissue
and being sensed by light detectors placed generally between
2 and 3.5 cm from the source. Changes in the optical absorption
of the tissue along this diffuse path from source to detector will
change the intensity of light received by the detector, which is
recorded as a time series, usually at sample rates of several hertz
or above. Measurements at two or more optical wavelengths
within this near-infrared window are used to provide a distinc-
tion between oxy- and deoxy-hemoglobin changes based on the
intrinsic absorption profile differences of these two chromo-
phores and the modified Beer–Lambert law.2

During a cognitive task, there is typically an increase in local
neuronal activity in the brain. This increased activity drives an

increase in oxygen metabolism and blood flow, which results in
a change in blood oxygen saturation and hemoglobin concen-
trations in the brain. This hemodynamic response changes
the optical absorption of tissue and provides signal contrast
in the fNIRS measurements taken from source-to-detector
pairs that cross this region of the brain. The measured fNIRS
signals are then statistically compared between two or more con-
ditions, which may be a baseline/rest condition and a specific
task or to compare the differences between multiple tasks.

Compared with functional magnetic resonance imaging
(MRI), fNIRS is more portable and allows for a wider range
of studies that would be difficult to perform in the immobile
environment of the functional MRI (fMRI) scanner. For exam-
ple, fNIRS has been previously used in functional imaging of
children and infants (reviewed in Lloyd-Fox et al.3), clinical
and bedside imaging (reviewed in Obrig4), and for a number
of unique tasks such as movement/walking,5 operating a car,6

or interpersonal interactions,7 to name only a few. While com-
pared with fMRI, the fNIRS technique offers lower spatial res-
olution (usually around 2 to 3 cm), a limited depth of penetration
(5 to 8 mm into the brain), and greater sensitivity to superficial
physiological noise and motion artifacts, this technology has
been shown to be a complementary alternative tool to conven-
tional fMRI for these sorts of unique applications. The number
of fNIRS studies has been steadily growing over the last decade
(see Ferrari and Quaresima8 and Boas et al.9 for reviews).

2 The Linear Model
During a typical functional brain study, a participant will per-
form repeated trials of a specific task or tasks. A statistical
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model is then used to detect differences in the brain signals
between pairs of tasks or task/baseline. The most common
model used is a linear regression model. This model assumes
that the brain response to the task(s) is linearly additive and
that each task changes the signal by the same amount regardless
of the level of baseline or residual brain activity at the time the
task was performed. In other words, the linear assumption is that
each time the task occurs, the brain changes by the same amount
without saturation effects or interactions between trials. These
assumptions are generally believed to be true for most studies,
although there is some evidence for nonlinearities in the brain
response related to the underlying neural response and the
physical response of blood vessels that have to dilate each
time blood flow is increased. In particular, these effects are
observed when there are very short intervals between tasks
related to neural refraction10 or very long sustained task perfor-
mance due to neural habituation or to the biophysical
Windkessel effect on blood vessel compliance.11

Under the assumptions of the linear model, an fNIRS experi-
ment composed of repeated trials of a cognitive event can be
analyzed by using a linear regression model. The standard linear
model of brain activity is described by the general equation12,13

EQ-TARGET;temp:intralink-;e001;63;510Y ¼ X · β þ ε; (1)

where Y represents the measurement vector. This is a column
vector with one entry per measurement point. In the case of
fNIRS, this is a vector containing either the discrete time-series
measurements of optical absorption for each wavelength or the
estimates of oxy- and deoxy-hemoglobin. X is termed the design
matrix. This matrix encodes the timing of the stimulus events as
regressors in the linear model. In other words, the fNIRS signal
is modeled as the weighted sum of the columns of this matrix
(regressors), with each column representing a different time
course of interest (e.g., a task component). The design matrix
may also contain additional nuisance regressors to model trends
or drift in the data, motion artifacts, or other covariates of the
model. This matrix should additionally have a constant (DC)
column, which models the mean of the signal. The variable β
defines the unknowns in the model and is a column vector of
the weights (coefficients) of the regression model. The goal
of the regression is to estimate these weights based on the
data vector Y and the design matrix X. If the weight β associated
with a particular regressor (e.g., a specific task component) is
statistically nonzero, then that regressor is important in model-
ing the data. Thus, the statistical map of these weights associated
with task components is generally interpreted as indicating the
brain regions that statistically change based on the task (e.g.,
brain activity). Finally, the term ε defines the measurement
error. The specific properties of this noise term are essential
to understanding the specific application of the linear model
to fNIRS data and in what ways fNIRS analysis deviates
from other modalities such as fMRI. The specific statistical
properties of fNIRS noise are the topic of the remainder of
this work.

2.1 Solving the Linear Model

The linear regression model [Eq. (1)] is typically solved by use
of the Gauss–Markov expression, which yields the solution to
the least-squares fit of the data (Y) under the assumption of
spherical, uncorrelated, and homoscedastic noise. These
assumptions will be discussed in Sec. 3. Under these

assumptions, the best linear unbiased estimator of the coeffi-
cients is given by

EQ-TARGET;temp:intralink-;e002;326;730β ¼ ðXT · XÞ−1 · XT · Y: (2)

The uncertainty (covariance) of these coefficients is the given
by the expression

EQ-TARGET;temp:intralink-;e003;326;677Covβ ¼ ðXT · XÞ−1 · σ2; (3)

where σ2 is the mean-squared error of the residual from the
model fit of the data (σ2 ¼ hε2i).

Based on the value of the coefficients and their covariance,
statistical T-tests can be used to test if the coefficients are non-
zero or if multiple coefficients differ from each other (e.g., the
difference is nonzero). The T-test on these coefficients is then
given by the expression

EQ-TARGET;temp:intralink-;e004;326;567T ¼ c · β∕
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c · Covβ · cT

q
; (4)

where c is the contrast vector. The contract vector denotes the
specific test being performed. For example, to test if the first
coefficient is nonzero in a model that has, e.g., four total coef-
ficients, the contrast vector would be c ¼ ½1; 0; 0; 0�. Likewise,
to test the difference of two coefficients (e.g., the difference of
the first and third regressor) in the model, the contrast vector
would be of the form c ¼ ½1; 0;−1; 0�.

3 Noise in Functional Near-Infrared
Spectroscopy Is Nonspherical

The Gauss–Markov unbiased estimator [Eq. (2)] assumes zero-
mean, spherical noise. Noise is said to be spherical when the
errors have uniform variance (homoscedasticity) and are uncor-
related. As we will discuss in Secs. 3.1–3.4, fNIRS data violates
these assumptions.

3.1 The Noise in Functional Near-Infrared
Spectroscopy Is Correlated

Typical fNIRS data have strong physiological noise due to sig-
nals such as cardiac, respiratory, and blood pressure changes.
These physiological signals are typically much slower than
the sample rate of an fNIRS system. This implies that the
noise in fNIRS data has a colored structure and serial correla-
tions. Colored noise refers to the fact that specific temporal (or
spatial) frequencies are present in the noise spectrum. In con-
trast, white noise is characterized by a flat (uniform) noise spec-
trum. Colored noise results in serial correlations in the error term
ε, which means that each sample point is not independent from
the others and depends on its self history. Thus, the effective
degrees of freedom of the linear model are often much less
than the number of sample points. This can also result in a
potential bias in the estimate of the coefficients if the noise
is not mean zero. While fMRI also has colored noise due to
the same systemic physiology, since the sample rate of
fNIRS (up to tens to hundreds of Hz) is typically higher than
fMRI (generally around 0.5 Hz), and since fNIRS is more sen-
sitive to superficial physiology in the scalp, this noise tends to
affect fNIRS measurements more strongly. Figure 1(a) shows an
example of an fNIRS-recorded oxy-hemoglobin signal demon-
strating physiological noise from both cardiac and blood pres-
sure oscillations. In Fig. 1(c), the autocorrelation of this data is
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demonstrated. As can be seen, the autocorrelation of the raw
signal remains significantly above chance well beyond the
20 s of lag time shown in the figure. This shows that two
data points sampled 10 s apart in this file still share on average
60% of the information (down to 20% after 20 s) and cannot be
considered independent measurements. Thus, in this sample
data in Fig. 1, although there are over 7000 time points
(700 s at 10 Hz) in this data trace, there are far fewer than
this number of independent degrees of freedom, thus corrections
must be made to account for this in the statistical model and
estimate of the false-discovery rates for reports of brain activity,
which we will further detail in Sec. 6 of this work.

3.2 Functional Near-Infrared Spectroscopy Data Is
Not Independent Across Measurement
Channels

In fNIRS, correlations are also found between different source–
detector pairs due to the typically low spatial frequencies of
systemic and superficial physiological signals. Motion artifacts
can also give rise to strong spatial noise structures. In addition,

measurements are correlated between optical wavelengths and
estimates of oxy- and deoxy-hemoglobin. Oxy- and deoxy-
hemoglobin are partially correlated variables, which are together
related to underlying changes in neural activity and the resulting
blood flow and oxygen metabolism changes in the brain. Thus,
unlike fMRI, fNIRS analysis generally involves a multivariate
problem with partially correlated variables. More formally, oxy-
and deoxy-hemoglobin are nonlinear correlated as related to the
underlying dynamics of blood vessel dilation and oxygen trans-
port. However, this topic is considered beyond the scope of this
discussion. Spatial covariance and spatially structured noise
have an impact on the assumptions of group level, region-
of-interest, and image reconstruction procedures used in fNIRS.

3.3 Functional Near-Infrared Spectroscopy Data
Exhibits Heteroscedasticity

Noise is said to have homoscedasticity when all the samples
arise from the same noise distribution. In other words, the vari-
ance of the noise is uniform. In general, this is not true for fNIRS
data, which is therefore said to be heteroscedastic. Over the time

Fig. 1 Example of noise in fNIRS data. This figure shows an example of an fNIRS time course of oxy-
hemoglobin. The zoomed view (a, inset) shows physiological noise due to cardiac and blood pressure
changes. Typical motion artifacts (a) are clearly visible on this data as well. (b) A histogram noise dis-
tribution of the data and the best-fit ideal distribution (dotted red line). This is shown in logarithm scale for
the y -axis to highlight the deviations at the tails of this distribution (highlighted in red), which constitute
heavy-tailed noise associated with the motion artifacts. (c) The temporal autocorrelation of this raw data
along with the autocorrelation after filtering and AR prewhitening (described in Sec. 4), which are used to
reduce these serially correlated errors.
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dimension, motion artifacts often confound fNIRS data. A
motion artifact, which may often be considerably larger than
physiological noise, constitutes a heavy-tail to the noise distri-
bution. These artifacts arise from the movement of the fNIRS
sensors on the head and transient changes in the contact of
these sensors with the scalp. A heavy-tailed noise distribution
is one in which there are a few strong noise components com-
pared to the normal noise background. These strong noise terms
are outliers in the noise model. Such noise is heteroscedastic
because these outlier samples are from a different distribution
than the rest of the noise. The example data trace shown in
Fig. 1(a) shows several motion artifacts. The variance of this
oxy-hemoglobin signal evaluated over the time window free
of motion-artifacts from 200 to 260 s [inset; (σ2 ¼ 3.5 μM2)]
is a factor of 25 less than the period from 300 to 360 s
(σ2 ¼ 95 μM2), which has several large motion artifacts.
Thus, this data demonstrates noise from at least two distinct dis-
tributions. In Fig. 1(b), the noise distribution of this data is
shown on a logarithm scale. The best fit of the normal distribu-
tion for this data is shown in red. Heavy-tailed noise elevates the
tails of this distribution and is highlighted in red/shaded on this
figure, which deviates from the assumed normal statistical
model. We note that not all motion artifacts are necessarily out-
liers from the normal distribution of noise, however, and since
these specific types of artifacts do not necessarily violate the
homoscedastic assumption of the noise model, these are not
of specific concern to the solution to the linear model.
Although such noise would lower effect sizes and reduce the
power to detect brain activity, homoscedastic noise would not
necessarily result in an inaccurate statistical model or uncon-
trolled false-discovery.

In addition, the noise over the spatial dimension across
fNIRS channels (source–detector pairs) is also typically nonuni-
form. Specific source–detector pairs or measurements at a par-
ticular wavelength may vary considerably in the level of noise
compared with the other measurements. This noise is largely
determined by how well the sensors are placed on the head, con-
tact with the skin, the presence of hair under the fNIRS probe,
and so on. In practice, it is not uncommon to have an order of
magnitude difference or more in the signal-to-noise ratio
between channels with good and poor contract on the head.
Thus, the noise across fNIRS channels should not be assumed
to be normal and exhibits heteroscedasticity. Due to the small
number of fNIRS measurement channels compared with voxels
in an fMRI scan, the central limit theorem generally does not
apply in the fNIRS spatial domain. In the analysis methods
used in the program NIRS-SPM,14 noise covariance estimates
are performed by pooling the data across channels with the iter-
ative restricted maximal likelihood (ReML) method. The ReML
method is used to estimate both the noise covariance and the
autoregressive (AR) coefficients within the covariance structure
used in the prewhitening procedure (discussed in Sec. 4 of this
work). Because this method obtains only one set of hyperpara-
meters for oxy- and deoxy-hemoglobin that define the covari-
ance structure applied to the whole channel set (e.g., across
channels with varied qualities of optode-head contact), this esti-
mate can be skewed by having one or a few channels that have
very different noise from the other channels, as demonstrated in
Sec. 6 of this work. As a result, the use of ReML in the NIRS-
SPM software requires an additional preprocessing step,
described in the user manual, to remove “bad” channels prior
to computing the ReML covariance models. This step is not

generally required in fMRI analysis, since the spatial noise of
fMRI is more uniform and can otherwise be spatially smoothed
(spatial precoloring). However, in fNIRS data, the noise per
optical source–detector pair can vary significantly, thus the
same noise model is often not sufficient for analysis (we will
return to this concept in Sec. 6 of this paper). In addition, spatial
heteroscedastic noise across the fNIRS measurements is of con-
cern in group-level analyses, where corresponding channels are
analyzed across subjects, and in analysis pooling data from
multiple channels on the probe such as region-of-interest or
image reconstruction methods.

3.4 Functional Near-Infrared Spectroscopy Data
May Be Nonergodic and Nonstationary

fNIRS noise due to systemic physiology may also appear to
change over the length of a scan or study as a reflection of
very slow underlying physiological changes (e.g., due to pos-
ture, blood pressure, and so on). Of more concern in analysis,
however, systemic noise may also change corresponding to the
stimulus task. During physical tasks such as motor movement
(e.g., finger tapping) or tasks such as walking or exercise,
changes in respiration, heart-rate, and blood pressure may be
altered in a task-dependent manner. Thus, the noise during
these time blocks may have different properties (mean, variance,
or spectral content). This type of noise is said to be nonstation-
ary or nonergodic. Specifically, because systemic physiology
can change in a task-dependent manner, the noise structure
of the “baseline” can be different from the “task,” which violates
assumptions of the T-task and the estimation of brain activity
under these conditions. The issue of nonstationary noise in
fNIRS has been addressed in a number of publications in the
context of dynamic estimation models such as a Kalman fil-
ter,15–18 but since there is no simple solution to dealing with
these noise errors, we will simply note that this is a potential
source of error that could cause fNIRS signals to violate the
common assumptions in most statistical models used to date
in analysis, and very little is known about how much of an effect
this has on the sensitivity and specificity of fNIRS methods.

In Fig. 1(a), we show an example of an fNIRS data trace of
oxy-hemoglobin from an experimental study (unpublished).
This is a fairly representative trace of the quality of data that
we often see in our own studies. This particular time course
was from a child imaging study and shows a few more motion
artifacts than one might see in an adult fNIRS study since often
for adults, the head cap can be placed tighter and there is a bit
better subject compliance. While a zoomed view (inset figure)
shows clear physiological signals related to cardiac and respi-
ratory fluctuations, the full time course also shows larger but
less frequent noise fluctuations from the motion of the fNIRS
head cap relative to the head (indicated in the figure). These
motion artifacts are almost an order of magnitude larger than
the variance of other parts of the data (e.g., physiological
noise shown in the zoomed view) and much greater than
expected from physiological fluctuations. These infrequent,
larger fluctuations deviate from uniform normal statistical dis-
tribution and create a heavy-tailed noise distribution, as shown
in Fig. 1(b), which shows the best fit of a normal distribution to
this data and highlights the deviations due to these outliers at the
tail of this distribution (red/shaded). A metric such as the
Tukey’s bisquare weight (also shown in panel B as the dotted
blue line) can be used to estimate the probability of these values
at the tails of the normal distribution as outliers, which is
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iteratively used in robust regression methods, discussed in Sec. 5
of this paper. As further shown in Fig. 1(c), the structures in the
noise also generate serially correlated errors in which the current
sample point depends on previous samples and the assumption
of independent noise is violated. In this example trace, the raw
data maintains autocorrelation for more than 20 s of lag (200
sample points at 10 Hz).

4 Correcting Nonspherical Correlations in
Functional Near-Infrared Spectroscopy
Noise

As previously stated, Eqs. (2) and (3) make assumptions about
the noise in the linear model being uncorrelated that are violated
in most fNIRS data sets by the presence of systemic physiology
and to a lesser extent by motion artifacts. A standard solution to
deal with nonideal colored noise is to apply a filter to the model
that transforms the noise into a normal distribution, then to apply
Eq. (2) to this filtered model.13,14,19–22 These modifications to the
linear regression model attempt to make the statistical approach
applicable to more general noise structures and are termed the
general linear model (GLM) approach. They were developed for
fMRI data analysis within the program SPM12,13,21,23 and later
adapted to fNIRS analysis.14,19,24,25

4.1 Noise Prewhitening

Prewhitening of a regression model is a process in which the
data and model are reweighted to remove colored noise from
the residual ε. The prewhitening expression is given by

EQ-TARGET;temp:intralink-;e005;63;433W · Y ¼ W · X · β þW · ε; (5)

where both the left- and right-hand sides of Eq. (1) have been
multiplied by a whitening matrix W. W is selected such that the
residual of the model Wε is now white and the assumptions of
uncorrelated noise in the model are no longer violated. As an
example, if the fNIRS measurements contain a slow physiologi-
cal component (e.g., 1∕10 Hz; the so-called Mayer waves), then
W is designed to downweight these frequencies in the noise ε
and remove this correlation. This matrix is applied to both the
measurement Y and the design matrix X, which means that when
this whitened model is solved, the down-weighted components
contribute less to the estimate of β. In a sense, this can be
thought of as a high-pass filter applied to both sides of the equa-
tion. The solution to Eq. (5) can be obtained by substitution into
Eqs. (2) and (3) with the new model (e.g., Yw ¼ WY and
Xw ¼ WX), and is given by

EQ-TARGET;temp:intralink-;e006;63;237β ¼ ðXT
W · XWÞ−1 · XT

W · YW: (6)

As a further note, prewhitening is not the same as prefilter-
ing. Prefiltering is a preprocessing step in which a high-pass fil-
ter is applied only to the data. For example, a 1∕60 Hz high-pass
filter is often used in fNIRS to remove slow drifts from measure-
ments. As demonstrated in Fig. 1, some of the observed tempo-
ral autocorrelation can be reduced by high-pass filtering, but this
may introduce anticorrelations in the data, as shown in Fig. 1(c)
by the negative correlation at a 5-s lag and beyond. In compari-
son to prewhitening, prefiltering is applied only to the measure-
ments (Y and ε terms), but not the design matrix X. Since this
filtering is not applied to X, the estimate of β is no longer
unbiased. Thus, prefiltering should only be used if one has con-
fidence that the frequencies being removed were not relevant to

model of the data (e.g., Xβ). Since this is not the case in pre-
whitening, which is applied to both sides of the expression, pre-
whitening is generally recommended over prefiltering to avoid a
biased estimate of β.

The whitening matrix W can be specified either based on
prior expectations about the frequency content of the noise in
the data or empirically by iteratively fitting the model and exam-
ining the residual. The prior case requires the user to specify a
specific frequency filter. For example, a 0 to 1∕60 Hz discrete
cosine transform (DCT) might be used to whiten slow drifts in
the data akin to a high-pass filter. In this case, W is constructed
from the residual forming matrix of the filtering regressors [e.g.,
W ¼ I −D · ðDT · DÞ−1 · DT , where I is an identity matrix and
D is the matrix constructed from the DCT regressors]. The ad-
vantage of using filters based on prior expectations on the noise
structure is that it is fast and computationally simple. In fMRI, e.
g., iterative estimation of a whitening filter on a per-voxel basis
would be time consuming. Prior defined whitening filters such
as the DCT filter also have the advantage of having a more
straightforward interpretation in terms of control over exactly
which frequencies are affected in the model. Prewhitening
using a DCT filter [or similar, such as the minimum descriptive
length (MDL) wavelet method25] is used in programs such as
SPM12 and NIRS-SPM.14 Predefined whitening filters, however,
may not be entirely efficient. For example, if there were no low
frequencies in the noise, one is unnecessarily discarding infor-
mation from the data, but in principle does not change the esti-
mate of β, although its uncertainty will likely increase because
less information is being used in the estimate.

An alternative is an iterative approach that estimates W
directly from the residual noise in the data, which can offer a
more efficiently whitened noise spectrum, but is more computa-
tionally intensive. In the iterative methods, the linear model is
first fit using no whitening (e.g., W ¼ identity). The residual
noise is then estimated from the model fit via Eq. (6), and
the whitening matrix is found based on the current residual.
The whitened model is refit and continued until convergence.
A common approach to estimating the whitening filter is to
fit an autoregressive model to the residual.19,20,22,24 An autore-
gressive model will remove periodic noise structures (e.g., the
dependence of a current time point to its self history). Additional
components such as moving-average (ARMA) or integrative
(ARIMA) models can also be used to additionally model
drift and nonstationarities in the noise. The whitening model
(AR or other) is fit to the residual of the linear regression,
then used to construct the whitening matrixW. As a slight varia-
tion of this approach, in the SPM12 and NIRS-SPM14 programs,
the AR model is currently implemented as an off-diagonal struc-
ture in the covariance components used in the iterative ReML
method and estimated using an expectation-maximization algo-
rithm. Here, the same AR model is applied across all spatial
channels and is often used in addition to the DCT or MDL pre-
whitening methods.

Figure 1(c) shows the effect of prewhitening on the temporal
autocorrelation of a sample NIRS data file. As demonstrated in
this figure, AR models can further reduce this autocorrelation,
but require a fairly high model order to completely whiten the
noise. In this case of 10 Hz data, a model order of n ¼ 33 was
determined by Bayesian information criteria for optimal whiten-
ing. This model order is notably larger than typically used
for similar corrections in fMRI research. In comparison, the
default AR model order used in the ReML prewhitening step of
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NIRS-SPM14 is n ¼ 1, which, as we will show in Sec. 5 of this
paper, corrects some but often not all of these serially correlated
errors. The first order AR model (n ¼ 1), shown in Fig. 1(c),
reduces the significant autocorrelation to below a 5-s lag but
introduces some ringing in the autocorrelation and negative cor-
relations in the structure of the noise.

4.2 Noise Precoloring

Noise precoloring is an alternative to prewhitening that has been
used in fMRI analysis including SPM12 and NIRS-SPM.14 In
noise precoloring, a known noise color spectrum is applied
to the data to mask over the natural but unknown noise.26

Although there is now more colored structure in the noise, it
has a known profile and can be accounted for by changing
the statistical model. Similar to prewhitening, the temporal pre-
coloring matrix is applied on both sides of Eq. (1) to yield an
expression similar to Eq. (5). While prewhitening is akin to a
high-pass filter, precoloring is similar to a low-pass filter and
imposes additional autocorrelation structure on the noise that
overpowers the intrinsic (unknown) structure.

Precoloring assumes homoscedastic noise and is adversely
affected by the presence of heavy-tailed and outlier noise points.
By imposing strong autocorrelation structures on the noise, out-
lier noise points can be smeared, affecting large portions of the
data. This is similar to the effect a low-pass filter would have on
an outlier spike in the data (e.g., due to motion). Thus, precolor-
ing in the presence of heavy-tailed noise distributions can
increase the overall noise of the data and be counterproductive.
This blurring also reduces the effectiveness of outlier regression
(robust regression) methods, as described in Sec. 5. Thus, in
general, prewhitening is recommended over precoloring for
fNIRS data.

5 Correcting Heteroscedastic Noise in
Functional Near-Infrared Spectroscopy

Prewhitening of the linear model via Eq. (5) reduces the effect of
correlations in the noise of the fNIRS data. However, even once
the correlations are effectively dealt with, noise will still have

outliers due to motion artifacts within the time dimension.
After prewhitening, these outlier artifacts will typically be
sharpened in the noise. Thus, prewhitening is necessary, but
not sufficient, to correct nonspherical errors in fNIRS data.

Heteroscedasticity is when the noise comes from a nonuni-
form distribution, as in the case of outliers. Robust regression is
an iterative reweighting method to correct these errors by down-
weighting outliers in the noise.27 In this method, the model is
first solved, yielding an estimate of the residual noise. The
noise is then studentized (divided by the standard deviation
of the noise) to provide a measure of how far each individual
noise term is from the mean and variance of the remaining
noise. For example, strong outliers will be several standard devi-
ations away from the distribution of the remaining noise points.
As a note, not all motion is necessarily a strong outlier.
However, only outliers bias the model estimates, thus motion
artifacts that are not heteroscedastic compared to the rest of
the noise do not necessarily need to be corrected. A weighting
function such as the bisquare or Huber loss function is then
applied to downweight time points that are outliers. The result-
ing weight matrix S is a diagonal matrix. Similar to the prewhit-
ening and precoloring operations, this matrix is applied to both
the left and right sides of the regression model, yielding

EQ-TARGET;temp:intralink-;e007;326;499ðS · WÞ · Y ¼ ðS · W · XÞ · β þ ðS · WÞ · ε (7)

in the case of the prewhitened and unweighted regression model.
The model is solved for β and the residual S · W · ε. This proc-
ess is repeated until convergence and is described in detail in
Barker et al.24

6 Comparison of Methods
In Fig. 2, we offer a comparison of the prewhitening, precolor-
ing, and robust regression methods described in Secs. 4.1–4.2 as
implemented in currently available fNIRS software programs.
To generate this comparison, known simulated “brain activity”
was added to a set of experimental baseline fNIRS data files
containing both physiological noise and motion artifacts as
described in Barker et al.24 The simulated activity was added

Fig. 2 Comparison of statistical model correction methods. Simulated activity was added to resting-state
experimental fNIRS data and analyzed using several models described in the text. (a) A sensitivity-speci-
ficity (receiver operator curve) for the comparison of these methods. Models with better performance are
closer to the upper-left corner of the plot. (b) The control of type-I errors (false-discovery rates) for the
various methods. This plot shows the actual false-discovery rate (y -axis) against the reported p-value
obtained by the method (x -axis). Deviations from the line at slope of unity show the tendency toward
overestimation of the significance of results and uncontrolled false-discoveries by the method.
Similar simulations have been described in Barker et al.24
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to half of the optical channels and repeated 1000 times. For each
simulation, the same data were analyzed using several models
including: (i) ordinary least-squares model (OLS) (e.g., as used
in HOMER10 software), (ii) AR filter and iterative robust least-
squares model described in Barker et al.24 [prewhitening-AR(n)
and robust], (iii) prewhitening using the default AR(1) covari-
ance component model (ReML) and additional 128-coefficient
DCT in NIRS-SPM14 [prewhitening-AR(1) and DCT], (iv) pre-
whitening using the AR(1) and MDL wavelet model25 in NIRS-
SPM14 [prewhitening-AR(1) and MDL], (v) noise prewhitening
using the DCT high-pass filter implemented in NIRS-SPM14

[prewhitening-DCT], and finally (vi) noise precoloring using
the “hrf” low-pass filter and a DCT high-pass filter implemented
in NIRS-SPM14 [precoloring low/high pass]. The NIRS-SPM
code14 was implemented using release 4.1 along with SPM-
12. All models and data used in this example are included in
a demonstration script as part of our MATLAB NIRS-toolbox
(available at or from the corresponding author). The ordinary
least-squares model was implemented using the Gauss-
Markov equation [Eq. (2) in this work] which is the default
method implored in the HOMER28 and HOMER-2 programs
but was coded in MATLAB-2015b outside of the actual
HOMER program.

In Fig. 2(a), we show the sensitivity-specificity [receiver
operator curves (ROC)] comparing the various methods
described in the last paragraph. The true positive rate and
false-positive rates are plotted for each method calculated
from the simulations. An ideal model would approach the
upper left corner of this plot indicating perfect estimation
(100% sensitivity and 100% specificity). The overall sensitivity
of the model in an ROC analysis depends on the contrast-to-
noise of the simulated “brain activity” amplitude (or quality
of the data for experimental data) and was simulated at
0.7 μM amplitude to achieve (corresponding to approximately
a medium effect sized Cohen’s-d value of 0.3 to 0.4 for this data
set). Thus, for tasks that have larger amplitude changes or data
with less noise, the performance of all these models should
improve.

The AR-IRLS model,24 which uses both prewhitening and
robust regression had the best performance in these simulations.
Second, the precoloring method using both a low and high-pass
filter implemented in NIRS-SPM14 had the next best perfor-
mance. This was followed by the prewhitening method using
only the DCT high-pass filter. The ReML-based AR(1) models
implemented in NIRS-SPM14 had slightly lower performance
and similar to the uncorrected (OLS) model. Prewhitening
with the AR(1) and MDLmodel had slightly worse performance
than the uncorrected OLS model. As previously stated, the
ReML-based implementation of the AR prewhitening models
in NIRS-SPM computes one set of noise and AR hyperpara-
meters across all channels (separately for oxy- and deoxy-hemo-
globin), which can be affected by nonuniform spatial noise
across the channels and can cause a few bad channels to con-
taminate others. This likely contributed to the lower sensitivity
of these models in the simulations.

In Fig. 2(b), we show the control of the type-I errors in these
models. As previously described in this paper, physiological
noise (serial-correlations) and motion artifacts can introduce a
high level of uncontrolled false-discovery. Our previous work
published in Barker et al.24 details these effects in more detail
and rigor and the reader is directed here for more details. As a
demonstration of uncontrolled false-discovery, in Fig. 2(b), the

actual false-discovery rate estimated from the ROC analysis is
plotted against the corresponding p-value estimated from the
method (e.g., this plots the actual FDR verses what
MATLAB reported). An ideal model would lie along the line
of slope unity (dotted gray) where the estimated p-value asso-
ciated with the regression agrees with the false-discovery rate as
determined by a ROC analysis. As shown in Fig. 2(b), the ordi-
nary least-squares model (e.g., with neither corrections for serial
correlations nor noise heteroscedasticity) had the worst uncon-
trolled false-discovery rates. For example, in this data set, at a
reported estimated p-value of p < 0.05 (x-axis), the actual false-
discovery (y-axis) was close to 30%. This means that when data
is displayed at a threshold of p < 0.05 reported by the respective
code, 30% of the channels with no added “brain activity” were
falsely reported as significant. These errors were similar in the
prewhitened NIRS-SPM model using only the DCT high-pass
filter. We found that the use of the AR(1) model in addition to
the DCT or MDL filters, produced a better control of type-I
errors, however, this was still considerably above the ideal
response (about 15% FDR at p < 0.05). The NIRS-SPM soft-
ware also applies the Welch–Satterwaite estimate of the
degrees-of-freedom for these models,14 which was used to report
the p-values in this figure. However as shown, this correction is
not entirely sufficient to correct the model. The precoloring
method using both a low and high-pass filter in NIRS-SPM
and the AR-IRLS model using both AR prewhitening and robust
regression had the best control of the type-I errors and nearly
ideal response profiles. As a further note, this uncontrolled
false-discovery rate issue is different from corrections for multi-
ple comparisons. Methods like Bonferroni or Benjamini-
Hochberg29 correct for false-discovery that results from per-
forming multiple tests, but assume that the p-value is reliable
for any single test. The type-I errors that arise from serially cor-
related noise result in unreliable and incorrect estimates of the
reported p-value for a single test.

7 The Design Matrix for Functional
Near-Infrared Spectroscopy Studies

The design matrix (X) encodes the timing of the task events
and any additional trends in the time series of the data. It is
a matrix with dimensions of the number of measurement points
by the number of regressors in the model. Two common var-
iations of this matrix are generally used in fNIRS or fMRI
analysis—the deconvolution [or finite impulse response
(FIR)] model and the canonical model. In the deconvolution
model, no assumptions are made, and the unbiased shape of
the hemodynamic response is estimated from the regression
model. In the canonical model, which is widely used in
fMRI analysis, a predefined shape models the response.30,31

Equations (1)–(7) represent both types of models and the
methods for solving the equations are the same for both
approaches.

Historically, fNIRS analysis has largely followed the FIR/
deconvolution model, whereas fMRI analysis has tended to
favor the canonical models. From a pragmatic point of view,
it is not practical to view 10;000þ response curves from
each voxel of an fMRI scan, so directly testing the hypothesis
by compressing the data using a canonical model and displaying
a statistical parametric map became the early standard offered in
software like SPM.31 In contrast, the structured physiological
noise and motion artifacts as just described can greatly affect
fNIRS results if this noise is not properly accounted for and
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assumptions are violated in the statistical model. Thus, the abil-
ity to visually examine the fNIRS response subjected fNIRS
results to a human quality assurance test. Using a deconvolution
allowed researchers to visualize the shape of the curve from their
data. Since fNIRS is often used in unique populations such as
infants and children or in unique tasks, there has been debate on
if the standard hypothesis (e.g., canonical response) developed
for fMRI is appropriate for fNIRS. For these reasons, most of the
early fNIRS work used deconvolution models. Although in
recent years there have been many more studies using the
canonical model in fNIRS, these are still looked upon with
skepticism, particularly in certain areas of fNIRS research.

7.1 The Deconvolution Finite-Impulse Response
Model

In a deconvolution model, the design matrix encodes the timing
of the stimulus events but makes no prior assumptions about the
shape of the response. The design matrix is constructed from
shifted columns of a binary vector (e.g., 0’s and 1’s) constructed
from the onset of the stimulus. Each column of X contains a
shifted version of the stimulus onsets. For example, the first
(unshifted) column models the response at time ¼ 0 from
when the stimulus onset occurred. The second column (shifted
by þ1) models the response one time point after the onset of the
stimulus. Columns shifted backward (e.g., shift ¼ −1) model
the response before the stimulus onset (e.g., prebaseline peri-
ods), and so on. Thus, in this design matrix, there is one regres-
sor for each time point over the window in which one is trying to
estimate the response. As an example, if the data was sampled
twice a second (2 Hz), the design model for a 30-s-long task
with a 14-s-long poststimulus (recovery) period would have
88 (30 s × 2 Hzþ 14 s × 2 Hz) columns. When the model
was estimated, there would be 88 corresponding coefficients
β that model the amplitude of the response over this entire
time period from stimulus onset until 14 s after the end of
the task. If these coefficients were plotted as a time course,
one would hope to see a response rising with the stimulus, stay-
ing elevated for around 30 s, then falling back to baseline around
6 to 10 s after the task ended. In this model, the entire time
course for the response is estimated, and the only assumption
that is made about the response is that it has recovered before
the end of the estimation window. One limitation of the full
deconvolution model, however, is that all events of the same
type must have the same duration since the same estimation
time window is used for all events of the same type.

In order to define the statistical contrast, a contrast vector
must then be specified to compute the average contrast over
some time window via Eq. (4). Continuing the same example,
if the estimated response were 44 s long and estimated at 2 Hz,
then the T-statistic for the window from 10 to 30 s could be
found by setting the contrast vector c to 1’s for the 20th to
60th entries and 0’s for everything else, as defined in Eq. (3).

A variation on the full deconvolution model is the impulse
response model. In the impulse response model, the design
matrix is constructed with knowledge of the duration of events,
and the model of the response is the convolution of the task
duration with an impulse response. An impulse response is
the theoretical response to a short task only one time point in
duration. To construct this design matrix, each column of the
matrix is a binary vector of 1’s during the duration of the stimu-
lus and 0’s for baseline periods. In this case, the columns are
shifted to model the impulse response. In the same example

discussed above, each single column of the design matrix
would have 30-s blocks (30 s × 2 Hz ¼ 60 points) for each
stimulus event. This would be shifted 28 times to model the
14-s window of the impulse response (14 s × 2 Hz ¼ 28).
This model has fewer coefficients than the full deconvolution
model, but makes the assumption that the response is sustained
at the same level for the example 30-s duration of the task. The
advantage of this model, however, is that it can be used to
describe experiments where stimulus blocks of the same type
have different durations (e.g., in the case of a self-paced
study) since the duration of each block is encoded in the design
matrix and the impulse response function does not vary with the
stimulus duration.

7.2 The Canonical Model

The canonical model is widely used in fMRI studies. Instead of
modeling the shape of the response by allowing each time point
in the response to be described by a separate coefficient β, the
canonical model uses a prior hypothesis on the shape of the
response. This idealized response shape is then used to construct
the design matrix such that only one coefficient (or a few) is
needed to model the amplitude of the response. In this
model, the shape of the curve is fixed. This shape represents
a prior on the expected response. A number of different varia-
tions of this model have been proposed.30

8 Relationship of Finite-Impulse Response
and Canonical Models

Combining Eqs. (3), (4), and (7), the statistical contrast for the
prewhitened and weighted regression model is given by the
expression (XWS ¼ S · W · X)

EQ-TARGET;temp:intralink-;e008;326;401T ¼ c ·
ðXT

WS · XWSÞ−1 · XT
WSffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2 · c · ðXT
WS · XWSÞ−1cT

p · Y: (8)

This expression applies to both the FIR and canonical models
(which we will now denote as XFIR and XCAN for the weighted,
preweighted design matrices). For the example of a single
canonical regressor, by comparing the canonical and FIR
expressions and setting the equivalent Eq. (11)s equal to each
other, we find that

EQ-TARGET;temp:intralink-;e009;326;288CFIR ¼ ðXT
CAN · XT

CANÞ−1 · XT
CAN · XFIR: (9)

This states that to the extent that the estimate of the noise σ2

is the same for both models, then the canonical and FIR models
will produce the same statistical T-contrast when a contrast vec-
tor is given by Eq. (9). When the contrast vector of the FIR
model is given by Eq. (9), we can see that

EQ-TARGET;temp:intralink-;e010;326;201TFIR∕TCAN ¼ σCAN∕σFIR; (10)

where σ2 is the mean squared error of the two models. Since the
FIR model has more unknowns, σ2 for the FIR model will gen-
erally be equal to or less than that for the canonical model. If we
examine Eq. (9), we can see that this expression approaches the
approximate limit

EQ-TARGET;temp:intralink-;e011;326;115CFIR ≈ ΓCAN (11)

under the conditions when XT
CAN · XCAN ¼ I (e.g., optimally

designed stimulus timing; see Ref. 32) where ΓCAN is assumed
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to be the canonical response shape. Thus, by setting the contrast
vector c of the FIR model equal to the canonical response, the
two models approach each other in Eq. (10). More formally,
Eqs. (9) and (10) show that this happens when the contrast vec-
tor is equal to the projection of the (weighted and prewhitened)
design matrix for the FIR model onto the space of the (weighted
and prewhitened) canonical model. Deviations from the
approximate limit in Eq. (11) occur because of the weighting
and prewhitening and any efficiencies (e.g., overlapping
responses) in the design matrix, which result in differences
between defining the contrast in the original measurement space
(canonical model) and defining it in the estimation space
(FIR model). These deviations are explained in Eqs. (9)
and (10).

We can also see, following a geometric interpretation of the
regression model, that Eq. (8) is maximized when the contrast
vector is a unit normal vector pointing in the direction of β. In
other words, the T-statistic is maximized when the shape of the
contrast vector matches the shape of the estimated response β.
Thus, using a tapered contrast window that matches the shape of
the response will produce a higher T-statistic compared to com-
puting a mean over a time window (e.g., c is a binary vector of
1’s and 0’s). Thus, the canonical response is a prior expectation
of what this response looks like and will maximize the T-sta-
tistic when the actual response resembles this assumption.
Following the opposite prospect, we can also see that specifying
a binary contrast vector in the FIR model (e.g., c is uniform 1’s
over some time window and else 0’s) is equivalent to using a
shifted canonical boxcar model. It also follows from this inter-
pretation that misspecification of the canonical model (e.
g., using the wrong shape) is akin to using the wrong contrast
window in the FIR model. In the context of fNIRS, the type-II
errors for the estimate of the two chromophores (oxy- and
deoxy-hemoglobin) may differ for either the FIR or canonical
models because the contrast window does not necessarily
(equally) match both responses. In general, the responses of
oxy- and deoxy-hemoglobin are shifted relative to each other
by up to a few seconds.33

Finally, Eq. (11) provides a potential compromise between
those researchers who favor the canonical and deconvolution
methods because it shows how to convert from the FIR to
the canonical model. Thus, using this expression, one can per-
form a full deconvolution, visualize the experimentally mea-
sured hemodynamic response, but then report a statistical
contrast (T-statistic) based on the canonical model that allows
it to be directly compared to other research studies.

9 Conclusion
This paper offered a review of the noise structures that are often
observed in fNIRS data and the impact that this noise has on
common statistical tests. More specifically, we discussed the
assumptions that the statistical regression models often make
and how these assumptions can be violated by the properties
of fNIRS such as serially correlated noise due to physiology
or outliers to the normal noise distribution due to motion arti-
facts. To restate the problem, all statistical linear models
(whether block averaging, deconvolution, canonical linear
regression models, and so on) make certain mathematical
assumptions about noise properties, and the noise in fNIRS
data often violates those assumptions.

There are two ways to deal with noise that violates the
assumptions of the statistical model. One approach is to

somehow remove the noise/artifacts from the data. To date,
this is how the vast majority of NIRS analysis has been
done (reviewed in Huppert et al.28), including many of the
methods implemented in the fNIRS HOMER software pro-
gram. For example, in the case of the motion artifacts
shown in Fig. 1, one could identify these periods of time
and remove this chunk of data from analysis or try to correct
it using a principal or independent component analysis or
wavelet filters (see Cooper et al. for review34). After correc-
tion, one has obtained a “cleaned” time course, which is
used in the statistical analysis. If the filter/noise removal
worked perfectly, the noise will longer violate the statistical
assumptions of the model and the results will be reliable.
However, a common problem with noise reduction methods
is that there is no perfect method to remove all types of arti-
facts; therefore, it becomes subjective and often relies on the
user’s expertise to select and use these signal processing tools
properly. While in general, removing or correcting noise from
the data could increase the effect size of the brain activity,
increasing detection power and potentially lowering the
required population sample size of the study, if the noise is
incompletely removed, the assumptions of the model can
still be violated, which can lead to inaccurate reporting of
the statistical model. In some cases, such as low-pass filtering
of the data, this can introduce more violations to the statistical
model (in this case serial correlations).

A second approach to dealing with noise that violates the
assumptions of the statistical model is to leave the data alone
and instead change the assumptions of the statistical model
so that it is more generalized and can handle the properties
of the artifact without violating any assumptions. Specifically,
the “G” in GLM refers to generalizing the statistical model
to correctly deal with nonnormally/nonspherically distributed
noise. This paper specifically dealt with the methods and options
that use this second approach to dealing with noise. The
prewhitening/precoloring and robust regression methods that
were described here are not noise correction methods.
Instead, these approaches attempt to correct the statistical
model to make it more generalized. The benefit of this second
approach is that as long as you make the model general enough,
you can use the same model on any type of artifact. That is, not
all fNIRS data has motion artifacts and not all motion artifacts
necessarily violate the assumptions of the statistical model.
Even if there was no artifact or the type of motion was such
that no assumptions were violated in the original model,
using the generalized model will produce a more statistically
reliable result compared to a model in which the assumptions
are violated.

The two approaches to dealing with noise are not exclusive
of each other, but our claim is that using the right statistical
model is to controlling false discovery in the results (e.g., mak-
ing sure your conclusions are valid). The control for type-I errors
shown in Fig. 2(b) demonstrates this point. There is an important
distinction to be made between noise that exists and therefore
makes it harder to detect brain activity by lowering the effect
size of the activity and noise that violates the statistical assump-
tions of the statistical model, which results in unreliable statis-
tical tests. While noise correction methods, when used correctly,
can remove noise and increase effect sizes, statistical model cor-
rection methods like the ones described in this paper help to
obtain more reliable results.
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It is the opinion of the authors of this paper that the following
represent the minimum current best practices for fNIRS
analysis:

• Noise prewhitening should be used to remove the effects
of structured noise and serially correlated errors in the
fNIRS measurements. The presence of physiological
noise in fNIRS data causes violations of the assumption
of independent noise in the statistical model and can result
in high false-discovery rates if uncorrected.

• Prefiltering (e.g., a bandpass filter applied to the fNIRS
data) should be avoided as a separate step. Instead, filter-
ing should be applied within the regression model and
applied to both sides of the expression [as in Eq. (5)]
to avoid bias in the estimated response.

• Noise precoloring is not generally recommended for
fNIRS data because of the frequent presence of heavy-
tailed noise both in time (e.g., due to motion artifacts)
and across channels (e.g., bad coupling of sensors to
the head). Precoloring can result in exaggeration of this
heavy-tailed noise by spreading it across channels or time.

• Robust regression methods or similar outlier rejection
methods are recommended in the context of the linear
regression model to deal with heteroscedastic noise.

• A tapered contrast window [c in Eq. (4)] will maximize
the T-statistic when the shape of c matches the hemo-
dynamic response. The canonical hemodynamic response
is an expectation of this shape.

• If noise reduction or filtering methods are used in addition
to the GLM methods of prewhitening and robust regres-
sion, care should be exercised to ensure that these meth-
ods do not introduce new violations of the statistical
models that might require additional generalizations.

References
1. F. F. Jobsis, “Noninvasive, infrared monitoring of cerebral and myocar-

dial oxygen sufficiency and circulatory parameters,” Science 198(4323),
1264–1267 (1977).

2. J. S. Wyatt et al., “Quantification of cerebral oxygenation and haemo-
dynamics in sick newborn infants by near infrared spectrophotometry,”
Lancet 328(8515), 1063–1066 (1986).

3. S. Lloyd-Fox, A. Blasi, and C. E. Elwell, “Illuminating the developing
brain: the past, present and future of functional near infrared spectros-
copy,” Neurosci. Biobehav. Rev. 34(3), 269–284 (2010).

4. H. Obrig, “NIRS in clinical neurology—a ‘promising’ tool?”
NeuroImage 85(Pt 1), 535–546 (2014).

5. I. Miyai et al., “Cortical mapping of gait in humans: a near-infrared
spectroscopic topography study,” NeuroImage 14(5), 1186–1192
(2001).

6. H. Harada et al., “A comparison of cerebral activity in the prefrontal
region between young adults and the elderly while driving,” J.
Physiol. Anthropol. 26(3), 409–414 (2007).

7. X. Cui, D. M. Bryant, and A. L. Reiss, “NIRS-based hyperscanning
reveals increased interpersonal coherence in superior frontal cortex dur-
ing cooperation,” NeuroImage 59(3), 2430–2437 (2012).

8. M. Ferrari and V. Quaresima, “A brief review on the history of human
functional near-infrared spectroscopy (fNIRS) development and fields
of application,” NeuroImage 63(2), 921–935 (2012).

9. D. A. Boas, A. M. Dale, and M. A. Franceschini, “Diffuse optical im-
aging of brain activation: approaches to optimizing image sensitivity,
resolution, and accuracy,” NeuroImage 23(Suppl. 1), S275–S288
(2004).

10. A. F. Cannestra et al., “Refractory periods observed by intrinsic signal
and fluorescent dye imaging,” J. Neurophysiol. 80(3), 1522–1532
(1998).

11. J. B. Mandeville et al., “Evidence of a cerebrovascular postarteriole
windkessel with delayed compliance,” J. Cerebral Blood Flow
Metab. 19(6), 679–689 (1999).

12. K. J. Friston, Statistical Parametric Mapping: The Analysis of
Functional Brain Images, 1st ed., Elsevier/Academic Press,
Amsterdam, Boston (2007).

13. K. J. Friston et al., “Statistical parametric maps in functional imaging: a
general linear approach,” Hum. Brain Mapping 2(4), 189–210 (1994).

14. J. C. Ye et al., “NIRS-SPM: statistical parametric mapping for near-
infrared spectroscopy,” NeuroImage 44(2), 428–447 (2009).

15. A. F. Abdelnour and T. Huppert, “Real-time imaging of human brain
function by near-infrared spectroscopy using an adaptive general linear
model,” NeuroImage 46(1), 133–143 (2009).

16. S. G. Diamond et al., “Physiological system identification with the
Kalman filter in diffuse optical tomography,” Med. Image Comput.
Comput. Assist. Interv. 8(Pt 2), 649–656 (2005).

17. S. G. Diamond et al., “Dynamic physiological modeling for functional
diffuse optical tomography,” Neuroimage 30(1), 88–101 (2006).

18. X. S. Hu et al., “Kalman estimator- and general linear model-based on-
line brain activation mapping by near-infrared spectroscopy,” Biomed.
Eng. Online 9, 82 (2010).

19. M. M. Plichta et al., “Model-based analysis of rapid event-related func-
tional near-infrared spectroscopy (NIRS) data: a parametric validation
study,” NeuroImage 35(2), 625–634 (2007).

20. M. L. Schroeter et al., “Towards a standard analysis for functional near-
infrared imaging,” NeuroImage 21(1), 283–290 (2004).

21. K. J. Friston et al., “Analysis of fMRI time-series revisited,”
NeuroImage 2(1), 45–53 (1995).

22. P. L. Purdon and R. M. Weisskoff, “Effect of temporal autocorrelation
due to physiological noise and stimulus paradigm on voxel-level false-
positive rates in fMRI,” Hum. Brain Mapping 6(4), 239–249 (1998).

23. K. J. Friston et al., “Characterizing evoked hemodynamics with fMRI,”
NeuroImage 2(2), 157–165 (1995).

24. J. W. Barker, A. Aarabi, and T. J. Huppert, “Autoregressive model based
algorithm for correcting motion and serially correlated errors in fNIRS,”
Biomed. Opt. Express. 4(8), 1366–1379 (2013).

25. J. E. Jang et al., “Wavelet minimum description length detrending for
near-infrared spectroscopy,” J. Biomed. Opt. 14(3), 034004 (2009).

26. K. J. Friston et al., “To smooth or not to smooth? Bias and efficiency in
fMRI time-series analysis,” NeuroImage 12(2), 196–208 (2000).

27. P. W. Holland and R. E. Welsch, “Robust regression using iteratively
reweighted least-squares,” Commun. Stat. A6, 813–827 (1977).

28. T. J. Huppert et al., “HomER: a review of time-series analysis methods
for near-infrared spectroscopy of the brain,” Appl. Opt. 48(10), D280–
D298 (2009).

29. Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: a
practical and powerful approach to multiple testing,” J. R. Statist. Soc. B
57(1), 289–300 (1995).

30. M. A. Lindquist et al., “Modeling the hemodynamic response function
in fMRI: efficiency, bias and mis-modeling,” NeuroImage 45(1 Suppl),
S187–S198 (2009).

31. K. J. Friston et al., “Event-related fMRI: characterizing differential
responses,” NeuroImage 7(1), 30–40 (1998).

32. A. M. Dale, “Optimal experimental design for event-related fMRI,”
Hum. Brain Mapping 8(2–3), 109–114 (1999).

33. T. J. Huppert et al., “A temporal comparison of BOLD, ASL, and NIRS
hemodynamic responses to motor stimuli in adult humans,”
NeuroImage 29(2), 368–382 (2006).

34. R. J. Cooper et al., “A systematic comparison of motion artifact correc-
tion techniques for functional near-infrared spectroscopy,” Front.
Neurosci. 6, 147 (2012).

Theodore J. Huppert is an associate professor of radiology and
bioengineering at the University of Pittsburgh. He works on the
development of signal processing and statistical methods for func-
tional near-infrared spectroscopy and multimodal brain imaging
technologies.

Neurophotonics 010401-10 Jan–Mar 2016 • Vol. 3(1)

Huppert: Commentary on the statistical properties of noise and its implication on general. . .

http://dx.doi.org/10.1126/science.929199
http://dx.doi.org/10.1016/S0140-6736(86)90467-8
http://dx.doi.org/10.1016/j.neubiorev.2009.07.008
http://dx.doi.org/10.1016/j.neuroimage.2013.03.045
http://dx.doi.org/10.1006/nimg.2001.0905
http://dx.doi.org/10.2114/jpa2.26.409
http://dx.doi.org/10.2114/jpa2.26.409
http://dx.doi.org/10.1016/j.neuroimage.2011.09.003
http://dx.doi.org/10.1016/j.neuroimage.2012.03.049
http://dx.doi.org/10.1016/j.neuroimage.2004.07.011
http://dx.doi.org/10.1097/00004647-199906000-00012
http://dx.doi.org/10.1097/00004647-199906000-00012
http://dx.doi.org/10.1002/hbm.460020402
http://dx.doi.org/10.1016/j.neuroimage.2008.08.036
http://dx.doi.org/10.1016/j.neuroimage.2009.01.033
http://dx.doi.org/10.1007/11566489_80
http://dx.doi.org/10.1007/11566489_80
http://dx.doi.org/10.1016/j.neuroimage.2005.09.016
http://dx.doi.org/10.1186/1475-925X-9-82
http://dx.doi.org/10.1186/1475-925X-9-82
http://dx.doi.org/10.1016/j.neuroimage.2006.11.028
http://dx.doi.org/10.1016/j.neuroimage.2003.09.054
http://dx.doi.org/10.1006/nimg.1995.1007
http://dx.doi.org/10.1002/(SICI)1097-0193(1998)6:4%3C239::AID-HBM4%3E3.0.CO;2-4
http://dx.doi.org/10.1006/nimg.1995.1018
http://dx.doi.org/10.1364/BOE.4.001366
http://dx.doi.org/10.1117/1.3127204
http://dx.doi.org/10.1006/nimg.2000.0609
http://dx.doi.org/10.1080/03610927708827533
http://dx.doi.org/10.1364/AO.48.00D280
http://dx.doi.org/10.1016/j.neuroimage.2008.10.065
http://dx.doi.org/10.1006/nimg.1997.0306
http://dx.doi.org/10.1002/(SICI)1097-0193(1999)8:2/3%3C109::AID-HBM7%3E3.0.CO;2-W
http://dx.doi.org/10.1016/j.neuroimage.2005.08.065
http://dx.doi.org/10.3389/fnins.2012.00147
http://dx.doi.org/10.3389/fnins.2012.00147

