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1 Introduction
Ptychographic coherent diffraction imaging (PCDI) is a
scanning microscopy technique that has gained wide popu-
larity during the last decade.1–3 Its ability to recover illumi-
nation and object information with phase contrast sensitivity
without the need for sophisticated specimen preparation
makes it suitable for both beam diagnostics4,5 and quantita-
tive imaging6–9 in a variety of spectral ranges and experimen-
tal geometries.10–13 However, PCDI relies on accurate
experimental calibration, and incorrect modeling of the
data can lead to reconstruction artifacts. Here, we report
on correction schemes to mitigate detector-sided systematic
errors, namely axial position uncertainty, point spread, and
inhomegeneous response. We derive theoretical models for
the aforementioned systematic errors and present correction
strategies to improve reconstruction quality. One result is that
the effect of axial position uncertainty is to scale the esti-
mated coordinates of each scan position. An algorithm is pre-
sented to detect and correct for axial position errors based on
lateral position correction. A second result is that both point
spread and inhomegeneous response of the detector can be
mitigated by mixed state ptychography.14 The paper is organ-
ized as follows: Sec. 2 reviews details regarding PCDI and
gives a theoretical description of the aforementioned system-
atic errors. Section 3 demonstrates experimental results on
the classification and correction of axial position uncertainty
and detector point spread. Concluding remarks are given
in Sec. 4.

2 Methods

2.1 Ptychography

Under the thin object approximation,2 the exit wave ψ down-
stream an object is modeled as the product of illumination P
and object transmission O:

EQ-TARGET;temp:intralink-;e001;326;488ψ jðrÞ ¼ PðrÞOðr − tjÞ; j ∈ f1; _; Jg; (1)

where r ∈ R2 denotes object coordinates, tj ∈ R2 is the
translation vector of the j’th scan position, and J is the
total number of scan positions. The far-field diffraction
intensities I are given as the modulus squared of the
Fourier transform of the exit wave:

EQ-TARGET;temp:intralink-;e002;326;411Iðq; tjÞ ¼ jFfψ jðrÞgj2; (2)

where q ∈ R2 denotes detector coordinates. In the case of
partially coherent illumination, the model is generalized to
incorporate coherence state mixtures,14 involving a set of
coherent modes:

EQ-TARGET;temp:intralink-;e003;326;334ψm;jðrÞ ¼ PmðrÞOðr − tjÞ; m ∈ f1; _;Mg; (3)

which are propagated independently through the optical sys-
tem and added incoherently upon detection, i.e.,

EQ-TARGET;temp:intralink-;e004;326;280Iðq; tjÞ ¼
X
m

jFfψm;jðrÞgj2; (4)

where the summation index corresponds to the m’th mode in
the orthogonal mode expansion of the illumination.15

Standard ptychography algorithms iterate between two
constraints in reciprocal and real space. The reciprocal
space constraint forces the iterate to comply with the mea-
sured intensities for each scan position, i.e.,

EQ-TARGET;temp:intralink-;e005;326;177ψ̃nþ1
m;j ðqÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Iðq; tjÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
m 0
jψ̃n

m 0;jðqÞj2 þ ϵ
r ψ̃n

m;jðqÞ; (5)

where n denotes iteration, ϵ > 0 is a small constant preventing
division by zero, and ψ̃n

m;jðqÞ is the Fourier transform of the
m’th exit surface mode at the j’th object position. Scanning
the object in overlapping regions provides ptychography with
phase contrast sensitivity.2 The overlap in scan positions
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together with the factorization assumption in Eq. (1) gives
the real space constraint, which is typically imposed itera-
tively via nonlinear optimization algorithms.2,16–18 In this
report, we use the real space updates:
EQ-TARGET;temp:intralink-;e006;63;708

Pnþ1
m ðrÞ ¼ Pn

mðrÞ

þ β
On�ðr− tjÞ

max jOnðr− tjÞj2
ðψn

m;jðrÞ− Pn
mðrÞOnðr− tjÞÞ

(6)

and
EQ-TARGET;temp:intralink-;e007;63;617

Onþ1ðrÞ ¼ OnðrÞ þ β

P
mP

n�
m ðrþ tjÞ

max
P
m 0
jPn

m 0 ðrþ tjÞj2
ðψn

m;jðrþ tjÞ

− Pn
mðrþ tjÞOnðrÞÞ; (7)

where β ¼ 0.5 is a feedback parameter, Pnþ1
m is the updated

m’th probe mode estimate, and Onþ1 is the updated object
estimate. The latter updates are adapted versions of the
extended ptychographic iterative engine (ePIE) for the
case of partially coherent illumination.14,19 Assuming quasi-
monochromatic radiation, the reconstructed coherent modes
of the probe relate to the mutual intensity, Jðr1; r2Þ, via14

EQ-TARGET;temp:intralink-;e008;63;475Jðr1; r2Þ ¼
X
m

P�
mðr1ÞPmðr2Þ: (8)

The mutual intensity can be spectrally decomposed into15

EQ-TARGET;temp:intralink-;e009;63;422Jðr1; r2Þ ¼
X
m

λmϕ
�
mðr1Þϕmðr2Þ; (9)

where the orthonormal modes ϕm are determined by the inte-
gral equation:

EQ-TARGET;temp:intralink-;e010;63;358

Z
Jðr1; r2Þϕ�

mðr1Þdr1 ¼ λmϕmðr2Þ: (10)

The eigenvalues λm define the purity:20

EQ-TARGET;temp:intralink-;e011;63;304ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiP

mλ
2
m

p
P

mλm
∈ ½0;1�; (11)

which is used here as a measure for the degree of spatial
coherence of the beam. The reconstructed probe modes
are constrained to be proportional to the orthonormal modes
in the spectral decomposition of the mutual intensity.
Combining and discretizing Eqs. (8) and (9) lead to the
matrix equation:21

EQ-TARGET;temp:intralink-;e012;63;191PP� ¼ ΦΛΦ�; (12)

where P ¼ ½P1; _; PM� ∈ CN×M contains the probe modes
along its columns, Φ ¼ ½ϕ1; _;ϕM� ∈ CN×M is orthonormal,
Λ ∈ RM×M is diagonal containing the eigenvalues
λ1; _; λM ≥ 0, and N is the total number of samples in the
discretized beam. In practice, calculation of PP� ∈ CN×N

is computationally expensive and should be avoided. This
can be achieved using the truncated singular value decom-
position for the orthogonalization of the probe:22

EQ-TARGET;temp:intralink-;e013;326;752P ¼ USV�; (13)

where U ∈ CN×M, S ∈ RM×M, and V ∈ CM×M. Comparing

EQ-TARGET;temp:intralink-;e014;326;719PP� ¼ US2U� (14)

and Eq. (12) leads to the identities Φ ¼ U and Λ ¼ S2. A set
of orthogonalized probe modes P⊥ is derived from the set of
nonorthogonalized probe modes P using the transformation:

EQ-TARGET;temp:intralink-;e015;326;655P → P⊥ ¼ US: (15)

The latter step allows one to identify the orthogonalized
set of probe modes with the orthogonal modes and their cor-
responding weights in the spectral decomposition of the
mutual intensity, namely P⊥ ¼ ΦΛ1∕2. The orthogonaliza-
tion of the probe modes [Eq. (15)] does not have to be cal-
culated at every iteration of the ptychographic algorithm. In
the software implementation used here, the orthogonaliza-
tion step is carried out every 10th iteration to save computa-
tional resources. The next sections discuss departures from
the ideal experimental model discussed above and correction
strategies.

2.2 Axial Position Correction

The first imperfection considered is axial misalignment of
the object–detector distance z, which has been reported to
cause nonuniqueness and artifacts in the reconstruction.23,24

The effect of axial displacement of the detector is to scale
the real space coordinates tj attributed to each object
frame Oðr − tjÞ. Assuming far-field diffraction, the real
space pixel size Δx and field of view L are given by Δx ¼
λz∕D and L ¼ λz∕Δq, respectively, where D is the detector
size and Δq is the detector pixel size. On an integer grid,
a point at coordinate x is converted into dimensionless
pixel coordinates N ¼ x∕Δx, where rounding is neglected.
Then, the difference between the true pixel location, Nt,
and the measured pixel location, Nm, is given by

EQ-TARGET;temp:intralink-;e016;326;333ΔN ¼ Nm − Nt ¼
xD

λðzþ ΔzÞ −
xD
λz

¼ −
xD
λz

Δz
zþ Δz

: (16)

From this, it follows that the coordinate error is proportional
to the distance from the center of the coordinate system x and
to the ratio Δz∕ðzþ ΔzÞ. The latter quantity can be approxi-
mated by Δz∕z assuming jΔzj ≪ z. Equation (16) is illus-
trated in Fig. 1. The sign of Δz in Eq. (16) leads to
contraction or inflation of the scan grid: If the measured
object–detector distance zm is larger than the ground truth
object–detector distance zt, i.e., Δz ¼ zm − zt > 0, then
ΔN < 0 and the estimated lateral positions are contracted
with respect to the actual scan grid. In the other case,
when zm < zt, i.e., Δz ¼ zm − zt < 0, then ΔN > 0 and
the estimated scan grid is inflated. The former case is
shown on the left and the latter case is shown on the right
for a concentric25 and a Fermat scan grid,26 respectively.

The proportionality of ΔN and x in Eq. (16) causes var-
iable lateral position error that is most pronounced at the
extremal points of the scan grid. Therefore, detector position
uncertainty may be detected by the use of lateral position
correction algorithms.27–29 In this report, we use a random
walk lateral position correction scheme similar to algorithms
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reported previously.29,30 In our scheme, no underlying
annealing schedule or drift model is assumed. At every iter-
ation, the random walk position correction performs the fol-
lowing steps: (1) For the j’th position obtain unshifted and
shifted exit wave modes, where the shift of the latter is given
by �1 pixel in both lateral directions. (2) Update exit wave
modes according to Eq. (5) and calculate the error metric:

EQ-TARGET;temp:intralink-;e017;63;393ej ¼
X
m

Z
jψnþ1

m;j − ψn
m;jjd2r (17)

for the j’th position. Equation (3) shows that if ej;s < cej;u,
where ej;s and ej;u are the errors of the shifted and unshifted
exit wave modes, respectively, then the j’th position is
replaced by the shifted position. The constant c < 1 prevents
premature position updates. In this report, we use c ¼ 0.95.

2.3 Partial Spatial Coherence as a Convolution
Operation

Assuming partial spatial coherence (PSC), the far-field dif-
fraction intensity is given by

EQ-TARGET;temp:intralink-;e018;63;232Ipscðq; tÞ ¼
Z

Jðr1; r2; tÞ exp
�
−j2π

ðr2 − r1Þq
λz

�
dr1 dr2;

(18)

where Jðr1; r2; tÞ is the mutual intensity in the object plane.31

For a Schell model field, the mutual intensity can be written
as follows:

EQ-TARGET;temp:intralink-;e019;63;141Jðr1; r2; tÞ ¼ ψðr1; tÞψ�ðr2; tÞμðr2 − r1Þ; (19)

where μ is the complex coherence factor.32 Changing to cen-
tered coordinates r ¼ ðr1 þ r2Þ∕2 and Δr ¼ r2 − r1, the par-
tially coherent diffraction intensity is given by33–35

EQ-TARGET;temp:intralink-;e020;326;470

Ipscðq; tÞ ¼
Z

ψ

�
r −

Δr
2
; t

�
ψ�

�
rþ Δr

2
; t

�
μðΔrÞ

× exp

�
−j2π

Δrq
λz

�
dr dΔr: (20)

Using the autocorrelation and convolution theorems for
Fourier transforms, this is equivalent to

EQ-TARGET;temp:intralink-;e021;326;383Ipscðq; tÞ ¼ Icðq; tÞ ⊗ μ̃ðqÞ; (21)

where ⊗ denotes convolution and
EQ-TARGET;temp:intralink-;e022;326;346

Icðq; tÞ ¼
Z

ψ

�
r −

Δr
2
; t

�
ψ�

�
rþ Δr

2
; t

�

× exp

�
−j2π

Δrq
λz

�
dr dΔr (22)

is the the coherent diffraction intensity. Equation (21) is
Schell’s theorem, which states that, given a complex coher-
ence factor that is only a function of distance, the partially
coherent diffraction intensity is equal to the coherent diffrac-
tion intensity convolved with the Fourier transform of the
complex coherence factor.35

2.4 Detector Point Spread as a Convolution
Operation

If the detector is subject to point spread, the contrast in the
diffraction pattern is reduced. In the ideal case, the detector
discretely samples the diffraction intensity. In practice, the
measured data on each pixel is integrated over a finite
area. It is now shown that the integration over a finite pixel
area can be modeled as a convolution operation, where only
the one-dimensional case is derived. The extension to two
dimensions is straightforward. The integrated intensity Iint

is given by

z
m

> z
t

ground truth scan grid
contracted scan grid

z
m

< z
t

ground truth scan grid
inflated scan grid

(a) (b)

Fig. 1 Scan grid distortion as a consequence of axial detector position uncertainty. (a) If the measured
object–detector distance zm is larger than the ground truth zt , the interpolated scan grid appears con-
tracted as compared to the true scan grid, as shown for the case of a concentric scan grid. (b) The con-
verse case, zm < zt , is depicted for the case of a Fermat spiral scan grid.
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EQ-TARGET;temp:intralink-;e023;63;752IintðqÞ ¼
Z Δq

2

−Δq
2

Iðq − pÞdp; (23)

where Δq is the pixel size of the detector. Fourier transfor-
mation of the latter expression with respect to q and chang-
ing orders of integration leads to

EQ-TARGET;temp:intralink-;e024;63;681ĨintðfqÞ ¼ ĨðfqÞ
Z Δq

2

−Δq
2

expð−i2πfqpÞdp ¼ ĨðfqÞP̃SFðfqÞ;

(24)

where fq is the Fourier conjugate variable to the detector
coordinate q and

EQ-TARGET;temp:intralink-;e025;63;598P̃SFðfqÞ ¼
Z Δq

2

−Δq
2

expð−i2πfqpÞdp ¼ Δq
sinðπΔqfqÞ
πΔqfq

¼ Δq sincðΔqfqÞ
(25)

is the transfer function of the detector. Inverse Fourier trans-
form Eq. (24) to get

EQ-TARGET;temp:intralink-;e026;63;498IintðqÞ ¼ IðqÞ ⊗ PSFðqÞ; (26)

where

EQ-TARGET;temp:intralink-;e027;63;455PSFðqÞ ¼ rect

�
q
Δq

�
¼

�
1; if jqj < Δq∕2
0; else

(27)

is the point spread function of the detector. The latter model
for the point spread includes only the effect of area integra-
tion of the intensity incident of the detector. Other effects
may additionally broaden the point spread function but
depend on the electronic architecture of the detector at
hand. Charge-coupled devices, for instance, may exhibit a
broadened point spread due to tunneling between neighbor-
ing potential wells and charge diffusion during readout.36,37

The main point of this section is that the detector point
spread may be modeled as a convolution operation on a dif-
fraction intensity, as described by Eq. 26.

2.5 Partial Spatial Coherence versus Detector Point
Spread Ambiguity

If both partial coherence and detector point spread are non-
negligible, the observed diffraction intensity is given by

EQ-TARGET;temp:intralink-;e028;63;234Iðq; tÞ ¼ Icðq; tÞ ⊗ μ̃ðqÞ ⊗ PSFðqÞ: (28)

Under the above discussed approximations (Schell model
beam and space-invariant detector point spread), ptychogra-
phy’s capability to reconstruct individual terms in the
orthogonal mode decomposition has principally no means
to distinguish the effects of partial coherence and detector
point spread. However, it can be tested whether the terms
in the orthogonal mode decomposition are due to partial
coherence or detector point spread by changing the coher-
ence defining aperture of the optical system. This is demon-
strated in Sec. 3.2.

2.6 Mixed-State Ptychography in the Presence of
Inhomogeneous Detector Response

In Ss. 2.2 and 2.4, it was discussed that the effect of PSC (for
the case of a Schell model fields) and a space invariant detec-
tor point spread are mathematically modeled through a con-
volution operation with an a priori unknown kernel. Instead
of estimating the kernel, the mixed state formalism allows
one to incorporate convolution effects such as partial
coherence,14,38 sample vibrations,39,40 stage movement dur-
ing exposure41,42 (fly scan effects), and point spread of the
detector14,40 into a mixed state probe. Mathematically, this
is justified by Mercer’s theorem, which states that a non-neg-
ative definite, hermitian, and square integrable kernel may be
decomposed into a series of orthogonal modes.43 A general
cross-spectral density satisfies the latter conditions,15 includ-
ing the special case of Schell model fields. In addition, it
was observed that the mixed state algorithm can mitigate
static detector imperfections such as imhomogeneous
response.38 It is easily seen that an inhomogeneous detector
response obeys the conditions for Mercer’s theorem to apply.
Let a detector responce be given by a real-valued function:

EQ-TARGET;temp:intralink-;e029;326;517TðqÞ ¼
Z

Tðq; q 0Þδðq − q 0Þdq 0 ∈ ½0;1�: (29)

The hermiticity Tðq; q 0Þ ¼ T�ðq 0; qÞ follows from the fact
that T is real valued and diagonal. Further T is square inte-
grable since it is bounded by 1 and nonzero only over a finite
domain. Finally, it is non-negative definite since

EQ-TARGET;temp:intralink-;e030;326;430

Z
f�ðqÞTðq; q 0Þδðq − q 0Þfðq 0Þdq dq 0

¼
Z

Tðq; q 0ÞjfðqÞj2dq ≥ 0 (30)

for arbitrary functions fðqÞ. This suggests that Mercer’s
expansion may be used to correct for static detector
imperfections.

3 Experimental Results

3.1 Detection and Correction of Axial Detector
Position

To test the effect of axial detector position uncertainty, a vis-
ible light ptychographic scan was acquired. In the experi-
ment, a He-Ne laser beam (λ ¼ 682.8 nm) was focused
onto a 12 bit CMOS detector (IDS UI-3370CP-M-GL,
2048 × 2048 pixel, 5.5 μm pixel size) by a lens with a focal
length of 100 mm, as depicted in Fig. 2(a). The object was
placed a distance of 41 mm downstream the lens and
zt ¼ 59 mm upstream the detector. Under the paraxial
approximation in this configuration, the detector measures
the scaled Fourier transform of the exit wave behind the
object emulating far-field diffraction.44 The probe was
approximately Gaussian with a standard deviation of
σ ¼ 110 μm as calculated after reconstruction by45

EQ-TARGET;temp:intralink-;e031;326;128σ2 ¼ hðr − hriÞ2i ¼
R
r2jPðrÞj2drR jPðrÞj2dr −

�R
rjPðrÞj2drR jPðrÞj2dr

�
2

;

(31)
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corresponding to a full-width at half-maximum (FWHM) of
259 μm. Reconstructions were carried out using an ePIE
algorithm19 with the random walk position correction scheme
described in Sec. 2.2 for distances zm ¼ 50; 59; 62 mm, as
shown in Fig. 3. It is seen that for zm < zt (panel a) and for
zm > zt (panel c), the initial scan grids are inflated and con-
tracted, respectively, as compared to the corrected scan grids.
The scaling of the corrected scan grids with respect to the
initial scan grid is in agreement with Eq. (16) and may be
used to correct for axial position uncertainty. This step
may be automated or carried out manually as done here.

3.2 Detector Point Spread and Static Detector
Imperfections

To test whether the coherent mode structure of the illuminat-
ing beam can be attributed to PSC or detector point spread,
experiments were carried out at the MAXYMUS end station

at the UE46-PGM2 beam line at the BESSY II synchrotron
radiation facility.46 A kinoform spiral zone plate of 32 μm
diameter and 400 nm outer zone width was placed 3 m down-
stream crossed exit slits to generate a charge one vortex
beam with a spot size of 1.5 μm to critically illuminate
a binary test target at a photon energy of 800 eV. The exper-
imental setup is depicted in Fig. 2(b). The region of interest
on the test target was ∼6 μm in each lateral dimension with
a scan step size of 150 nm. The high linear overlap47 of 90%
ensured stable recovery of the higher coherent mode struc-
ture (m > 1) of the beam. A total of 1600 diffraction patterns
were recorded on a CCD (cropped to 128 × 128 pixel,
48-μm pixel size) placed 15 cm downstream the object
resulting in a real space pixel size and field of view per object
patch of Δx ¼ 38 nm and L ¼ 4.8 μm, respectively.

The ptychographic reconstructions are shown in Fig. 4 for
exit slit sizes of 10 μm × 10 μm (top) and 20 μm × 20 μm
(bottom). For both exit slit openings, 1000 iterations were
carried out with one (a, d) and nine (b, c, e, f) probe
modes, four of which are shown (c, f). For the single
mode reconstruction, the objects show artifacts at the outer
region indicating that the tails of the probe were not recon-
structed properly. For the multimode reconstruction, both
objects show stronger similarity than for the single-mode
reconstruction. Closer inspection of the multimode probe
structure reveals that the degree of coherence did not signifi-
cantly change between the two scans. The beam purities for
the 10 μm × 10 μm and 20 μm × 20 μm slits are 63.9% and
60.5%, respectively. If partial coherence had been the cause
for the coherent mode structure of the probe, then increasing
the slit size by a factor of 2 would have resulted approxi-
mately in a twofold decrease in beam purity. From this,
we conclude that the probe mode structure can mainly be

Fig. 2 (a) Visible light setup. Under the paraxial approximation, the
detector measures the scaled Fourier transform of the illuminated
object patch. (b) X-ray setup. The sample is illuminated critically by
a vortex beam generated by a spiral zone plate. VIS, visible light
detectors (CMOS and CCD); ZP, zone plate; OSA, order sorting
aperture.
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Fig. 3 Effect of axial detector misplacement. The reconstructed objects and scan grids for
zm ¼ 50;62;59 mm are shown from left to right. Incorrect object–detector distances lead to scaled coor-
dinate grids as predicted by Eq. (16) and artifacts in the object reconstruction (a-d). For the correct
object–detector distance of zt ¼ 59 mm, the corrected scan grid complies with the initial encoder values
(e, f). The reconstructed probe in the object plane is shown for the correct object–detector distance (g, h).
Hue (colored bar) and brightness are encoded as phase and intensity, respectively. The green and white
scale bars show 500 and 259 μm (FWHM), respectively.
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attributed to detector point spread and static detector
imperfections.

4 Conclusion
We have discussed two common detector-sided errors rel-
evant in ptychographic diffraction imaging. The first error,
axial misalignment, causes scaling of the correct lateral
scan positions. It was shown that lateral position correction
algorithms can be used to detect and correct for axial position
uncertainty. The second detector-sided error discussed was
detector point spread. We showed that this error can be iden-
tified by changing the spatial coherence defining element in
the optical system, here the exit slit of a synchrotron beam
line. If a change in exit slit size causes no response in the
coherent mode structure of the illumination beam, the
decreased diffraction pattern contrast can be attributed to
detector point spread and static detector imperfections rather
than PSC. However, while detector point spread is not attrib-
utable to decoherence in the beam, spectral mode decompo-
sition, typically used for the representation of partially
coherent beams, can be used to increase ptychographic
reconstruction quality in the presence of detector point
spread. Not shown in this work are initial tests on deconvo-
lution strategies that we found to be less robust as compared
to the mixed state algorithm. We believe that this is due to the
dependence of the particular deconvolution ansatz on the
specific underlying model. By contrast, the mixed state algo-
rithm is conveniently applied since no a priori model of the
detector error is required. Work on deconvolution of ptycho-
graphic data with explicit recovery of the detector point
spread may be found elsewhere.48 We believe that the results
presented are important for improving reconstructions as
well as rigorous quantification of partially coherent beams
by means of ptychography.
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