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Abstract. Early detection of malignant lesions could improve both survival and quality of life of cancer patients.
Hyperspectral imaging (HSI) has emerged as a powerful tool for noninvasive cancer detection and diagnosis,
with the advantage of avoiding tissue biopsy and providing diagnostic signatures without the need of a contrast
agent in real time. We developed a spectral-spatial classification method to distinguish cancer from normal
tissue on hyperspectral images. We acquire hyperspectral reflectance images from 450 to 900 nm with a 2-nm
increment from tumor-bearing mice. In our animal experiments, the HSI and classification method achieved
a sensitivity of 93.7% and a specificity of 91.3%. The preliminary study demonstrated that HSI has the potential
to be applied in vivo for noninvasive detection of tumors. © 2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10
.1117/1.JB0.19.10.106004]
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1 Introduction

In 2014, around 1.7 million people will be diagnosed with cancer
and 585,720 will die from the disease in the United States.'
Survival and life quality of the patients correlate directly to the
size of the primary tumor at first diagnosis, therefore, early detec-
tion of malignant lesions could improve both the incidence and the
survival.> Suspicious lesions found through standard screening
method should be biopsied for histopathological assessment to
make a definitive diagnosis.’ Due to the heterogeneous morphol-
ogy and visual appearance of the lesions, biopsy diagnosis may
not be a representative of the highest pathological grade of a tumor
due to the small sampling area.* After biopsies, tissue samples are
sectioned and stained. Pathologists then examine the specimens
under microscopes and make judgments based on observations of
cell morphology and colors of different tissue components. This
biopsy procedure is time consuming and invasive. In addition, the
interpretation of the histological slides is subjective and inconsis-
tent due to intraobserver and interobserver variations.*
Hyperspectral imaging (HSI) has the potential to improve
cancer diagnostics, decrease the use of invasive biopsies, and
reduce patient discomfort associated with traditional procedures.®
The principle of a wavelength-scanning HSI system consists of
illuminating a subject area, spectrally discriminating the reflected
light by a dispersive device, and detecting the light reflected from
the sample surface onto a two-dimensional (2-D) detector array.
By measuring the changes in the reflectance spectrum, structural
and biochemical information of tissue can be obtained. The major
advantage of HSI is that it is a noninvasive technology that
does not require any contrast agent, and it combines wide-field
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imaging and spectroscopy to simultaneously attain both spatial
and spectral information from an object. HSI has been explored
for assessment of tissue pathology and pathophysiology based on
the spectral characteristics of different tissues’ and has shown
potential for noninvasive cancer detection.'®!?

Hyperspectral images, known as hypercubes, are three-
dimensional (3D) datasets, (x, y, 4) comprising two spatial
dimensions (x,y) and one wavelength dimension (1). As illus-
trated in Fig. 1, each plane of the hypercube represents a gray-
scale image at a particular wavelength, and intensities over all
the spectral bands form a spectral signature for each pixel of the
hypercube. With the spatial information, the source of each
spectrum can be located, which makes it possible to probe the
light interactions with pathology. The spectral signature of each
pixel can have hundreds of contiguous bands covering the ultra-
violet, visible, and near-infrared wavelength range, enabling
HSI to identify various pathological conditions.

Hyperspectral images contain rich data. For example, the
HSI system employed in this study, which operates in the wave-
length range of 450 to 900 nm with a 2-nm interval and an image
size of 1040 X 1392 pixels in the spatial dimension, will gener-
ate 1.45 million spectra in one hypercube, each with 226 data
points. The quantitative analysis of hyperspectral data is chal-
lenging due to the large data volume, including considerable
amounts of spectral redundancy in the highly correlated bands,
high dimensionality of spectral bands, and high spatial resolu-
tion.!>!* Therefore, machine learning techniques can be applied
to mine the vast amounts of data generated in HSI experiments
to extract useful diagnostic information and to classify each
pixel into cancerous or healthy tissue type.
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Fig.1 The data structure of a hypercube of hyperspectral imaging (HSI). The red solid line represents the
average reflectance spectrum of the rectangular region of the tumor tissue in the mouse, and the color
region around the solid line represents the standard deviation of the spectra in the same region.

The traditional classification method for HSI mainly consists
of spectral classification and spatial classification. Spectral clas-
sification methods only rely on the spectral signature of each
pixel in hyperspectral images. For example, Liu et al.'> proposed
a classification method based on the sparse representation of the
reflectance spectra for tongue tumor detection from human
tongue hyperspectral data of 81 channels from 600 to 1000 nm
and achieved an accuracy of 96.5%. Based on the spectral char-
acteristics of tissues, our group used hyperspectral data (450 to
950 nm, 251 channels) and a support vector machine (SVM)-
based classifier for prostate tumor detection.'® Akbari et al.
used hyperspectral data (1000 to 2500 nm) for the detection
of gastric cancer.!' Spatial classification methods only employed
the spatial information for labeling cancerous tissue samples.
Masood et al. used hyperspectral images of colon biopsy sam-
ples and a single band to classify the sample as normal or can-
cerous tissues based on the texture feature-circular local binary
pattern'®!” and wavelet texture features.'® The spectral methods
utilized the spectral signature of individual pixels without con-
sidering the spatial relationship of neighboring pixels. Spatial-
based methods were limited to one spectral band without fully
exploiting the spectral information in hyperspectral data. There-
fore, how to incorporate spatial and spectral information in a low
dimensional space is critical for improving the interpretation and
classification of hyperspectral data.

In view of the wealth information available from HSI and the
biochemical complexity of tumors, we propose a spectral-spatial
classification method that utilizes the entire spectra at each pixel
as well as the information from its neighborhood to differentiate
between cancerous and normal tissues. Feature extraction and
dimension reduction is an important step to extract the most
relevant information from the original data and represent that
information in a low dimensional space. Dimension reduction
methods, such as principal component analysis (PCA),'* inde-
pendent component analysis, maximum noise fraction, and
sparse matrix transform,'*? require spatial rearrangement by
vectorizing the 3-D hypercube into two-way data, leading to
a loss of spatial information. We propose to preserve the local
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spectral-spatial structure of the hypercube by tensor computa-
tion and modeling. Tensor provides a natural representation
for hyperspectral data. In the remote sensing area, tensor mod-
eling has been increasingly utilized for target detection,’
denoising,22 dimensionality reduction,”?* and classifica-
tion.>>2® We extract low-dimensional spectral-spatial features
by Tucker tensor decomposition’”’ and generate probability
maps using SVM to indicate how likely it is that each pixel
is cancerous. The classification method is generic, which can
be applied not only to hyperspectral images but also to other
medical images such as MRI and CT images. In this study,
we demonstrate the efficacy of HSI in combination with spec-
tral-spatial classification methods for in vivo head and neck
cancer detection in an animal model. The experimental design
and methods are described in the following sections.

2 Materials

2.1 HSI System

Hyperspectral images were obtained by a wavelength-scanning
CRI Maestro (Perkin Elmer Inc., Waltham, Massachusetts) in
vivo imaging system. This instrument mainly consists of a flex-
ible fiber-optic lighting system (Cermax-type, 300-Watt, Xenon
light source), a solid-state liquid crystal filter (LCTF, bandwidth
20 nm), a spectrally optimized lens, and a 16-bit high-resolution
charge-coupled device (CCD). The active light sensitive area of
the CCD is 1392 pixels in the horizontal direction and 1040 pix-
els in the vertical direction. For image acquisition, the wave-
length setting can be defined within the range of 450 to
950 nm with 2-nm increments; therefore, the data cube collected
was a 3-D array of the size 1040 X 1392 X n. n is determined by
the wavelength range and increments as chosen by the user. The
field-of-view (FOV) is from 3.4 X 2.5 cm to 10.2 X 7.6 cm.

2.2 Animal Model

In our experiment, a head and neck tumor xenograft model using
HNSCC cell line M4E (doubling rate: ~36 h) was adopted. The
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HNSCC cells (M4E) were maintained as a monolayer culture in
Dulbecco’s modified Eagle’s medium/F12 medium (1:1) sup-
plemented with 10% fetal bovine serum.’® M4Ecells with green
fluorescence protein (GFP), which were generated by transfec-
tion of pPLVTHM vector into M4E cells, were maintained in
the same condition as M4E cells. Animal experiments were
approved by the Animal Care and Use Committee of Emory
University. Female mice aged 4 to 6 weeks were injected
with 2 x 105 M4E cells with GFP on the back of the animals.
Hyperspectral images were obtained about 2 weeks post cell
injection.

2.3 Reference Image Acquisition

Prior to the animal image acquisition, white reference image
cubes were acquired by placing a standard white reference board
in the FOV with auto-exposure setting. The dark reference cubes
were acquired by keeping the camera shutter closed. These
reference images were used to calibrate hyperspectral raw data
before image analysis.’!

2.4 Reflectance Image Acquisition

During the image acquisitions, we first scan the mice using
the reflectance mode. Hyperspectral reflectance images were
acquired by anesthetizing each mouse with a continuous supply
of 2% isoflurane in oxygen. The excitation setting used the
interior infrared (800 to 900 nm) excitation and the white
light excitation (450 to 800 nm). The acquisition wavelength
region for reflectance images was set from 450 to 900 nm with
a 2-nm increment. The exposure time was set by the autoexpo-
sure configuration. To eliminate the effect of GFP signals in
the reflectance images, the emission bands of GFP at 508 and
510 nm were removed in the data preprocessing. Hence, the
resultant reflectance images contain 224 spectral bands.

2.5 Fluorescence Image Acquisition

Hyperspectral fluorescence images were subsequently acquired
without moving the mouse. The blue excitation light at 455 nm
and blue emission filter at 490 nm were used to generate GFP
fluorescence images. The exposure time was also set as autoex-
posure. Tumors show green signals in fluorescence images
due to the GFP in tumor cells, and their positions are exactly
the same as that in reflectance images. Therefore, GFP fluores-
cence images can be used as the in vivo gold standard for
the classification evaluation of cancer tissue on hyperspectral

2.6 Histological Processing

After data acquisitions, mice were sacrificed by cervical dis-
location. Tumors were cut horizontally and were then put into
formalin. Histological slides were prepared from the tissue spec-
imens for further analysis. The histological diagnosis results
were also used to confirm the cancer diagnosis.

3 Methods

In this section, we explain in detail our spectral-spatial classi-
fication method. Figure 2(a) illustrates the traditional pixel-
wise spectral method which only utilizes spectral information.
Vectorization of the 3-D hypercube into a 2-D matrix causes loss
of spatial information. PCA is usually applied to reduce data
dimensions. Figure 2(b) represents the flowchart for the pro-
posed spectral-spatial method. After the input hypercube is
preprocessed, spectral-spatial tensor representation, which con-
serves the 3-D hypercube structure, is constructed. Tensor
decomposition is then performed to extract important features
and reduce dimensions. An SVM classifier is then applied to
classify each pixel into cancerous or healthy tissues with prob-
ability estimates. Any classifier that can provide cancer proba-
bility estimates with good classification performance can be
applied in this step. Finally, an active contour-based method
is performed as a postprocessing step to refine the classification
results.

3.1 Preprocessing

Hyperspectral data preprocessing aims at removing the effects
of the imaging system noise and compensating for geometry-
related changes in image brightness. It consists of the following
four steps:

Step 1: Reflectance Calibration. Data normalization is
required to eliminate the spectral nonuniformity of the
illumination and the influence of the dark current. The
raw data can be converted into normalized reflectance
using the following equation®

Iraw (’1) B Idark (l)
Lunite (4) = Tgark (4)

where [ .f.(4) is the calculated normalized reflectance
value for each wavelength. I, (1) is the intensity value
of a sample pixel. Iyue(4) and Iy (4) are the corre-
sponding pixel intensities from the white and dark
reference images at the same wavelength as the sample

ietiect (A) =

D

imaging data. image.
Hypercub; Preprocessing |[» Vectorization PCA > Classifier Cancerous/
healthy
____________________ @ o ____
Hypercube . o Tensor . . Cancerous/
———»| Preprocessing [ Tensorization > .. Classifier —»| Preprocessing
decomposition healthy
(b)

Fig. 2 The flowcharts of the tissue classification methods. (a) The traditional spectral-based classifica-
tion method. (b) The proposed spectral-spatial classification method.
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Step 2: Curvature Correction. At the time of imaging,
tumors generally protrude outside of the skin and are,
therefore, closer to the detector than the normal skin
around them. A further normalization has to be applied
to compensate for difference in the intensity of light
recorded by the camera due to the elevation of tumor
tissue. The light intensity changes can be viewed as a
function of the distance and the angle between the sur-
face and the detector.’> Two spectra of the same point
acquired at two different distances and/or angles will
have the same shape but will vary by a constant. By
dividing each individual spectrum by a constant calcu-
lated as the total reflectance at a given wavelength A
removes the distance and angle dependence as well
as dependence on an overall magnitude of the spectrum.
This normalization step ensures that variations in reflec-
tance spectra are only a function of wavelength, there-
fore, the differences between cancerous and normal
tissues are not affected by the elevation of tumors.

Step 3: Noise Removal. Filters are commonly used for
denoising in medical images.™** After the normaliza-
tion in Steps 1 and 2, the tissue spectra still presents
some noise which might be due to the breathing of the
mice or small food residuals. Therefore, a median filter
is applied to eliminate spectral spikes and to smooth
the spectral curves at each pixel, while retaining the var-
iations across different wavelengths.

Step 4: GFP Bands Removal. A GFP signal produces a
strong contrast between tumor and normal tissue under
blue excitation and may also present a good contrast
compared to other spectral bands under white excitation.
To eliminate the effect of GFP signals on the cancer
detection process, GFP spectral bands, i.e., 508 and
510 nm in our case, are removed from the image cubes
before feature extraction.

J3= A

v\‘
40@% T
Q8 ‘

[

Hypercube

Ji

3.2 Spectral-Spatial Tensor Representation

Tensors are generalization of matrices and vectors. A first-order
tensor is a vector, a second-order tensor is a matrix, and tensors
of order 3 or higher are called higher-order tensors.*® The order
of a tensor is the number of dimensions, which are also known
as modes. An N-way or N’th-order tensor X € R/1>/2X"->/v jg
represented by a multidimensional array with N indices. In this
study, hyperspectral data X is a set of J; = 224 images, corre-
sponding to wavelength band from 450 to 900 nm. Each spectral
image is composed of J X J, pixels, with x;, ; ; representing
the intensity at pixel (j;, j») in spectral band j;.

To fully exploit the natural multiway structure of hyperspec-
tral data, we construct a spectral-spatial tensor representation for
each pixel by dividing the hypercube (J; X J, X J3) into over-
lapping patches of 3 X 3 X J; dimension. Hence, each pixel is
represented by a third-order tensor X € R¥>3*/s, with two
modes representing spatial information, and the third mode
for the spectral band. J; = A represents the number of spectral
bands. Figure 3 illustrates the spectral-spatial tensor representa-
tion of the hypercube. With the spectral-spatial tensor represen-
tation, spectral continuity is represented as the third tensor
dimension, whereas spatial information is included as row-col-
umn correspondence in the mathematical structure.

3.3 Feature Extraction and Dimension Reduction

Tensor decompositions are important tools for feature extraction
and dimension reduction because they capture the multiaspect
structures of the large scale high dimensional data, with appli-
cations in image and signal analysis, neuroscience, chemomet-
rics, etc. Tucker tensor decomposition is a basic model for
high-dimensional tensors, which allows effective feature
extraction and dimension reduction. An N-way Tucker tensor
XF € R/>¥/2X /v can be decomposed into a core tensor

X(l) , 3-D tensor

h

X(Z) , 3-D tensor

By )

g

=

X(K) , 3-D tensor

i

:

Fig. 3 Spectral-spatial tensor representation of hypercube. Image stack on the left is the hypercube of
a tumor-bearing mouse. Images stack in the middle shows that a hypercube (J; x J> x J3) can be
divided into small patches. Image stacks on the right show that each pixel inside a hypercube can
be represented by a small patch centered at that pixel. This patch containing information from both
the pixel and its neighborhood can be represented in a mathematical form of 3-D tensor.
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GF € RRRXxRy - multiplied or transformed by a set of

component matrices®® A" = (a(ln),a(z"), ~~-,ag:)) ERIFRi(n=
1,2,...N):
Shaiii . 1, 4@ )
k N k
XE=D D D G, @y e a) e ) e
J1=1jp=1 Jn=1
:kalA(l)sz(z) XNA(N>+§k :Xk+§k,
@)

where symbol “o” represents the outer product, and G*x
AL x AR AY) denotes the multiplication in all pos-
sible modes of a tensor _Gk and a set of matrices A, In practice,
it is common that the core tensor G¥ is smaller than the original
tensor X, i.e., Ry < Jy. Decomposition of tensor X* can be
seen as a composition of directional bases A, A@) ... AW)
in modes 1,2,..., N, connected through a set of weights con-
tained in G*. The elements in the core tensor G* represent the
features of the sample G* in the subspace spanned by A,
Hence, the extracted features are usually in a lower dimension
than the original data tensor X.

We assume that the basis matrices A" = [a(ln),ag"), e
agfl)] € R/Ru(p =12,...N) are common factors for all data
tensors. X" is an approximation of X¥, and &’ presents the
approximation error. Figure 4 illustrates the Tucker decomposi-
tion of a three-way tensor. To compute the basis matrices A"
and the core tensor G, we concatenate all individual tensors X¥
into one N+ 1 order training tensor X = cat(X',X?,
<o, XEON 41) € R >Iwdnn with Jy, = K and per-
form Tucker-N decomposition.”” The sample tensors X* can
be obtained from the concatenated tensor by fixing the
(N + 1)’th index at a value k and the individual features can be
extracted from the core tensor G¥ by fixing the (N + 1)’th index
as k. In the case of hyperspectral data, the core tensor connects
two spatial modes with one spectral mode of the hypercube.
Hence, the extracted features simultaneously contain the spec-
tral-spatial profile of tissues in the hyperspectral data X*.

In general, Tucker decomposition is not unique.* Con-
straints such as orthogonality, sparsity, and non-negativity are

Ji

commonly imposed on the component matrices and the core ten-
sor of the Tucker decomposition, in order to obtain meaningful
and unique representation.>® To solve the Tucker tensor decom-
position problem, we applied the higher order discriminant
analysis (HODA) with orthogonality constraints on basis
factors(29), which is a generalization of linear discriminant
analysis for multiway data. HODA aims to find discriminant
orthogonal bases to project the training features G* onto the
discriminant subspaces. Optimal orthogonal basis factors A"
can be found by maximizing the Fisher ratio between the core
tensors G*:

- = 2
1 K IGE - Gllx
AVACL A0 TG - G

; (©))

where G¢ is the mean_tensor of the ¢’th class consisting of K,
training samples, and G is the mean tensor of the whole training
features. ¢, denotes the class label of the k’th training sample
X*. The details for solving the above optimization problem can
be found in Ref. 29.

The dimension of the extracted feature is L = R;X
RyX --+ XRy, which is dependent on the dimensions of
the basis factors A" € R/*R:. R, can be determined by the
number of dominant eigenvalues of the contracted product
X, X! €J,xJ,, X,XI =UAU’, where A =diag(4;,4,...4; )
and 4y 2 4, > ... 2 Az, > ... > 4;, are eigenvalues. The opti-
mal dimension R, of the core tensor can be found by setting
a threshold fitness € and optimizing the following equation:

R
n /1
arg min% > 0. 4)
Ro X oiti i

In our experiment, we set § =99, which means that the
factors should explain the whole training data at least 99%.

The approach of feature extraction for both training and test-
ing data is illustrated in Fig. 5. After spectral-spatial represen-
tation, the training data is constructed by concatenating K
sample patches as a 4-D tensor of size J; X J, X J3 X K, and
the testing data is formed in the same manner. Here, we choose

R-

L+

szgk ><1A(1)><2A(2)><3A(3)+ §k

Fig. 4 Tucker decomposition of a three-way tensor X¥. Decomposition of tensor X¥ can be seen as
a multiplication in all possible modes of a core tensor G and a set of basis matrices A(".
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umor p 1] p XE=GF X ADX, A@ X, AP+ g
ﬁ @ ﬁ ﬁ - ’ | A B A0 BY Ao
. X0 X X XKD
Training < s 2 A -
samples ) e Kl Training
X =cat XV, X?, ... X®V), Feature Tumor
4D training tensor: I, x I,x A xK;
- Build Tucker Basis: AV, A@, A® \
> Tumor samples Normal samples
&0 Normal
. & ':r? f"_r? ':r? ':r? v
—— Testing
I, samples £ . — Projection
3-D tensor —_— o - G
: cen ) ces = Fllter

x® X® X+ X*

T Testing

X =cat (X", X®, ..., X&), Feature
4D testing tensor: I,x [,x A xK,

Fig. 5 Feature extraction using Tucker tensor decomposition.

a grid size of J; X J, = 3 X 3, and the wavelength dimension of
J3 = 224. We first perform the third-order orthogonal Tucker
tensor decomposition along the mode-4 on the training data
using HODA. After the Tucker decomposition, the core tensor
G € RR>RXRs - which expresses the interaction among basis
components, is vectorized into a feature vector with a length
of Ry X Ry X R3 as the training feature. The dimension of the
tensor feature can be much less than that of the original pixel-
based feature. Therefore, dimension reduction can be achieved
by projecting the original tensors X to the core tensors G with
proper dimensions for R, R,, and R5. To extract features from
testing data, the basis matrices A" found from training data
are used to calculate the core tensor, and the corresponding
core tensor is then converted into a testing feature vector. If
the feature dimension is still high after the feature extraction
step, feature ranking or feature selection can be applied to
further reduce the feature dimension. Finally, the extracted
testing features are compared with the training features using
SVM classifiers, and the probability map for cancerous tissue is
generated.

3.4 Classification

In this study, 12 hypercubes from 12 mice with head and neck
cancers are scanned and used for the hyperspectral image analy-
sis. We choose SVM as the classifier and the Gaussian radial
basis function as the kernel function.?’” Nested cross validations
(CVs) are used to perform model selection and evaluation. We
perform leave-one-out outer CV, and threefold inner CV. A grid
search is performed in the inner CV on the training data to select
the optimal values for parameter C and g over the range of
log, C = {0;—1,0, ---,4}; and log, g = {—1,0, ---,4};. Then,
a new SVM model is trained with the optimal parameters on
11 mouse data, and the performance of that model is tested on
the rest of the mice.

3.5 Postprocessing

After obtaining the probability maps of each tumor image, we
proceed to use active contours’>* to refine the classification
results. Chan-Vese active contour™ is a region-based segmenta-
tion method which can be used to segment vector-valued images
such as RGB images. Standard L2 norm is used to compare the
image intensity with the mean intensity of the region inside and

40 :
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outside the curve. If the image contains some artifacts, L2 norm
may not work well. Therefore, we modified the Chan-Vese
active contour with L1 norm, which compares the image inten-
sity with the median intensity of the region inside and outside
the curve. This modification makes the active contour more
robust to noises. In this section, we will first introduce the math-
ematic formulation of the modified L1 norm active contour
methods.
The energy function with L1 norm is defined as follows

E(u,v,C) = // Z|I

i=1

o/ hwyn

where C stands for the curve, Q stands for the area inside C, and
Q¢ stands for the area outside C. The last term penalizes the
“shape” of the curve to avoid complicated curves. N is the
total number of image bands.

Given the curve C, we want to find the optimal values of u;,
v;. By setting [SE(u,v,c)/éu;] =0 and [SE(u,v,c)/év;] =0,
we obtain

u;|dxdy

v;|dxdy —i—/l/ ds, 3)
c

S8E(u,v,c)

6//1@ »
=— — i — u;|dx
Su; du | JoN & T T
(1 = u;)2dxd
// Z y|1_ut|

l
N//|I—u dxdy =0
iU
=> // ——dxdy = 0. (6)
alli —ujl
As we know that I — u;/|I — u,| is either 1 or —1, to make the
integration of 1 — u;/|1 — u;| inside the curve 0, half of the val-
ues should be 1 and the other half of the values should be —1;
therefore, the optimal value for u; is the median intensity of
the i’th image band inside the curve C. Similarly, we know
that the optimal value for »; is the median intensity of the
i’th image band outside the curve C.
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It is expected that the modified active contour with L1 norm
applied on the RGB probability maps of tumors will further
boost the classification performance.

3.6 Comparison with the Spectral-Based
Classification Method

To compare the proposed spectral-spatial classification method
with the spectral-based method for classifying cancerous and
normal tissues, we implement the traditional pixel-wise spectral
method as illustrated in Fig. 2(a).

3.6.1 Pixel-wise spectral-based method

If no dimension reduction technique is used, then the normalized
reflectance spectra of each pixel with 224 dimensions are
directly used as the spectral feature. This method is time con-
suming due to high-feature dimensions.

3.6.2 PCA-based spectral method

Considering the high dimensions (over 200) of reflectance spec-
tra, PCA is usually applied to reduce the dimensionality. First,
the hypercube (x Xy Xx4) is rearranged into a 2-D spectral
matrix of dimension M X A, where M = x Xy is the total
number of pixels, and A is the total number of wavelengths
used. So, each row represents the reflectance values from all
the bands at one pixel. Then the matrix is centered by sub-
tracting the mean values of each column. Afterward, PCA
was performed to calculate the eigenvalues and eigenvectors.
Finally, the original hypercube was approximated by the inverse
principle component transformation, with the first few bands
containing the majority of the variation residing in the original
hypercube.*!

3.7 Performance Evaluation Metrics

Accuracy, sensitivity and specificity are commonly used perfor-
mance metrics for a binary classification task.**** In this study,
accuracy is calculated as a ratio of the number of correctly
labeled pixels to the total number of pixels in a test image.
Sensitivity measures the proportion of actual cancerous pixels
(positives) which are correctly identified as such in a test image,
whereas specificity measures the proportion of healthy pixels
(negatives) which are correctly classified as such in a test image.
F-score is the harmonic mean of precision (the proportion of
correct true positives to all predicted positives) and sensitivity.
Table 1 shows the confusion matrix, which contains information
about actual and predicted classification results performed by
a classifier.

The definitions of accuracy, precision, sensitivity, specificity,
and F-score are defined below:

TP + TN
Accuracy = ;
TP + FP + FN + TN
. TP
Sensitivity = ———;
TP + FN
TN
Specificity = ————
pecificity TN © FP
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Table 1 Confusion matrix.

Predicted results

Negative (healthy) Positive (cancerous)

Gold Negative
Standard (healthy)

True negative (TN) False positive (FP)

Positive False negative (FN) True positive (TP)
(cancerous)
. TP Precision X Sensitivity
Precision = —; = — -
TP + FP Precision + Sensitivity
4 Results

To evaluate the proposed tumor detection algorithm, we scanned
12 GFP tumor-bearing mice approximately 2 weeks post-tumor
cell injection and distinguished between cancerous and normal
tissues based on their spectral differences in this study.

4.1 Data Normalization

To visualize the spectral variation arising from tumor curva-
ture, a region of interest covering the tumor of a mouse was
selected on the reflectance composite RGB color image [shown
in Figs. 6(a) and 6(d)], and the average spectra for a selection of
regions at various locations [denoted by squares in Figs. 6(a) and
6(d)], were obtained by averaging pixel spectra from a square
area of 10 X 10 pixels pixels from those regions. It is obvious
that the curvature of the tumor surface causes a scaling difference
in the spectra: the spectrum from the center of the tumor exhibited
higher reflectance intensity than the spectra from the sides of the
tumor and the surrounding normal tissue. This is mainly caused
by the relative difference in the path length from different points
of the curved tumor surface to the detector. So, it is desirable to
minimize the spectral variability caused by tumor curvature.

Figures 6(b) and 6(e) show the spectral variation along the
horizontal direction and vertical direction, respectively.
Figures 6(c) and 6(f) show the spectral curve of pixels along
the horizontal and vertical directions after data normalization.
The color bar varying from green to black in Figs. 6(b) and
6(c) represents the location from left to right, whereas the
color bar in (e) and (f) denotes the location from top to bottom.
It can be seen that the spectral variance is greatly reduced and
the spectral curve is smoothed after applying the preprocessing
procedure described in Sec. 3.1. It is reasonable to assume that
after preprocessing, the spectral variance arises from the actual
difference between normal and cancerous tissues.

4.2 Vascularity Visualization

In this study, we acquired hyperspectral reflectance images from
both tumors without GFP and tumors with GFP. Figures 7 and 8
show the in vivo hyperspectral reflectance images of a tumor
without GFP and a tumor with GFP, respectively.

To visualize the hyperspectral dataset, RGB composite
images were generated as shown in Figs. 7(b) and 8(b), and the
individual image bands at different wavelengths are shown in
Figs. 7(a) and Fig. 8(a). In both cases, vascularity patterns
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Fig. 6 Effects of the pre-processing on spectra as selected from different regions of a mouse image. (a)
and (d) are the same region of interest (ROI) covering the tumor area; the horizontal and vertical locations
are composed of square areas of 10 x 10 pixels. (b) and (c) show the average spectra of each square
from left to right before and after preprocessing. (e) and (f) show the average spectra of each square from

top to bottom before and after preprocessing.

can be clearly visualized at different wavelengths. The skin of
nude mice, which covered the tumor, is less than 1-mm thick,
so we can visualize tumor vessels through the intact skin even
at 450-nm wavelength. It can be seen that the vascular structure
became obscured at higher wavelengths, which indicates that
light at lower wavelengths is more sensitive to superficial infor-
mation of tissue and that light at higher wavelengths carries infor-
mation from deeper tissue due to deeper penetration into tissue.
Wavelengths of 508 and 510 nm are emission peaks of
GFP under blue excitation, and image bands at these two wave-
lengths for both GFP-tumor and non-GFP-tumor were shown in
Figs. 7(a) and 8(a). It is worth noting that images obtained at
GFP bands did not show higher contrast compared to images
at other wavelength bands under white excitation. Therefore,
it makes sense to assume that the spectral contrast between can-
cerous and healthy tissues is not caused by the GFP signals.
Figures 7(c) and 8(c) show the average reflectance spectra of
vessels inside tumor regions with a red solid line, the average
reflectance spectra of nonvessel tumor regions with the blue dot-
ted line, and the average of randomly selected normal regions
around tumors with the green dash-dot line. The reflectance spec-
tra of both tumors show a dip at around 540 to 580 nm, which
coincides with hemoglobin’s absorption peaks. Vessel spectra in
tumor region <600 nm and >870 nm exhibit lower reflectance
than non-vessel tissue, which is consistent with the higher amount
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of hemoglobin in vessels. In addition, the reflectance spectra of
the tumor region is lower than that of the normal region <600 nm
and >870 nm, which also indicates that tumors have a higher
amount of hemoglobin compared to normal tissue.

4.3 Spectra Analysis

Figure 9 shows the RGB composite images of hyperspectral
reflectance images for all 12 mice used for the evaluation of
the spectral-spatial classification method. The numbers on the
left corners of the mouse images denote the ID on the ear
tags of the mice; hence, they are used to help identify different
mice. As can be seen, tumor volumes varied from 92 mm? to
about 200 mm? at the time of imaging. Figure 10 shows the
RGB composite images of hyperspectral fluorescence images
for tumors with GFP. In both reflectance and fluorescence
images, vascular patterns can also be visualized in some tumors,
such as # 885, # 889, etc. Fluorescence images showed vascular
beds more clearly; the tumor regions were lighted as green due
to GFP emission peaks at 508 and 510 nm.

Although the current gold standard for cancer diagnosis
remains histological assessment of hematoxylin and eosin
stained tissue, the ex vivo tissue specimen undergoes deforma-
tions, including shrinkage, tearing, and distortion, which makes
it difficult to align the ex vivo gold standard with in vivo tumor
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Fig. 7 In vivo hyperspectral reflectance imaging of a tumor without GFP. (a) Reflectance images at
different wavelength bands. (b) An RGB composite image generated from the tumor hypercube.
(c) Red solid line: the average reflectance spectra of the vessels inside tumor region; blue dotted line:
the average reflectance spectra of randomly selected nonvessel tumor regions; green dash-dot line:
the average of randomly selected normal regions around the tumor.

tissue. However, the in vivo GFP images provided a much better
alignment with hyperspectral reflectance images, since they
were acquired in vivo immediately after the acquisition of reflec-
tance images for each mouse, and the tumor and surrounding
normal tissue exhibited high contrast in the GFP images. In
this study, tumor regions were identified manually on the
GFP images, and the classification results were then compared
with the manual maps. As shown in Fig. 10, the GFP images for
the tumors #888, #898, #896, #890, #891 were not clear due to
high tissue autofluorescence caused by the food residuals and
other wastes on the skin. For these images, we first performed
spectral unmixing using the commercial Maestro software to
better separate the tumors and surrounding tissues and then
manually segmented the tumors. Since human tissue does not
naturally contain GFP, registration methods are desirable to
align the in vivo hyperspectral images with ex vivo histological
images as discussed in Ref. 14, in order to move forward to
future human studies.

Journal of Biomedical Optics

106004-9

Figure 11 shows the average reflectance spectra and standard
deviations of the cancerous tissue regions from 450 to 900 nm in
the red solid line, and the average reflectance spectra and stan-
dard deviations of the surrounding healthy tissues in the blue
dotted line. To make it easier to visualize the two spectra curves,
we only showed the standard deviations at the wavelengths from
450 to 900 nm with an increment of 50 nm. Due to tumor hetero-
geneities in morphology, reflectance spectra at different loca-
tions varied from each other and deviated from their average
reflectance spectra.

Hemoglobin characteristics were shown in these reflectance
spectra, which could be indicative of cancer formation. It was
found that the normalized reflectance intensity of tumor was
lower below 600 nm for all these mice and lower above 870 nm
for some of the mice such as #894 and #885. This indicated that
the amount of hemoglobin was higher in tumors than normal
tissues, which may be due to the angiogenesis during tumor
formation.
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Fig. 8 In vivo hyperspectral reflectance imaging of a tumor with GFP. A mirror is used to aid in capturing
the entire tumor during imaging. (a) Reflectance images at different wavelength bands. 508 nm and
510 nm are the emission peaks for GFP under blue excitation. (b) An RGB composite image generated
from the tumor hypercube. (c) Red solid line: the average reflectance spectra of the vessels inside tumor
region; blue dotted line: the average reflectance spectra of randomly selected nonvessel tumor regions;
green dash-dot line: the average of randomly selected normal regions around tumors. (Note: pixels are
only selected from the tumor region that is not in the mirror).

We have demonstrated that the vascularity patterns can be
visualized from hyperspectral reflectance imaging (Sec. 4.2),
and the amount of hemoglobin and oxygenated hemoglobin
also varies between cancerous and healthy tissues. In addition,
vascular density in oral cancers has been shown to be an impor-
tant biomarker for some cancers.** These observations confirm
that tissue reflectance spectra measured from 450 to 900 nm pro-
vide valuable information for differentiating between tumor and
normal tissues. Therefore, hyperspectral reflectance imaging has
the potential to detect tumors noninvasively through intact skin.

It was noted that the reflectance spectra differences between
tumor and normal tissues were relatively small in mice #888,
#898, #896, #890, and #891 compared to the rest of the
mice, which coincided with the lower contrast between tumor
and surrounding tissue in fluorescence images of these mice.
This might be because the reflected light from the tissue was
further randomly scattered by the food and wastes adhered to
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the tissue surface, which obscured the differences between
cancerous and healthy tissue caused by the biochemical and
morphological changes during neoplastic changes.

4.4 Comparison with Spectral Method

To compare the spectral spatial classification method with the
spectral classification method, we implemented three spectral
methods as shown in Fig. 12. “Tensor-1" denoted the spectral
spatial classification method which represents each pixel with
a one-dimensional (1-D) tensor feature. “Pixel-224” denoted
the pixel-wise method which represents each pixel with a vector
consisting of 224 reflectance values. “PCA-100" utilized
PCA to reduce the pixel-wise feature dimension from 224 to
the top 100 most significant features. “PCA-1" utilized PCA
to reduce the pixel-wise feature dimension from 224 to the top
most significant feature which represents the most variances.
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# 898 # 888
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Fig. 9 RGB composite images of the reflectance hyperspectral images of the 12 mice used for the
evaluation of the spectral-spatial algorithm. The number on the top left corner of each image represents
the ID on the ear tag of a mouse.
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# 889

Fig. 10 RGB composite images of hyperspectral fluorescence images for the tumors with green fluo-
rescence protein (GFP). Tumors show GFP signals on the images.

For all four methods, a KNN classifier is employed to classify
the data with leave-one-out CV. Figure 12 compared the average
and standard deviation of accuracy, sensitivity, specificity, F-
score, and precision of the 12 mice for all four methods.

As can be seen from Fig. 12, the spectral spatial method with
a 1-D tensor feature outperformed the rest of the spectral-based
methods. Although the first PCA image band explained about
85% of the variance in the feature vector, the classification accu-
racy of the PCA-1 method only achieved 54%. More than 100
features were required in order to obtain an accuracy of >69%
with the PCA dimension reduction method, while the top tensor
feature alone achieved an accuracy of 80%, which exhibited
a strong discriminatory ability for differentiating tumors from
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normal tissue. It was found that the feature dimension and clas-
sification time were significantly reduced without sacrificing
the accuracy with the tensor-based spectral spatial method, while
higher feature dimensions and longer classification times were
needed in order to achieve comparable accuracy with the PCA-
based spectral method.

4.5 Classification Results of the Spectral-Spatial
Method

The spectral-spatial classification algorithm was implemented in
MATLAB (Version R2013a, Mathworks, Natick, Massachusetts)
using a high-performance computer with 128 GB RAM and 32
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Fig. 11 Reflectance spectra of 12 mice. Red solid line: the average spectra of cancerous tissues in each
mouse. Blue dotted line: the average spectra of healthy surrounding tissues in each mouse. The error
bars in both lines represent the standard deviations of spectra within each region.
CPUs of 3.1 GHz. The region of interest (ROI) selected in each After completion of the SVM training process with optimal
mouse image was of the dimension 435 X 390. So, each testing parameters, it usually takes about 2 min to test the hypercube
image ROI consisted of 168,004 pixels. Since surrounding tissue image data of one mouse. The computation performance can
areas in the selected ROI were generally larger than the tumor be improved by implementing the algorithm in parallel comput-
region, the same number of healthy tissue pixels as the number ing and by using C++ language.
of tumor pixels was randomly chosen from the surrounding tissue Figures 13-16 show the SVM probability maps of all 12
to build a balanced training dataset. tumor hypercubes in the first row and the refined classification
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Fig. 12 The performance of the Tensor-1, PAC-1, PAC-100, Pixel-
224 classification methods. See the text for the definitions of the
four methods.

results by active contour in the second row. As can be seen from
these figures, SVM probability maps exhibited salt and pepper
appearances, while active contour reduced both the false posi-
tives and false negatives in the normal tissue regions.

Mice #889, #893, and #894 in Fig. 13 and Mouse #895 in
Fig. 14 were well classified with an average accuracy, sensitiv-
ity, and specificity of 96.1%, 93.2%, and 97.5%, respectively.
Mouse # 897 and Mouse # 885 in Fig. 14 exhibited misclassi-
fication in the blood vessels within normal tissue region (as
shown in the RGB images in Fig. 9). The binary classification
only sorts the pixels into two categories: tumor or normal tissue.
Blood vessels showed strong hemoglobin signals, which might
appear closer to the tumor regions, therefore, were misclassified
as tumor pixels.

# 889 # 893

Mice # 892, # 898, and # 888 in Fig. 15 contained false pos-
itives in the normal tissue which was curved and highly
resembled the tumor tissue. Mice # 896, # 890, and # 891 in
Fig. 16 were not classified satisfactory, which was consistent
with the observations from the GFP images in Fig. 11. Due to
the random scattering caused by the tissue artifacts, the reflec-
tance spectral differences between cancerous and normal tissues
were obscured. Therefore, the classification algorithm was not
able to achieve satisfactory results.

Figure 17 shows the comparison of the classification perfor-
mance before postprocessing and after the processing. The aver-
age accuracy, sensitivity, specificity, F_score, and precision of
all 12 mice with standard deviations as error bars were plotted.
The active contour postprocessing procedure further improved
the average accuracy, sensitivity, and specificity of the 12 mice
by 5.1%, 1.6%, and 6.7%, respectively.

The classification performances of all mice after postprocess-
ing were listed in Table 2. The average accuracy, sensitivity, and
specificity of 12 mice were 89.1%, 86.8%, and 90.4%, respec-
tively. Based on the above analysis, we knew that the bad per-
formance of the last three mice (#896, #890, #891) shown in
Table 2 were caused by the tissue artifacts. If we remove these
three mice, the average accuracy, sensitivity, and specificity
were 91.9%, 93.7%, and 91.3%, respectively.

5 Discussion

This paper has described and evaluated a spectral-spatial
classification method for distinguishing cancerous and healthy
tissue in vivo in a head and neck cancer animal model
and demonstrated that HSI combined with a spectral-spatial

# 894

Fig. 13 Classification maps. The first row represents the SVM probability map for Mice # 889, # 893,
# 894, and the color bar on the right denotes the probability with different colors. The second row rep-
resents the corresponding binary tumor maps after active contour postprocessing.
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# 895 # 897 # 885

Fig. 14 Classification maps. The first row represents the SVM probability map for Mice # 895, # 897,
# 885, and the color bar on the right denotes the probability with different colors. The second row rep-
resents the corresponding binary tumor maps after active contour postprocessing.

# 892 # 888

# 898

Fig. 15 Classification maps. The first row represents the SVM probability map for Mice # 892, # 898,
# 888, and the color bar on the right denotes the probability with different colors. The second row rep-
resents the corresponding binary tumor maps after active contour postprocessing.
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# 896 # 890 # 891

Fig. 16 Classification maps. The first row represents the SVM probability map for Mice # 896, # 890,
# 891, and the color bar on the right denotes the probability with different colors. The second row rep-
resents the corresponding binary tumor maps after active contour postprocessing.

classification method holds great promise for noninvasive diag-
nosis of cancer.

The basis for cancer detection using HSI and spectral-spatial
method arises from the differences in the spectra obtained from
the normal and diseased tissue due to the multiple physiological

Table 2 Summary of the classification performance.

changes associated with tissue transformation from healthy to Mice ID Accuracy (%) Sensitivity (%) Specificity (%)
cancerous stages. During disease progression, healthy tissue
transforms to pathological tissue with biochemical and mor- # 889 97.1 94.9 97.7

phological changes, such as increase in epithelial thickness,
nuclear size, nuclear to cytoplasmic ratio, changes in the
chromatin texture and collagen content, and angiogenesis.*’ # 894 95.8 88.7 97.7

These changes modify the diffusely reflected light, therefore,

# 893 96.9 96.0 97.3

# 895 94.5 96.3 94.2
100.0% # 897 91.4 91.3 91.5
90.0% I

20.0% 4 I I [ # 885 90.9 99.8 88.6

70.0% 1 # 892 85.0 99.9 80.0
60.0%

50.0% # 898 88.3 92.4 86.6
40.0%

30.0% # 888 86.8 84.2 88.4
20.0% A

10.0% A # 896 85.2 55.0 96.2
0.0% A

Accuracy Sensitivity Specificity F-score Precision # 890 79.1 46.2 97.9

5 SVM Postprocessing  (active contour) # 891 78.4 96.7 68.3

Fig. 17 Comparison between the classification results before and Mean 89.1 86.8 90.4

after postprocessing. As can be seen, the active contour post-
processing method improved the classification performance of SVM Std 6.5 17.6 8.9
in all the metrics.
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reflectance spectra exhibit spectral features associated with
different biochemical and morphological characteristics of
cancerous and normal tissues.

The motivation for developing spectral-spatial classification
algorithms is that HSI is limited by the user’s ability to pull rel-
evant information out of the enormous amount of data, and
the development of advanced data mining methods utilizing the
abundant spectral and spatial information contained in hyper-
cube is desirable for classification of lesions and healthy tissue.
As preclinical and clinical research with HSI moves forward,
more and more datasets are going to be acquired and stored.
On the one hand, spectral databases for different types of patho-
logical tissues, cells, and molecules could aid in a better inter-
pretation of hyperspectral images. On the other hand, the hidden
patterns, unknown correlations, and useful diagnostic informa-
tion could be uncovered and fully utilized with the help of
machine learning and data mining methods. For example,
classification models build upon large datasets would provide
a valuable tool for quantitative diagnosis of cancer.

The prominent advantage of HSI is that it combines the wide-
field imaging with spectroscopy. Additionally, HSI is a noninva-
sive, nonionizing imaging technology, which does not require
contrast agents. Hyperspectral images have more spectral chan-
nels and higher spectral resolution than RGB images, which
might carry more useful information for characterization of
physiology and pathophysiology. Spectroscopy measures tissue
point by point, which might miss the most malignant potential.
HSI captures the spectral images of a large area of tissue, which
overcomes the under-sampling problem associated with spec-
troscopy and biopsy.

The application of HSI can be limited because it examines
only the areas of tissue near the surface, which could be a big
problem for imaging deep resided tumors inside tissue in vivo.
The optical penetration depth is defined as the tissue thickness
that reduces the light intensity to 37% of the intensity at the sur-
face. Bashkatov et al.*® measured the optical penetration depth
of light into skin over the wavelength range from 400 to
2000 nm. It was observed that light penetration depth at a wave-
length of 450 nm was about 0.5 mm, and light at >500 nm had a
penetration depth of above 1 mm. The maximum penetration
depth was found to be 3.5 mm at wavelength 1090 nm. Given
that the skin of the nude mice in our experiment was <1 mm and
that the reflectance images starting from 450 nm already showed
the vascular beds of the tumor, it makes sense to assume that
the reflectance spectra acquired from 450 to 900 nm carries
diagnostic information about tumors underneath the skin. There-
fore, hyperspectral reflectance imaging combined with a spec-
tral-spatial classification method scan distinguishes between
tumors and surrounding tissue through intact skins.

To further extend the application of the proposed technique,
we plan to explore the ability of HSI at the near-infrared region
>900 nm for noninvasive cancer detection in the future, because
near-infrared light has a relatively deep tissue penetration com-
pared to visible light. Since the near-infrared spectra are compli-
cated by the presence of overlapping water bands, and vibrational
overtones, it becomes more difficult to interpret the large volume
of hyperspectral dataset by decomposing it into different tissue
components. Therefore, spectral-spatial classification based on the
spectral differences of cancerous and healthy tissue pixels would
be of great importance for statistical analysis of hypercubes.

The computational requirement for handling a vast amount of
hyperspectral dataset is demanding in terms of the computer
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resources and time costs. Motion artifacts may also deteriorate
the image quality due to longer data acquisition times for large
datasets. Therefore, optimal band selection will be performed
before applying the spectral-spatial classification method in
our future research. Once the reflectance spectral bands
which best characterize the tissue physiology are selected, only
spectral images at specific wavelengths will be acquired and
used for further analysis.

As an emerging imaging technology in medicine, HSI can
have many potential applications, not only for cancer detection
but also for other medical applications such as image-guided
surgery. Studies of HSI for cancer diagnosis have been inves-
tigated in the cervix, breast, skin, oral cavity, esophageal, colon,
kidney, bladder, etc. HSI has also been explored for surgical
guidance in mastectomy, gall bladder surgery, cholecystectomy,
nephrectomy, renal surgery, abdominal surgery, etc. A detailed
review for applications of medical HSI can be found in Ref. 6.
Recent studies also employed HSI for monitoring of chemo-
therapy on cancers."’

6 Conclusion

In this study, we described and validated a spectral-spatial clas-
sification framework based on tensor modeling for HSI in the
application of head and neck cancer detection. This method
characterized both spatial and spectral properties of the hyper-
cube and effectively performed dimensionality reduction. In an
animal head and neck cancer model, the proposed classification
method was able to distinguish between tumor and normal
tissues with an average sensitivity and specificity of 93.7%, and
91.3%, respectively. The results from this study demonstrated
that the combination of HSI with spectral-spatial classification
methods may enable accurate and quantitative detection of can-
cers in a noninvasive manner.
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