
RESEARCH PAPER

Synthetic aperture radar image change detection
based on image difference denoising and fuzzy
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ABSTRACT. Deep neural network-based synthetic aperture radar (SAR) image change detection
algorithms are affected by coherent speckle noise in the original image. Existing
denoising methods have predominantly focused on generating binary images based
on the pre-classification of original pixels, which is insufficient in removing interfering
noise. Herein, to further reduce the noise points generated in the clustering algo-
rithm, we combined the characteristics of the fuzzy clustering algorithm, demonstrat-
ing the obvious advantages of the proposed fast and flexible denoising convolutional
neural network (FFDNet-F) method. An FFDNet was used to reduce noise interfer-
ence in real SAR images and improve the detection accuracy and robustness of the
method. Difference operators were then drawn from the weak noise images, and
fuzzy local information C-means clustering was applied for analysis to generate the
change detection results. The experimental results from two real datasets and the
comparative analysis with other network models demonstrated the effectiveness of
this method. Simultaneously, Gaofen-3 satellite images were used to verify and ana-
lyze surface flood disasters in Zhengzhou, China. The findings of this study dem-
onstrate a significant improvement in detection accuracy using the proposed method
compared with that of other algorithms.
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1 Introduction
With the emerging development of earth observation systems, synthetic aperture radar (SAR) has
received extensive attention because it is minimally restricted by natural conditions.1 SAR image
change detection is an important means of SAR image use.2–4 Compared with the threshold
method, the clustering algorithm does not need to model and analyze the speckle noise and
is, therefore, more widely used. Currently, deep learning is also being used by many researchers.
Although many new methods have been proposed to address speckle noise suppression in SAR
images, it still remains a challenge.

To suppress speckle noise, Yousif and Ban5 used principal component analysis to reduce the
dimension of feature vectors and nonlocal means algorithms to reduce noise and detect changes
in SAR images. In the basic process of change detection, improving the single difference map has
become the research subject for many scholars. Li et al.6 divided the image into low frequency
and high frequency components to fuse different modes Liu et al.7 used the mean ratio and differ-
ence operator for a simple linear combination and proposed a mean ratio-subtraction difference
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plot. Fusion difference maps improve the disadvantages of single difference maps; however,
some limitations in utilizing image information remain. Gao et al.8 utilized frequency domain
analysis to improve the quality of difference maps, effectively reducing noise interference and
enhancing change detection accuracy. Afterwards, the research team applied the FCM clustering
algorithm for change detection. FCM is a clustering algorithm based on fuzzy theory that groups
sample data into distinct categories according to their similarity. By using the FCM algorithm,
pixels with similar features and attributes can be classified into cohesive categories, automati-
cally adapting to complex backgrounds and noise conditions within the dataset proficiently.

Many researchers have conducted in-depth studies on change detection using traditional
clustering and the corresponding improved clustering algorithms.9 Three-channel fusion differ-
ential images, classified using k-means, have been established in the literature, and an unsuper-
vised clustering SAR image change detection algorithm, which was found to overcome the
problem of statistical model selection, has been proposed.10 Ahmed et al.11 proposed an improve-
ment of the FCM algorithm, which introduces spatial neighborhood information into the fuzzy
C-means (FCM) objective function. Gao et al.12 applied the FCM algorithm for the pre-
classification of pixels and combined it with an extreme learning machine algorithm. Few studies
have applied an improved fuzzy clustering algorithm in SAR image change detection and used a
weighted distance to reflect neighborhood pixels.4,13 In a study by Gong et al.,4 the Markov
random field was combined with FCM to balance image details and noise. Li et al. introduced
Gamma correction into fuzzy local information C-means clustering (FLICM) algorithm with
better robustness.14 Through the combination of bilateral filtering and FLICM algorithm,
Shang et al.15 have successfully accomplished precise detection and identification of potential
change regions in remote sensing imagery. This study offers a novel perspective and method-
ology for analyzing remote sensing images, thereby making important contributions to the
advancement of relevant domains.

The rise of deep learning algorithms provides a new approach to SAR image change detec-
tion. Literature16,17 classifies hyperspectral images, and Li et al.9 propose a lightweight network
model for images. Gao et al.18 used SAR images to detect changes in sea ice and virtual samples
to enrich training samples. Li et al.19 combine the clustering algorithm with CWNN convolution.
Zhang et al.20 integrated a convolutional wavelet neural network (CWNN) with a deep convolu-
tional generative adversarial network. Some researchers improved the quality of training samples
by utilizing information on the frequency domain of SAR images2 and via comparisons between
salient regions and neighboring pixels20 based on the cascaded principal component analysis
network (PCANet).21

Most deep learning methods follow the FCM clustering algorithm to generate labels; how-
ever, SAR image change detection based on FCM pre-classification produces deviations in the
results.22 The number of labels obtained with FCM clustering is relatively small and insufficient
in ensuring sample input in some deep learning algorithms. At the same time, the network learns
directly from the image and is affected by speckle noise, which interferes with the changing and
non-changing features of pixels.

Herein, we proposed a bi-temporal SAR image change detection method for denoising an
image space domain. It predominantly involves the following two aspects:

1. Inspired by Zhang et al.,23 the fast and flexible denoising convolutional neural network
(FFDNet) model is used to reduce speckle noise and real SAR images to retain the network
parameters. The denoised image results agreed with direct human observation and
improved the accuracy of the change detection algorithm.

2. To avoid excluding the correlation between the central and neighboring pixels in the
clustering algorithm,24 we used fuzzy local information C-means (FLICM) clustering
to classify the SAR images.

2 Experimental Method
In this section, we present a comprehensive description of the methodology employed in this
paper and elucidate the structure of the FFDNet model. We provide explicit clarification regard-
ing the functions and roles of each component within the FFDNet model, along with their inher-
ent advantages in image denoising tasks. Subsequently, we outline the formulas utilized for
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calculating using differential operators. Furthermore, our focus is directed towards an extensive
discussion on pivotal steps involved in fuzzy clustering. Fuzzy clustering represents an unsu-
pervised learning approach that partitions a dataset into distinct groups based on similarity mea-
sures. Within this section, we offer a thorough exposition of fuzzy clustering algorithms
encompassing mathematical principles and computational processes. Additionally, two distinct
types of feature descriptions are employed to evaluate traditional datasets as well as algorithm
performance indicators within this context.

2.1 Proposed Method
In this section, we present a comprehensive description of the methodology employed in this
paper. The algorithm flowchart proposed by us is depicted in Fig. 1. Initially, the dual-temporal
SAR images are fed into the FFDNet structure for denoising, resulting in denoised images T1 and
T2, respectively. This algorithm effectively mitigates noise in the images and enhances the accu-
racy of subsequent processing steps. Subsequently, we introduce the logarithmic ratio method to
generate difference operators. By calculating the logarithmic ratio between each pixel value of
two images and mapping it to a new grayscale range, it can effectively emphasize areas of change
while suppressing irrelevant information. Lastly, we employ a fuzzy clustering algorithm on the
difference operator to derive the final change detection outcome. Fuzzy clustering is a widely
adopted technique for data classification and segmentation tasks that has been applied herein to
identify and label changes occurring in SAR images.

2.2 FFDNet Denoising Model
The presence of speckle noise in two-phase SAR images hampers the visualization and inter-
pretation of ground objects by causing interference. Hence, it becomes imperative to mitigate this
issue during change detection analysis. Employing speckle filtering techniques aids in achieving
a smoother difference image while minimizing false alarms caused by speckle noise.

The FFDNet-based image denoising method utilizes a network to learn and subtract the
noise from the original image. Unlike existing convolutional neural networks (CNNs) that pri-
marily focus on Gaussian denoising, which lacks generalization ability for complex noise in real
noisy images, Zhang et al. addressed this issue by incorporating a noise-level map as input. In
order to better handle speckle noise in SAR images, this study employed speckle noises as
retraining samples to design a CNN-based noise model specifically tailored for SAR images.
By processing the downsampling operator, a wider range of noise was effectively eliminated.

Fig. 1 Overall design process of this experiment.
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The network structure depicted in Fig. 2 took the original real SAR image with speckle noise as
input, and the training process is illustrated in Fig. 3.

The input Y comprised reversible downsampling operators that reshaped the input image
into four downsampled sub-images. These were then input into the convolution together with
the noise-level images. The noise-level images assign a specific noise level to each pixel of an
image to balance between noise reduction and detail preservation in the presence of spatially
varying noise.17–19 The size of the input image Y was defined as W ×H × C; the size of the
downsampled sub-images was W∕2 ×H∕2 × 4C, where C is the number of channels of the
image, designated as 1 in the SAR denoising model; the sub-images were connected with the
noise-level images as a tensor of W∕2 ×H∕2 × ð4Cþ 1Þ, which was used as the CNN
data input.

CNN is composed of a series of 3 × 3 convolutional layers, with the first convolutional layer
in “Conv + ReLU,” the middle 15 layers in “Conv + BN + ReLU,” and the last layer in “Conv.”
The feature map was filled with zeros to retain its constant size.

Reconstructed from the output X were four sub-images that had undergone denoising, result-
ing in the restoration of the original denoised image. Following FFDNet,23 this study employed a
SAR grayscale image for denoising; specifically, the parameters for grayscale image convolution
layers, grayscale image feature map channels, and downsampling factor were set at 15, 64, and 2
respectively. The SAR input image was normalized without introducing additional errors in the
calculation or changing the information stored in the image. The original image was then com-
pressed to the range of 0 to 1 using

EQ-TARGET;temp:intralink-;e001;114;145norm ¼ yi −minðyÞ
maxðyÞ −minðyÞ : (1)

In the forward propagation, FFDNet uses residual learning to train a residual map, as shown

EQ-TARGET;temp:intralink-;e002;114;95Rðyi; λÞ ≈ yi − xi; (2)

Fig. 2 Architecture of the fast and flexible denoising convolutional neural network for image
denoising. BN, batch normalization; Conv, convolution; ReLU, rectified linear unit.

Fig. 3 Fast and flexible denoising convolutional neural network architecture used for image
denoising.
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where Rðyi; λÞ is the noisy image predicted by the network, λ is the training network parameters,
yi is the original noisy input image, and xi is the noise-free label map.

In the backward propagation, the mean square error was used as the loss function, as shown
in Eq. (3), and the adaptive moment estimation algorithm was used to minimize the loss function

EQ-TARGET;temp:intralink-;e003;117;688∂ðλÞ ¼ 1

2N

XN
i¼1

kxi − xik2; (3)

EQ-TARGET;temp:intralink-;e004;117;634xi ¼ yi − Rðyi − xiÞ; (4)

where N is the number of training samples.
After training the network using SAR images containing speckle noise, the trained FFDNet

was utilized to denoise real datasets with updated network parameters. Consequently, the original
image was restored from the four sub-images generated through downsampling.

2.3 Difference Operators
Difference image (DI) generation was used to identify the differences between the two images
with a specific calculation method to reflect the changed parts of the SAR images.20 Accordingly,
this section introduces the difference operators applied in the experiments mentioned in Sec. 3.

The subtraction operator obtains the DI by directly subtracting the two images, as shown in
Eq. (5). Given that the pixel value cannot be negative, X in the difference calculation is defined as
the absolute value of the subtraction of the two images. Earlier studies have used the difference
method owing to its simple concept and implementation. However, this method cannot effec-
tively remove coherent speckle noise. Therefore, it has subsequently been improved by
researchers

EQ-TARGET;temp:intralink-;e005;117;449X ¼ jX2 − X1j: (5)

The log-ratio (LR) operator adds logarithmic operations into the ratio method that trans-
forms the multiplicative noise model into an additive noise model,2 as expressed in Eq. (6).
This method is widely used in DI acquisition. However, the logarithmic operation enhances the
shrinkage of the pixels to ensure that the edge pixel details cannot be well preserved or may be
blurred

EQ-TARGET;temp:intralink-;e006;117;364XLR ¼
���� log X2

X1

���� ¼ j log X2 − log X1j; (6)

where X2 and X1 are the input image information, and the gray value in the SAR image matrix is
applied to the calculation.

In the real calculations, to avoid calculation errors caused by zero-pixel values in the image
XLR, 1 is added to the pixel values calculated in Eq. (6) to obtain the logarithmic ratio operator
using Eq. (7) as follows. This differential operator has been chosen as the preferred method in our
study presented in this article.

EQ-TARGET;temp:intralink-;e007;117;255DL ¼
���� log X2 þ 1

X1 þ 1

���� ¼ j logðX2 þ 1Þ − logðX1 þ 1Þ: (7)

The mean-ratio (MR) uses the neighborhood information of the pixel, expressed in Eq. (8),
and replaces the texture feature or gray value of the corresponding pixel with the mean value of
the neighborhood pixels of the pixel point. This method can suppress the coherent speckle in the
form of a single pixel point

EQ-TARGET;temp:intralink-;e008;117;169XMR ¼ 1 −min

�
X2

X1

;
X1

X2

�
: (8)

Rezaei and Karami demonstrated that the noise in SAR images is speckle noise.21 In this
study, the ideal LR and MR were selected as the difference operators in the experiment.

In the experimental analysis, we conducted a comparative study of various difference oper-
ators and established objective criteria for their mutual evaluation. These comparisons enable us
to comprehensively assess and comprehend the performance of different difference operators in
specific contexts. Our experimental analysis revealed that each difference operator possesses
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unique advantages and limitations when applied to data processing. Certain operators exhibit
suitability for specific types or smaller-scale datasets, excelling in extracting crucial information.
Conversely, others are better suited for handling large-scale complex datasets, offering advan-
tages in terms of stability and accuracy maintenance.

2.4 FLICM Algorithms
Krinidis and Chatzis improved the FCM algorithm and proposed the FLICM algorithm by incor-
porating local and sample spatial information and the gray values of the images, which increases
the robustness of the sample application.22

The objective function of the FLICM algorithm is shown as

EQ-TARGET;temp:intralink-;e009;114;616J ¼
Xn
i¼1

Xc
k¼1

umkikxi − vkk2 þ Gki; (9)

where the existing image has n pixel points; the i’th pixel is xi; the number of cluster center
categories is c; kxi − vkk2 is the Euclidean distance between sample point xi and the cluster
center vi; uki is the membership degree of the sample point relative to the cluster center; m
is the membership degree weight of the sample point to the cluster center that is usually set
to 2, according to the experiment by Hwang and Haddad23; and Gki is the fuzzy factor.

The fuzzy factor is shown as

EQ-TARGET;temp:intralink-;e010;114;503Gki ¼
X
xj∈Ni

1

dij þ 1
ð1 − ukjÞ2kxi − vkk2; (10)

where Ni is the set of neighborhood pixels Xj; the neighborhood window of the pixels xi to be
classified is 3 × 3; dij is the Euclidean distance between xj and xi; and ukj denotes the member-
ship degree of the neighborhood pixels xj to the cluster center vk.

Derived from the Lagrange multiplier method, the membership degree ukj to the cluster
center vk is obtained by an iterative calculation to minimize the objective function, as shown

EQ-TARGET;temp:intralink-;e011;114;399uki ¼
1

P
c
j¼1

�
kxi−vkk2þGki

kxi−vjk2þGji

� 1
m−1

; (11)

EQ-TARGET;temp:intralink-;e012;114;336vk ¼
P

N
i¼1 u

m
kixiP

N
i¼1 u

m
ki

: (12)

The fuzzy factor introduced in the FLICM algorithm accounts for the spatial and gray value
relationship between pixels. Compared with the original FCM algorithm, it saves computational
time and reduces the outline blurring of the changing subject in the SAR gray image.

2.5 Experimental Data
To verify the effectiveness of the experimental protocol, we selected two sets of real data for
comparison. The study areas and change reference image are shown in Fig. 4. The first set
of experimental data, 301 × 301 pixels in size, were SAR images captured by the European

Fig. 4 Synthetic aperture radar image of the Bern area, Switzerland. (a) April 1999; (b) May 1999;
(c) Change reference image of Figs. 4(a) and 4(b).
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Remote Sensing Satellite-2 of Bern, Switzerland. Images in Figs. 4(a) and 4(b) were captured in
April and May 1999, respectively; they show the flood situation near the suburbs of Bern, where
Fig. 4(c) is the change reference image.

The resolution of the second experimental dataset was 444 × 291 pixels, which was cap-
tured by the Radarsat-2 SAR satellite. Figures 5(a) and 5(b) show the inland waters of the
Yellow River in China in June 2008 and June 2009, respectively. Figure 5(c) is the change refer-
ence image. Changes occurred predominantly at the riverbanks.

2.6 Evaluation Metrics
Change detection is predominantly used to recognize changed and unchanged pixels, quantita-
tively evaluate the performance of the SAR image change detection algorithm and verify the
effectiveness of an algorithm via objective analysis of the experimental results. To assess its
accuracy, the five evaluation indicators in this study were false negatives (FN), false positives
(FP), overall errors (OE), percentage correct classification (PCC), and the Kappa coefficient. FN
indicates the number of changed pixels classified as non-changed, FP denotes the number of non-
changed pixels classified as changed, OE is the sum of FN and FP, and PCC indicates the ratio of
correct detections to total pixels. The Kappa coefficient is an important evaluation indicator that
considers the correctly and falsely detected pixels. When the value is closer to 1, the detection
effect is more effective.

The calculations for the PCC and Kappa coefficient are shown in Eq. (13) and (14) below,
respectively:

EQ-TARGET;temp:intralink-;e013;117;267PCC ¼ Num − OE

Num
; (13)

EQ-TARGET;temp:intralink-;e014;117;222

�
Kappa ¼ PCC−P

1−P
P ¼ TPþFN

Num
× TPþFP

Num
þ TNþFP

Num
× TNþFN

Num

; (14)

where Num indicates the total number of image pixels, TP denotes the number of changed pixels
classified as changed, and TN represents the number of non-changed pixels classified as non-
changed.

In this study, the peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM)
were used for the DI analysis.25 PSNR was used to measure the differences between the two
images and calculate the degree of difference between the images. The minimum value of
PSNR is 0; when PSNR is larger, the difference between the two images is larger. The minimum
and maximum values of SSIM are 0 and 1, respectively. When SSIM is larger, the two images are
more similar.

Fig. 5 Synthetic aperture radar image of the Yellow River area. (a) June 2008; (b) June 2009;
(c) Change reference image of Figs. 5(a) and 5(b).
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3 Results
To validate the effectiveness of the change detection algorithm after DI denoising, we conducted
experiments on the two abovementioned sets of real data. The images were preprocessed with the
FFDNet model to denoise the DI and improve their quality. Subsequently, the LR operator was
constructed with the denoised bi-temporal image, and its quality was evaluated. The DIs were
classified using fuzzy clustering to generate the final change detection result map.

3.1 Quality Assessment of Difference Operators
To verify the effectiveness of the difference operators, we conducted experiments on the quality
of the operators, and the PSNR and SSIM values of the original image were calculated. Figures 6
and 7 show the denoising results of the Bern and Yellow River datasets, respectively. These
results indicate that the speckle noise in the images has been substantially suppressed, and the
overall image is more uniform.

Tables 1 and 2 show the PSNR and SSIM values of the datasets, where a is the image of the
first phase and the result after the first phase of denoising, and b is the image of the second phase
and the result after the second denoising phase.

Fig. 6 Denoised image of the Bern region. (a) Image denoising results before floods; (b) Image
denoising results after floods.

Fig. 7 Denoised image of the Yellow River region. (a) Noise removal results before riverbank
change; (b) Noise removal results after riverbank change.

Table 1 Evaluation index of various difference operators in the Bern region.

SSIMa PSNRb

a 0.3424 19.5675

b 0.4019 20.1387

aStructural similarity index.
bPeak signal-to-noise ratio.
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The evaluation metrics of the original images were calculated using different difference
operators, as shown in Tables 3 and 4. These compare the difference operator with the LR oper-
ator, mean ratio, and operator after FFDNet noise reduction. The results between the conven-
tional and LR operator proposed in this paper were obtained. In terms of PSNR, the LR and DI
after FFDNet denoising were three-fold that of the original, and the SSIMs all exceeded 0.99.
The objective indicators showed that most of the similarities in the LR and DI remain unchanged.

3.2 Change Detection Results and Analysis
The method proposed in this study is referred to as FFDNet-F. The experimental results of the
Bern dataset are shown in Fig. 8 and Table 5.

Table 2 Evaluation index of various difference operators in the Yellow River
region.

SSIMa PSNRb

a 0.5188 23.6021

b 0.3476 17.9258

aStructural similarity index.
bPeak signal-to-noise ratio.

Table 3 Evaluation index of various difference operators in the Yellow River
region.

SSIMa PSNRb

Sub-logc 0.0138 19.1353

Sub-MRd 0.0363 19.3952

Sub-proposede 0.0094 19.0732

Log-proposede 0.9941 57.9231

aStructural similarity index.
bPeak signal-to-noise ratio.
cSub-log, the comparison between the difference operator and logarithmic ratio
operator.

dSub-MR, the comparison between the difference operator and mean ratio operator.
eSub-proposed and log-proposed, the comparison between the corresponding operator
and the operator proposed in this study.

Table 4 Evaluation index of various difference operators in the Bern region.

SSIMa PSNRb

Sub-logc 0.1907 18.7553

Sub-MRd 0.1959 18.8865

Sub-proposede 0.1836 18.6966

Log-proposede 0.9939 57.3823

aStructural similarity index.
bPeak signal-to-noise ratio.
cSub-log, the comparison between the difference operator and logarithmic ratio
operator.

dSub-MR, the comparison between the difference operator and mean ratio operator.
eSub-proposed and log-proposed, the comparison between the corresponding operator
and the operator proposed in this study.
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K-means26 and FCM clustering27 algorithms exhibited low overall Kappa coefficients in the
Bern dataset and produced more speckle noise in the image, which resulted in a substantial num-
ber of false alarms. The principal component analysis and K-means clustering (PCAKM)
algorithm28 reduced noise by selecting the dimension of the feature space to ensure that the edge
of the image is smooth and the outline of the changing subject is distinct. PCANet23 demon-
strated a pronounced effect in terms of suppressing speckle noise after pre-classification.9

The accuracy of the results of PCANet was higher than that of the results of the classic clustering
K-means and FCMmethods, with the original Kappa value increasing by 5.02 and 13.08, respec-
tively. However, owing to a higher FP, some content was missing, and the Kappa coefficient was
lower for the PCANet results than that for the PCAKM results. CapsNet used the adaptive fusion
convolution module and improved the accuracy of the results via feature conversion.3 The
CWNN method has been applied in sea ice detection19; however, the Kappa coefficient was
higher in the flooded area in the Bern dataset. The method used in this study produced a lower
Kappa coefficient than those of the PCAKM and CWNN in the Bern dataset, respectively.
However, the accuracy of the results improved substantially compared with that of the other
methods used in the study.

The experimental results from the Yellow River and Bern datasets are shown in Fig. 9 and
Table 6.

The K-means26 and FCM clustering27 algorithms in the Yellow River dataset had an overall
lower Kappa coefficient. The FCM clustering algorithm had a high FP value and prominent
noise, with a Kappa coefficient of 16.98. The PCAKM algorithm enriched the details of the
changing subject, and the outline was more distinct.28 PCANet had a lower Kappa coefficient
than that of PCAKM23; however, the Kappa coefficient improved by 2.6%. CapsNet reduced
false alarms, and its Kappa coefficient improved by 2.66%3; therefore, the Kappa coefficient
was higher than that of PCANet. CWNN had a low FN value.19 The methods used in this study
demonstrated the highest accuracy for the Yellow River dataset, and the accuracy of the results
was considerably enhanced.

Fig. 8 Change detection results obtained using different methods for multi-temporal images of
Bern. (a) K-means, algorithms for hard clustering; (b) fuzzy C-means; (c) principal component
analysis; (d) principal component analysis network; (e) capsule network; (f) convolutional wavelet
neural network; (g) fast and flexible denoising convolutional neural network, the method proposed
in this study.

Table 5 Metrics of the Bern dataset.

Kappa PCC FP FN OE Method

70.35 99.24 360 326 686 K-means

62.29 99.21 162 554 716 FCM

85.75 99.64 179 150 329 PCAKM

75.37 99.49 434 31 465 PCANet

76.29 99.45 172 329 501 CapsNet

85.28 99.65 85 230 315 CWNN

83.58 99.62 95 254 349 FFDNet-F
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Given that traditional clustering methods like K-means and FCM only consider individual
pixels without taking into account other spatial data, they are highly sensitive to image noise and
can potentially introduce more overall noise. Although these methods may achieve local opti-
mization, they have certain global limitations. In recent years, the field of image processing has
introduced deep learning techniques such as PCANet. These approaches view clustering as pre-
classification and optimize sample labels, which are closely related to sample quality, thereby
improving clustering performance. Deep learning techniques effectively utilize feature informa-
tion within images while demonstrating robustness and generalization capabilities compared to
conventional methods. This study combines deep neural networks with FLICM clustering meth-
odology and validates its effectiveness through experimental results.

In this study, we propose a new method that combines deep neural networks with fuzzy local
information C-means (FLICM) clustering. The experimental results demonstrate the effective-
ness of this approach in utilizing the advanced capabilities of deep neural networks for extracting
and representing features, while also incorporating spatial relationship information considered by
the FLICM algorithm to accurately model data distribution. By simultaneously optimizing net-
work parameters and sample labels, our method improves both accuracy and robustness in image
clustering tasks based on the FLICM algorithm.

3.3 Window Parameter Experiment
The window parameters for clustering, based on different neighborhoods, specifically impacted
the experimental results and produced a sharpening or smoothing effect. The window parameters
involved in the FLICM algorithm were examined when set to 3, 5, 7, 9, and 11. The results of the
Bern dataset are shown in Fig. 10, and those of the Yellow River dataset are shown in Fig. 11.

The experimental results show that the window value in clustering specifically influenced
detection result accuracy. As the window value increased, the outline of the main changing

Table 6 Metrics of the Yellow River dataset.

Kappa PCC OE FN FP Method

53.70 96.72 4232 1629 2603 K-means

16.98 79.17 26912 510 26402 FCM

74.66 98.20 2325 657 1668 PCAKM

77.26 98.54 1887 677 1210 PCANet

79.92 98.29 2207 1468 739 CapsNet

78.34 98.46 1990 483 1507 CWNN

82.05 98.63 1765 624 1141 FFDNet-F

Fig. 9 Change detection maps obtained using different methods for multi-temporal images of the
Yellow River. (a) K-means, algorithms for hard clustering; (b) fuzzy C-means; (c) principal com-
ponent analysis; (d) principal component analysis network; (e) capsule network; (f) convolutional
wavelet neural network; (g) fast and flexible denoising convolutional neural network, the method
proposed in this study.
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subject in the detection smoothened. In the results, the discrete points of the lake gradually con-
verged with the main part as the window value increased, and the resulting fragmentation traces
were weakened. The main body of results from the Bern dataset tends to comprise one area,
whereas the Yellow River dataset comprises three parts (Figs. 10 and 11, respectively).
The Kappa value and PCC under different windows are shown in Table 7 and Fig. 12.

Fig. 11 Yellow River dataset results for different window values. K , window size.

Table 7 Kappa values in different windows.

Kappa K ¼ 3 K ¼ 5 K ¼ 7 K ¼ 9 K ¼ 11

Bern 85.46 83.58 80.07 77.06 74.11

Yellow River 80.81 82.05 82.21 81.45 80.89

Fig. 10 Bern dataset results for different window values. K , window size.

Fig. 12 Relationship between the size of the window and the percentage correct classification in
the two datasets.
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The Kappa and PCC values in the Bern dataset (Fig. 10) gradually decreased with increasing
window values; there was a pronounced degree of decline. The two indicators in the Yellow River
dataset (Fig. 11) reached extreme values when the window was set to 7, and the overall level was
less affected by the window value.

3.4 Real Data Verification
To verify the effectiveness of the method, we used China’s GF-3 satellite data for verification and
selected a typical flood region. We chose Zhengzhou city, China, which suffered major floods in
July 2021. The two Zhengzhou flood datasets, A and B, represent different regions during flood
occurrence. Both sets were collected by GF-3 on July 20 and July 24, 2021 (resolution: 5 m).
Dataset A showed the changes during inland floods, with significant widening on both sides of
the river and relatively concentrated waterlogging areas. Dataset B showed marginal water body
fading and inland farmland water body irrigation changes. The changed features were relatively
fragmented.

In the Zhengzhou flood datasets, as shown in Figs. 13 and 14, the overall detection accuracy
of the clustering algorithm was relatively low. In particular, the Kappa coefficient of the
FCM algorithm did not exceed 50, representing a significant amount of error detection. The
deep learning method represented by PCANet significantly improved the accuracy of change
detection.

For Zhengzhou dataset A, the FCM algorithm resulted in a large number of noise points,
while the CapsNet method achieved the highest accuracy (Fig. 15 and Table 8). The method in
this study detects more discrete non-changing regions and classifies a small portion of the noise
as changing parts. In Zhengzhou dataset B, the results in Fig. 16 and Table 9 show that the
detection accuracy of the FCM algorithm was still relatively low, while the detection accuracy
of the CWNN algorithm decreased significantly. The method in this study suppresses noise in
advance, resulting in generally stable detection accuracy.

In the experimental method, the efficacy of the K-means and FCM clustering algorithms in
the Bern dataset is constrained, as indicated by their relatively low overall Kappa coefficients.

Fig. 13 Synthetic aperture radar image of the Zhengzhou area, China, using dataset A from GF-3.
(a) July 20, 2021; (b) July 24, 2021; (c) Change reference image of (a) and (b).

Fig. 14 Synthetic aperture radar image of the Zhengzhou area, China using dataset B from GF-3.
(a) July 20, 2021; (b) July 24, 2021; (c) Change reference image of (a) and (b).
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Fig. 15 Change detection maps obtained for multi-temporal images of the Yellow River using dif-
ferent methods. (a) K -means, algorithms for hard clustering; (b) fuzzy C-means; (c) principal com-
ponent analysis; (d) principal component analysis network; (e) capsule network; (f) convolutional
wavelet neural network; (g) fast and flexible denoising convolutional neural network, the method
proposed in this study.

Table 8 Metrics of Zhengzhou Dataset A.

Kappa PCC OE FN FP Method

62.4 93.32 6016 2912 3104 K-means

43.05 84.16 14258 1420 12838 FCM

83.58 97.38 2357 2106 251 PCAKM

74.59 96.29 3343 3343 0 PCANet

88.8 98.1 1713 1199 514 CapsNet

85.28 97.68 2086 2083 3 CWNN

83.28 97.27 2456 1946 510 FFDNet-F

Fig. 16 Change detection maps obtained for multi-temporal images of the Yellow River using dif-
ferent methods. (a) K -means, algorithms for hard clustering; (b) fuzzy C-means; (c) principal com-
ponent analysis; (d) principal component analysis network; (e) capsule network; (f) convolutional
wavelet neural network; (g) fast and flexible denoising convolutional neural network, the method
proposed in this study.

Table 9 Metrics of Zhengzhou Dataset B.

Kappa PCC OE FN FP Method

48.75 93.39 5951 3252 2699 K-means

23.31 75.87 21719 1368 20351 FCM

72.52 96.6 3061 2084 977 PCAKM

59.4 95.85 3737 3553 184 PCANet

73.13 96.73 2941 2138 803 CapsNet

51.19 89.65 9312 568 8744 CWNN

71.71 96.46 3187 2255 932 FFDNet-F
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Moreover, these algorithms tend to introduce a higher level of speckle noise into the image,
leading to a considerable number of false alarms.

The PCAKM algorithm addresses the issue of noise by meticulously selecting the dimension
of the feature space, ensuring not only a smooth image edge but also distinct outlines for any
changing subject within it. This approach effectively minimizes false alarms caused by excessive
speckle noise. By incorporating principal component analysis into the clustering process,
PCAKM successfully reduces noise while preserving crucial features in an image. The careful
selection of appropriate dimensions for feature extraction enables improved discrimination
between different regions or objects within an image.

PCANet leverages the neighborhood features encompassing each pixel to extract valuable
information from images. Through meticulous analysis and comparison of individual pixels,
PCANet effectively captures the correlations and similarities between diverse regions within the
image. In contrast to alternative approaches, PCANet exhibits remarkable robustness in handling
speckle noise. As a method for extracting neighborhood features, it demonstrates exceptional
resilience in mitigating speckle noise while achieving the lowest FN value.

CapsNet employs a multi-scale capsule module for effectively modeling the spatial relation-
ship between objects. This module exhibits the capability to capture objects at various scales and
aggregate them to obtain comprehensive global information. By aggregating features from
diverse positions, we are able to holistically consider information from each position, thereby
significantly improving change detection accuracy. Notably, this approach has demonstrated
remarkable detection accuracy across multiple datasets in empirical evaluations.

CWNN algorithm utilizes wavelet transform to reduce the impact of speckle noise
in SAR images. By incorporating wavelet transform, CWNN effectively reduces the
blurring effects caused by speckle noise in SAR images. Additionally, during training, CWNN
employs a method for generating virtual samples as an extra strategy. This approach successfully
tackles the challenge posed by limited training samples and greatly improves detection
accuracy.

4 Discussion
The original SAR image obtained after satellite signal interpretation contained speckle noise.
Errors in signal processing and transmission in each band may cause some interference in the
acquired image and alter the result. Although we suppressed speckle noise to some extent, the
quality of the SAR images remained uncertain. The source of SAR image samples for noise
suppression and the superposition of multiple noises in the images are possible uncertainty fac-
tors. Considering noise suppression, FFDNet-F has substantial advantages over clustering and
deep neural network methods. The resolution of SAR images can be further improved using
multidimensional and multi-domain features of SAR images, including time, frequency, spatial,
time-frequency, and transform domains. Simultaneously, pre-classification or secondary classi-
fication clustering and other algorithms can still be improved.

As shown in the spatial denoising results in Figs. 6 and 7, the surface noise was smoothened,
and the primary water body system was highlighted. The contrast between the two areas is dis-
tinct, indicating that the speckle noise was suppressed.

Two clustering algorithms discretized the changed ground objects in the results and cut the
original ground morphology to a certain extent (Figs. 8 and 9). PCAKM, PCANet, CapsNet,
CWNN, and FFDNet-F methods retain the original surface morphology to the fullest extent,
and the changed results are distinct.

The FLICM algorithm was analyzed using the window parameter, K, in the clustering algo-
rithm, as shown in Figs. 10 and 11. The Bern dataset was greatly affected by the window neigh-
borhood in the window selection. Our analysis determined that the main changes in the Bern
dataset were concentrated in the lower right image segment. Most areas in the image did not
change during the neighborhood search, indicating that detection accuracy substantially
decreases when the neighborhood is expanded. The changed areas in the Yellow River dataset
were evenly distributed. Adjusting the window parameter, K, minimally affected the overall
progress. Table 7 and Fig. 12 validate our analysis.
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The results based on real images in recent years have shown that reducing speckle noise in
advance can greatly improve detection accuracy. The Zhengzhou data mainly captures farmland;
owing to the impact of surface crops, farmland data can generate a large amount of speckle noise,
which may cause confusion in the results. The FFDNet-F algorithm is not only applicable to the
older Bern and Yellow River datasets but also demonstrates good operational results in the new
high-degree series of satellite datasets. The method of suppressing speckle noise in advance has
also been analyzed.

This study focuses on the means of change detection in the spatial domain. Simultaneously,
the noise reduction algorithm in the human visual domain (spatial domain) is maturing, which
benefits from the timely quality control feedback in the algorithm process. The details cannot be
directly observed in other domains, such as the frequency domain, resulting in less use of each
link in the change detection algorithm; however, the overall accuracy can be improved using the
information on the domain. The use of information in multiple dimensions and domains can be
improved.

Most of the datasets used by the algorithms in the industry are small-sample SAR images,
and the calculation rate is substantially reduced for larger images. Improving the detection accu-
racy for small samples is crucial; however, the image cannot adhere to the requirements of overall
judgment after clipping. A decreased detection speed causes the algorithm to be less efficient
than manual observation, and a quicker speed needs to maintain a certain degree of accuracy.
Limited by the quality of data samples, this study used a small range of sample sets. The FFDNet
used for noise reduction in this study uses the FLICM algorithm for classification, which is faster
than the overall neural network method but has accuracy flaws.

5 Conclusions
The presence of speckle noise has a significant impact on the outcomes of change detection in
SAR images. To enhance the accuracy of results, it is crucial to reduce the inherent levels of
speckle noise within these images. The preservation of data integrity in areas undergoing changes
can be achieved by employing an appropriate denoising model. In this research, we have effec-
tively utilized the FFDNet architecture to decrease speckle noise while also implementing
FLICM clustering with fuzzy factors to further mitigate its impact. Our experiments demonstrate
improved Kappa values within evaluation indices and successfully achieve a balanced represen-
tation across both Bern and Yellow River datasets.

Furthermore, in recent evaluations conducted on the dataset of the Zhengzhou flood disaster,
this algorithm exhibited exceptional performance and demonstrated remarkable precision in
detection. This implies that we can more accurately identify flood-related information and
promptly implement response measures.
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