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ABSTRACT. The brain-based assessments under anesthesia have provided the ability to
evaluate pain/nociception during surgery and the potential to prevent long-term evo-
lution of chronic pain. Prior studies have shown that the functional near-infrared
spectroscopy (fNIRS)-measured changes in cortical regions such as the primary
somatosensory and the polar frontal cortices show consistent response to evoked
and ongoing pain in awake, sedated, and anesthetized patients. We take this basic
approach and integrate it into a potential framework that could provide real-time
measures of pain/nociception during the peri-surgical period. This application could
have significant implications for providing analgesia during surgery, a practice that
currently lacks quantitative evidence to guide patient tailored pain management.
Through a simple readout of “pain” or “no pain,” the proposed system could diminish
or eliminate levels of intraoperative, early post-operative, and potentially, the tran-
sition to chronic post-surgical pain. The system, when validated, could also be
applied to measures of analgesic efficacy in the clinic.
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1 Introduction

1.1 Case for “Pain” Under Anesthesia
The idea of “nociceptive” signaling under general anesthesia is not immediately intuitive. The
anesthetic state is such that there is no movement (loss of reflexes) when the surgeon operates,
and the patient is rendered amnesic for the event.1 Surgery-induced activations (e.g., from tissue
damage or other noxious stimuli) of peripheral nociceptive pathways through C and Ad fibers
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produce changes in brain pathways (viz., sensory, affective, and modulatory) in both animal and
human studies. The ongoing activation of pain pathways may result in peripheral and central
sensitization resulting in hyperalgesia where response to stimuli is exaggerated. As noted by
others, “not timing but duration and efficacy of an analgesic and anti-hyperalgesic intervention
are most important for treating pain and hyperalgesia after surgery.”2 Furthermore, independent
of peripheral activation of nociceptive pathways immunological activation relates to the brain
state during surgical stress: “the anesthetized brain is still physiologically ‘awake’ and responsive
to the sterile stressors of surgery.” 3

Thus, the question that arises is whether nociceptive signals during unconsciousness such as
that occurring in general anesthesia, would be characterized as pain under the current
International Association for the Study of Pain (IASP) criteria for the definition of pain: “An
unpleasant sensory and emotional experience associated with, or resembling that associated with,
actual or potential tissue damage, with the following addendums that relate to the topic at hand
(a) Pain is always a personal experience that is influenced to varying degrees by biological,
psychological, and social factors; (b) Pain and nociception are different phenomena. Pain cannot
be inferred solely from activity in sensory neurons; (c) Through their life experiences, individuals
learn the concept of pain; (d) A person’s report of an experience as pain should be respected;
(e) Although pain usually serves an adaptive role, it may have adverse effects on function and
social and psychological well-being; (f) Verbal description is only one of several behaviors to
express pain; inability to communicate does not negate the possibility that a human or a non-
human animal experiences pain”4 (IASP definition of pain).

Points a, b, and f of the IASP definition of pain, are notable in the context of general
anesthesia. With respect to the surgical/anesthetic experience, other conditions may play a sig-
nificant role in the responsivity of the pain system to tissue damage. For example, prior biological
(disease) and psychological (e.g., catastrophizing) states may lead to increased intra-surgical, and
post-surgical acute pain and chronic pain (pain present at >3 months following the surgical
event). Thus, the basal socio-biological state confers a relative resistance (high or low) to the
surgically induced tissue damage and inflammatory response at the time of surgery5,6 and post-
surgery.7 However, since the patient is unconscious and cannot report pain as noted in (f) of the
IASP definition, the inability to communicate does not negate the “pain experience” for which
there is no clear definition in the pain literature. In support of this notion, current data suggests
that nociceptive processes occur during surgery (evoked and ongoing pain), and sensory spinal
(dorsolateral spinothalamic tract), thalamic (ventrolateral thalamic nuclei), and cortical (SI)
pathways are clearly activated under most general anesthesia.8–13 So too are emotional circuits
including frontal brain regions.14 The ongoing barrage of nociception is well known to induce
central sensitization under anesthesia, which clearly should also consider alterations in the whole
pain connectome and a response that affects clinical outcomes including more severe and
persistent pain.15–17 Not to mention, autonomic responses such as increased heart rate, blood
pressure and breathing are established clinical indicators of pain under anesthesia. As such,
we argue that having a quantitative, easily acquired, objective method for measuring pain/
nociception under anesthesia would allow for rational interventions to inhibit peripheral noci-
ceptive drive and limit “anesthesia pain” or “unconscious pain” and likely diminish both acute
and chronic post-operative pain. The rationale for this includes the notion that measures of
pain/nociception in the awake state are the same as those in the anesthetized state, at least for
inhalational agents, even with added opioid agents.18,19

In this review, we evaluate current effectiveness of analgesia under anesthesia and provide a
primer on current methods for evaluating pain under anesthesia. Section 2 summarizes the nature
of anesthesia and its role in analgesia, including an overview of general anesthesia and human
brain connectivity, as well as a short overview of lack of anesthesia effects on brain connectivity.
Section 3 reviews current methods for evaluating pain under anesthesia in the operating room
(OR), summarizing a number of technologies, including functional near-infrared spectroscopy
(fNIRS), in terms of their applicability and adaptability to determine pain under anesthesia.
Section 4 reviews pain measures using fNIRS and Sec. 5 introduces a proposed algorithm to
acquire and evaluate pain and pain-associated variables in real-time in the peri-surgical period –

from pre-surgical, intra-surgical to postsurgical states. Figure 2 shows an overview of our approach
to obtain real-time measures of pain in the OR. In Sec. 6, we consider various applications in the
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OR, along with problems and potential solutions, with attention to biomarker standards. As with
any new technology there are practical and medical practice issues that must be taken into account
including sensitivity and specificity, accuracy, acceptance in medical practice, etc.

2 Current Effectiveness of Analgesia Under Anesthesia

2.1 Surgery and Pain – A Brief Overview
An estimated 310 million surgical operations are performed worldwide annually.3,20 Surgery,
including the routine procedures, “attacks” the nervous system through peripheral nerve damage
and consequent inflammatory processes. Acute pain following surgery can occur immediately
after surgery to up to 3-months post operation.21 Progression to moderate or severe chronic
postsurgical pain (>3 months after surgery) occurs in 10%–50% of patients.22–24 A number
of clinical predictors likely contribute to pain chronification, viz. intraoperative pain load, pre-
and postoperative pain intensity, hyperalgesia/allodynia,23,25–27 as well as peri-surgical psycho-
logical factors, for example, pain catastrophizing28–30 discussed in more detail below. These
reflect a combination of processes resulting in central sensitization. At present, a serious gap
in postsurgical pain prevention is attributed to the lack of pain treatment provided during the
perioperative period. During surgery general anesthesia provides a state of unconsciousness but
not adequate ongoing analgesia, which is usually supplemented based on clinical evaluation; the
latter is usually provided on a clinical basis without a validated objective marker that anesthesi-
ologists can monitor.8,31

Most anesthetics used for surgery are inhalational volatile liquids, e.g., isoflurane,32 sevo-
flurane,33 etc. Apart from nitrous oxide (N20), inhalational anesthetics are not analgesic34 and
indeed, may produce hyperalgesia under certain conditions.35 As such, analgesia is obtained
through the use of intravenous analgesics (e.g., opioids). While concentrations and clinical utility
of inhalational anesthesia can be relatively easily monitored, analgesia is more of a clinical
judgment.

Data obtained from both human and animal studies point out that well-defined brain
systems are involved in the brain’s response to pain/nociception.36 In animal models of acute
pain (including mice, rats, and monkeys), regions activated while under anesthesia include sen-
sory (e.g., S1, insula, thalamus), non-sensory (e.g., cingulate), and pain modulatory pathways
(e.g., periaqueductal gray).37,38 In humans under general anesthesia, fMRI studies show that
unconsciousness and reduction in working memory, cognition, and sensory processes are not
from a lack of ascending signaling but due to halted inter-cortical integration.39

2.1.1 General anesthesia and human brain connectivity – decreased
conscious awareness, no complete blockade of pain

How general anesthetics affect brain systems is also how they may alter specific systems asso-
ciated with the major components of anesthesia: hypnosis/loss of consciousness, amnesia, are-
flexia and analgesia? While these have been reviewed elsewhere, we try to differentiate and
summarize the differences in these components and how they differ from potential ongoing pain
under general anesthesia, even with no movement and an unconscious patient:

Hypnosis/loss of consciousness. Sedation is a cortical and thalamic function, disrupting
higher cortical functions particularly the connectivity between the frontal and parietal cortices.39

Inhalational anesthetics seem to produce this disconnection, with little evidence of subcortical
changes.

Areflexia. Pain usually causes a motor response. With general anesthesia, an additional drug
is administered to produce blockade of the motor response to provide a non-moving patient for
safe surgery. This of course diminishes the clinical evaluation of pain inducing procedures.

Amnesia. The induction of amnesia may modulate hippocampal function.40 As a clinical
function it helps the anesthetic experience by making patients have no recall about the
anesthesia.41
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Analgesia. General inhalational anesthetics, for the most part, do not produce ongoing anal-
gesia (with the possible exception of nitrous oxide.32 This is supported by functional imaging
data in animals13,37,42 including non-human primates43 and humans9 as well as electrophysiologi-
cal data.44,45 Some anesthetics (e.g., the α2-agonist, dexmedetomidine) may produce thalamo-
cortical disconnection.46 However, non-inhalational anesthetics, including dexmedetomidine47

and ketamine,48 opioids,49 for example, do provide analgesia as part of their anesthetic effects.
At sub-anesthetic doses, inhalational anesthetics may produce anti-analgesia or hyperalgesia
effects.35

3 Current Methods for Evaluating Pain Under Anesthesia
in the Operating Room

3.1 Clinical
Ever since the first use of ether as an anesthetic for surgery, clinical signs have been used to
evaluate the analgesic status of patients undergoing surgery.50 Aside from analgesia, other signs
include hypnotic state, muscle relaxation, and amnesia. With increasing complexity of anesthesia
– from pharmacological agents to more sophisticated monitoring equipment – the “pain status”
of the surgical subject remains a subjective evaluation by the anesthesiologist. Pain responses are
directly related to the surgical depth of the patient. Clinical signs of the level of analgesia include
respiratory movement, circulatory changes among others. In addition to the variability or lack of
specific objective measures for pain per se, awareness during general anesthesia,51,52 where the
patient is awake but paralyzed by anesthetic agents, contributes to the need for an objective
measure for pain/nociception under anesthesia.

3.2 Physiological/Autonomic
Nociception is known to elicit the autonomic nervous system by modulating the sympathetic and
parasympathetic systems, either reciprocally, independently, or in parallel.53 Thus, autonomic
measures to nociception could provide potential surrogate markers of noxious activity during
surgery. The measures may include parameters of the cardiovascular system [heart rate, heart
rate variability (HRV), HRV derived analgesic nociception index, blood pressure, pulsatile
component of cardiac cycle], respiration, skin conductance and pupil reflexes, etc. Cowen and
colleagues provide a detailed review of these autonomic measures in awake and perioperative
stages in relation to individual reported pain intensity levels.31 Physiological measures are non-
invasive, easy to acquire and interpret, and are routinely implemented during surgery (electro-
cardiography and blood pressure). However, the primary limitation of these techniques is the lack
of sensitivity and specificity to pain, as well as the potential influence of anesthesia and analgesia
on the autonomic state. More recent studies show that pain appraisal, expectation, anticipation,
and affect can also influence autonomic response to noxious activity.54

3.3 Electroencephalography (EEG)
In the past decades, the use of an EEG-based device, such as the bispectral index (BIS)
monitoring system, to monitor the anesthetic condition of surgical patients has been more
widely accepted in the OR.55 This method generally employs a few EEG electrodes to measure
electrical signals from the frontal part of the brain. The EEG-derived indices or parameters are
based on state-of-the-art temporal, frequency, and phase analyses of recorded electrical signals,
which correspond to the levels of patient consciousness at different concentrations of hypnotic
drugs including both propofol and volatile agents (such as isoflurane or sevoflurane). These
indices are used to guide intraoperative anesthetic titration – from patient full wakefulness
to light anesthesia but to a large extent do not convey enough information on the noxious stim-
ulations during surgical procedures. For example, when noxious stimuli are applied, the BIS
index can increase in some patients, decrease in some other patients, or stay unchanged.56

Instead of relying on post-processed indices, several studies have recommended looking
at raw electroencephalograms to identify changes in EEG band powers following noxious
stimulations.57 Patterns that are more frequently seen include an increase in EEG beta power
(“beta arousal”), an increase in EEG delta power (“delta arousal”), and a reduction in EEG alpha
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power (“alpha dropout”). Many researchers argue that maintaining maximum alpha activity
during surgical nociceptive inputs would be the key for adequate analgesia.58,59 However, most
of them would also agree that a major limitation of such idea on “analgesic titration” is the
significant variations of raw EEG and alpha power across individuals, which largely depend
on factors such as age and patient cognitive conditions.60 The administration of analgesic drugs
to revert the EEG changes and to restore the previous state is therefore inherently patient-
specific. Table 1 compares the advantages and limitations of the various techniques including
other neuroimaging techniques such as fMRI.

4 Functional Near-Infrared Spectroscopy (fNIRS) – A Potential
New Era

One of the challenges of defining an “objective measure” is the specificity of the method. Since
this may fall under the rubric of “biomarker,” which as defined by the National Institutes of
Health (NIH) Biomarkers Definitions Working Group is “a characteristic that is objectively mea-
sured and evaluated as an indicator of normal biological processes, pathogenic processes, or
pharmacologic responses to a therapeutic intervention.”61 Based on this definition, we provide
an approach to measure pain under anesthesia and have a real-time measure of evoked and
ongoing pain that can be quantitatively presented and used to “sound the alarm” for a therapeutic
intervention. Below, we present evidence in support of an objective brain-based pain assessment
tool using functional near-infrared spectroscopy (fNIRS).

Table 1 Advantages and disadvantages of each modality for objective pain measures in the OR.

Domain Advantages Disadvantages

Physiological Portable Practicality and complex: pupil oximeter,
CARDEAN index, photoplethysmographyNon-invasive

Easy to use

Many are already routinely used in the OR Non-specificity: heart rate variability, blood
pressure, skin conductanceCompact

Influenced by anesthetics/analgesics:
plethysmography, heart rate variability,
blood pressure, etc.

EEG Portable Signals are complex and need
pre-processingNon-invasive

Directly measures signals from the central
nervous system

Most systems measure “level of
consciousness” rather than nociception

Several monitoring systems based on EEG
are already available in the OR (such as
the BIS system)

Current findings on EEG changes
associated with nociception have
significant variations across different
subjects.

fMRI Details of whole brain function including
connectivity

Non-portable

Non-invasive More difficult to achieve real-time data
Measures of multiple brain functions

fNIRS Portable Superficial measures of cortical brain
functionNon-invasive

Faster acquisition of data versus fMRI Moderate spatial resolution (2 to 3 cm)
Correlation of functional and anatomical
data

Real-time data achievable for decision
processes in the OR
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4.1 Technology
fNIRS is a noninvasive neuroimaging technique that utilizes near-infrared light (∼690 to 850 nm)
to provide a continuous measure of cortical hemodynamics viz. oxygenated hemoglobin (HbO)
and deoxygenated hemoglobin (HbR) concentration changes.62–64 With a similar physiological
basis as functional magnetic resonance imaging (fMRI), fNIRS shows significant advantages for
being robust, portable, and cost-effective. However, fNIRS is also limited by its sampling depth
(i.e., <1 cm within the cortex) and its susceptibility to hair contaminations.65,66

4.2 fNIRS Measures of Pain Neurotransmission
fNIRS, like fMRI, is based on the principle of neurovascular coupling to link neuronal activity
and cerebral blood flow and blood volume changes. fNIRS-derived pain measures from cortical
regions reflect the system level processing of nociceptive activity on the premise that (1) the
primary sensory cortex is a major integrator of sensory afferent information including pain/noci-
ception; (2) its connectivity to other brain regions, in our case, the polarfrontal regions, may be
specific to pain state. Our past work to establish a measure for pain/nociception under general
anesthesia, focused only on the cortical areas of the frontopolar cortex (FPC, which is the anterior
portion of the prefrontal cortex) and primary somatosensory cortex (S1). We focused on the FPC
and the somatosensory regions because of the specificity of the somatosensory cortices in
nociception and the potential of measuring a signal indicating the integration of nociceptive and
higher-order information at the prefrontal cortex that has not been blocked with anesthetics.67,68

Under deep anesthesia, connections between networks are disrupted and although nociceptive
information reaches the sensorimotor network, its propagation and integration in prefrontal areas
does not take place.39 The primary somatosensory cortices are classic sensory processing regions
that are well known to be involved in the encoding of sensor – discriminative information of
pain.69,70 The S1 receives nociceptive/pain information from second-order neurons along
well-defined nociceptive pathways viz., spino-thalamo-cortical tract.71 Numerous studies includ-
ing electrophysiological,72–74 anatomical,70 brain imaging,67,68 and clinical observation75 support
this. Furthermore, SI activation is seen in response to C and A-delta fibers76,77 as well as to A-beta
fibers by mechanical stimulations.78 In addition to activation of this area by painful stimuli,
diminished activation is observed in S1 following analgesic treatment (e.g., fentanyl)79 or lesion
(e.g., of the spinothalamic tract).80 fNIRS activation by non-noxious stimuli (i.e., brush produces
an activation in the SI region that can be differentiated based on their amplitude and profile.81

The putative roles of frontal regions in pain have been reviewed by us elsewhere.14 Based on
the anatomical and functional connectivity and the putative roles, we have proposed that the
FPC could at least be parceled into two distinct subregions, i.e., the lateral portion of the
FPC (lateral FPC) and the medial portion (medial FPC), see Fig. 1(a). The processing of pain
information in the brain may involve both subareas, however each may be associated with
distinct brain functions. Their functional differences may be reflected by their distinct affer-
ent/efferent pathways and anatomical connections, as well as through the co-activation or
co-deactivation of remote brain areas as large-scale brain networks.14 In particular, the lateral
FPC is a part of the “salience network” and may play an important role in the switch of the brain
from an “internally focused” state to an “oriented attention” toward pain.85 Network connections
may potentially provide a functional pathway for the lateral FPC to interact with the sensorimotor
network for the integration of the sensory-emotional information.86–88 Through efferent projec-
tions to regions such as the periaqueductal gray,89 the lateral FPC may execute top-down control
(inhibit under healthy conditions) to modulate nociceptive activation of cells in the dorsal horn of
the spinal cord.90 The medial FPC, as a key hub in the default mode network, may be under the
control of the salience network during the attention switch. Moreover, the involvement of the
medial FPC together with the anterior cingulate cortex in the context of affective-motivational
processing of pain (such as stress, anxiety, and fear) has also been reported in many studies.
In fNIRS studies of pain/nociception, FPC response is time-locked with the primary somatosen-
sory cortex activation and is anticorrelated.19 We have previously reviewed connections between
SI and BA10 including the polar frontal cortex.14 Data across different activation measures
indicate that fNIRS measures are similar to fMRI studies.91–93 Figure 1(c) shows an overview
of the potential distinct functions of both the lateral FPC and the medial FPC in pain processing.
We propose to measure brain signals from both FPC subregions using fNIRS.
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4.3 Measure of Acute Pain Using fNIRS
The hemodynamic response to acute pain has been well characterized for the somatosensory and
frontal lobes through our ongoing work. Findings from our prior fNIRS datasets are consistent
with a nociceptive pain signature being measured.81–84,94–96 Acute pain measures are important in
the anesthesia setting as they relate to measures of specific nociceptive inducing procedures
(e.g., cutting, cauterizing, scraping, stretching, etc.). In Fig. 1(b), we show the inverse (anticor-
related) relationship between fNIRS-measured acute pain signals in the primary somatosensory
cortex (activation) and the FPC regions (deactivation). This functional dissociation is character-
istic of nociceptive signaling to the brain. Moreover, this functional response to acute pain pro-
duced a similar response in the frontal region across different levels of consciousness [Fig. 1(c)].

Principle of two brain regions involved in sensory and emotional/cognitive nociceptive/pain
processing are anticorrelated:81 This concept has been further defined by understanding
differences in fNIRS signals in the medial and lateral polar frontal cortex (see Ref. 14). We have
focused on the polar frontal and somatosensory regions because of the specificity of the soma-
tosensory cortices in nociception and the potential of measuring a signal from the polar frontal
areas indicating integration of nociceptive information in frontal regions that is not blocked with
anesthetics. Previous evidence has suggested that while there is a breakdown of brain functional
connectivity during anesthesia for most systems, this is not the case for sensory connections.

Fig. 1 fNIRS signals from brain regions and responsivity to acute painful stimuli: (a) Medial versus
lateral polar frontal cortex. Left: Depiction of the anatomical locations of the medial FPC and the
lateral FPC. Right: Overview of the connections and functional roles of the FPC in the processing of
pain, adapted from Peng et al.14 (b) Hemodynamic response of the medial frontopolar cortex and
S1 during five seconds of innocuous (VAS 3/10) versus noxious (VAS 7/10) electrical stimulation in
11 healthy volunteers. The error bars indicate the standard error of mean. Figure adapted from
Yucel et al.81 (c) Comparison of Oxy-hemoglobin and deoxy-hemoglobin concentration changes to
electrical pain (left), insufflation (middle) and cardiac ablation (right) under awake, sedated, and
anesthetic states, respectively. The error bars indicate the standard error of mean. Montage
adapted from Becerra et al.,82 Kussman et al.,83 and Aasted et al.84
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Frontal Lobe Signal During Painful Stimuli: Evoked noxious stimuli produced a consistent
pattern of HbO changes (solid line) in the frontal lobe response at three different states of con-
sciousness (awake,84 sedated,82 and anesthetized83). A common signal is observed in the medial
frontal lobe that is present with a predetermined noxious signal. For the anesthetized state, sub-
jects received cardiac conduction ablations and show consistent results. The frontopolar cortex is
potentially at the top of brain hierarchical structures involve in the pain connectome. In a recent
review of frontopolar changes in pain across multiple brain imaging approaches we summarize the
region’s role in pain processing.14 Activation in the medial FPC is observed in both acute and
chronic pain.84,95,97–99 The medial FPC is intimately connected to the brains default mode network,
which we believe is a potential target to evaluate a measure of ongoing pain in patients based on
changes in high and low frequency oscillations derived from the fNIRS signal.11 As recently
reviewed by our group, evidence suggests that BA 10, and particularly the medial FPC, may play
a critical role in the collation, integration, and high-level processing of nociception and pain but
also reveals possible functional distinctions between the sub-regions of BA 10 in this process.14

Fig. 2 Cortical power as a measure of ongoing nociception/pain:11 (a) Power spectral analysis of
the prefrontal cortex signal at SLOW-5 frequency range (0.01 to 0.027 Hz) revealed a drop in
power during periods of noxious stimulation (heat pain) that was not found during innocuous stimu-
lation (heat warm) or resting state. Bar plot shows a decrease in mean fractional power during pain
when compared to no-pain (p ¼ 0.004) and resting conditions (p ¼ 0.010). (b) Similar decrease in
cortical power was observed during periods of potentially painful surgical procedures in a patient
undergoing knee arthroscopy under anesthesia. This was performed using dynamic power spec-
tral analysis, which is an extension of the method described in (a). Potentially painful procedures
are indicated by the color shaded regions. The error bars indicate the standard error of mean.
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4.4 Measure of Ongoing Pain Using fNIRS
Our published data have shown the potential of measuring continuous or ongoing pain/
nociception using fNIRS-measured FPC signals in awake volunteers as well as anesthetized
patients.11,100

By converting the FPC signals into the frequency domain using an fast Fourier transform
(FFT), we have identified a reduction in power in the SLOW-5 frequency band (0.01–0.027 Hz)
in response to ongoing painful stimuli (Fig. 2). Ongoing pain becomes a critical measure in
evaluation of perioperative pain as the first set of surgical procedures likely initiate both periph-
eral or central sensitization101 leading to a sensitized state and spontaneous intermittent or con-
tinuous nociceptive signaling that persists into the post operative period that acts on the sensitized
brain/spinal cord that may be a likely harbinger of chronic pain following surgery.16,102,103 The
practical application of the frontopolar cortex slow-5 signal to effectively capture ongoing noci-
ception may necessitate further research for comprehensive validation across a broader spectrum
of stimulus types or clinical conditions.11 This entails evaluating its sensitivity and specificity
profile, along with the development of analytical methods capable of facilitating real-time
processing of dynamic signal features. Future work is essential to validate and refine the utility
of the frontopolar cortex slow-5 signal, ensuring its reliability and applicability for more robust
nociception monitoring in this context.

4.5 How Do We Know the Signals as Measured by fNIRS Reflect Nociception/
Pain

Our measure (inverse correlation between mPFC and SI) is consistent with a marker that is the
(a) same across different states of consciousness, (b) is attenuated by opioids (Fig. 3), and (c) can
be differentiated from non-painful signals (e.g., auditory) including graded responses for low

Fig. 3 Modulation of mPFC and S1 responses to evoked pain stimulations by analgesic measures:
(a) Oral morphine reduced the amplitude of mPFC HbO decrease and S1 HbO increase associated
with electrical pain stimulations in healthy, awake volunteers.96 The extent of amplitude reduction
was consistent with the pharmacokinetic-pharmacodynamic model of oral morphine. Curve legend
– blue: at baseline (pre-morphine); cyan: at 30-min post morphine administration; magenta: at
60-min post morphine; red: at 90-min post morphine. The gray horizontal bar indicates the timing
of electrical pain stimulations. (b) Compared with placebo (blue curve). The administration of remi-
fentanil (black curve) reduced themPFC and S1 responses to invasive surgical procedures (cardiac
ablation) in patients under general anesthesia.94 fNIRS-derived cortical response is attenuated by
opioids. Hemodynamic response of mPFC and S1 regions was attenuated by morphine but not
placebo in awake healthy volunteers (a). Similarly, both mPFC and S1 response was attenuated
by remifentanil but not placebo in anesthetized patients undergoing cardiac catheter ablation. The
error bars indicate the standard error of mean.
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versus high pain intensities [Fig. 1(b)].18,100,104 While there are issues of overlap in fNIRS brain
responses to categories of stimuli or states (e.g., aversive), the reproducible response during
awake and anesthetized states suggests these are not influenced by emotional valence, antici-
pation, unpleasantness, etc. Furthermore, our current and prior data define the characteristics
of an fNIRS mPFC signal that (a) is specific in the context of stimulus type such as experimental
or clinical persistent pain and differs in responding to these pain stimuli and to non-painful
sensory (brush) or rewarding/aversive pictures (psychological stimuli);81,84 (b) can evaluate both
acute and persistent pain in the OR;11,83 (c) is reversed by analgesics;96 (d) is consistent with
the literature (predominantly fMRI) of pain imaging using frequency analysis; specifically,
low-frequency fNIRS oscillations are similar to those acquired using fMRI to reflect pain
states by us105 and others;106–109 and (e) shows expected changes in central sensitization. Finally,
other groups have utilized fNIRS to measure pain/nociception (see Refs. 19 and 110 for recent
reviews).

5 Pain Measures Using fNIRS – An Algorithm
In the sections that follow below, we integrate our approach to an algorithm for an objective
measure of pain in the perioperative period. As shown in Fig. 4, the process involves multiple
processes related to measures of fNIRS data acquisition, physiological monitoring, real-time data
analysis, and mathematical models of determining the analgesic status (pain alert and pain off) of
the patients. Specifically, as detailed below, the approach allows a reasonable time delay between
recorded hemodynamic signals and outputted pain measures and therefore necessitates the imple-
mentation of a real-time framework for data processing. We propose to apply a sliding window
method, where a data buffer is created and used to store the recorded optical data of all available
channels over a defined time period. As new data are collected, the data buffer is updated at each
time point by discarding the earliest data points and connecting the new data points to the end of
the buffered time courses. Updating the buffer triggers a series of processing steps that are
described below. Additional inputs to improve the sensitivity of the system include a user-defined
input of analgesics administered prior to or during the procedure, baseline pain threshold of the

Fig. 4 Summary of set-up for the anesthesia pain monitoring procedure (APMP): The figure shows
an overall approach to real time measures of pain (i.e., on or off) during surgery based on video-
based detection algorithm. The surgical display can be connected to the system to identify
potentially painful events or surgical manipulations to feed the algorithm, which will then evaluate
the fNIRS and physiological data to calculate spatial and temporal features relating to that event.
These features will be inputted into the classifier to perform a binary classification of Pain versus
No PE.
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patient as determined prior to surgery, and use of surgery display as input to the algorithm to
identify surgical events and the related biological (brain and physiological response).

5.1 fNIRS Setup
Simultaneous recordings of hemodynamic signals from two cortical regions, i.e., the S1 and the
FPC, are used. These regions can be assessed by fNIRS with a reasonable sensitivity and
reliability.111,112 S1 is a classic region known to be within the lateral (sensory) nociceptive path-
way while the FPC is known to be involved in the high-level integration and processing of noci-
ceptive information.14 To better characterize the physiological components in the fNIRS signals,
we propose to apply short separation detectors, which are light detectors placed at a distance
of <1 cm from the light emitters to capture hemodynamic signals from extracerebral layers
(e.g., skin, scalp, and skull). Figure 5 shows an example setup of the fNIRS optodes on the
patient head and the corresponding cortical sensitivity profile.

5.2 Modules and fNIRS for Anesthesia Pain Monitoring Procedure (APMP)
In our formulation of automated data collection and analysis for pain measures under anesthesia,
a number of steps needs to be integrated and these are shown in Fig. 6. Each of these modules in
Fig. 6 are defined as “blocks” and discussed in detail below.

Fig. 5 Placement of fNIRS emitters (red) and detectors (blue) for surgery and corresponding cort-
ical sensitivity: Green dots show short separation detectors for the purpose of removing global
physiological effects. Warmer colors indicate high sensitivity and cooler colors indicate areas
of low sensitivity.

Fig. 6 Overview of data processing pipeline. Block A – Baseline measures; Block B – fNIRS data
pre-processing; Block C: functional connectivity analysis; Block D: GLM beta value analysis;
Block E: time-frequency analysis of low frequency oscillation fractional power; Block F: Integrative
classifier for pain/no pain classification.
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5.2.1 Block A – baseline measures

fNIRS optodes and physiological sensors are installed on the patient’s head and body (Fig. 5) in
the pre-surgery room. After the setup, anesthesiologists and nurses conduct medical interventions
such as anesthesia procedures or drug administrations to prepare the patient for the surgery. After
further adjustments and validation of fNIRS measures to ensure good optode contact and signal-
to-noise level, we propose to perform a baseline scan of 2 to 10 min to establish a dataset of
resting state signal parameters regarding functional connectivity strength, beta values from
general linear model analysis and low-frequency fractional power from signal frequency analysis
(see the following blocks for respective analyses) (Fig. S1 in the Supplementary Material).
These form the patient-specific baseline to compare acute or ongoing events. The fNIRS data
acquisition continues as the patient is transferred from the pre-surgery room to the operation
room to receive the surgery.

5.2.2 Block B – fNIRS signal pre-processing

The fNIRS data are recorded continuously until the end of the surgery. At each time point
(defined by the sampling time of the fNIRS system – e.g. every 0.04 s), the data buffer is updated,
and the buffered data are first pre-processed (Fig. S2 in the Supplementary Material). The raw
optical intensities are first converted into optical density changes by taking the logarithm of the
time course. Motion artifact detection and correction are performed on the converted optical
density data using both signal amplitude and variance thresholds. For artifacts that are excessive
and cannot be corrected within a few iterations, the entire data in the buffer are discarded.
The motion-corrected optical density time course then undergoes bandpass temporal filtering
(e.g., with typical low-pass threshold = 0.5 Hz and high-pass filter = 0.01 Hz) to remove signal
components that unlikely have a neurophysiological basis. The filtered optical density data are
then transformed into hemoglobin concentration changes using the modified Beer–Lambert Law.
To better characterize the physiological components in the fNIRS signals, we use short separation
detectors, which are light detectors placed at <1 cm from the light emitters. The short separation
regression method has been shown to be effective in removing the hemodynamic signals
from extracerebral layers (e.g., skin, scalp, and skull) from fNIRS-measured hemodynamic
signals.113,114 For each channel, a linear model can be set up to regress extracerebral contam-
inations and other physiological noises using the time course of the short distance detector that
has the highest correlation with the channel time course as the regressors. The pipeline may be
customized and modified to suit the study paradigm, including the modification of filtering fre-
quency range, use of the nearest short separation channels for temporal regression, principal
component analysis-based noise reduction, etc.

5.2.3 Block C – connectivity analysis

One of the measures/features of the classifier is based on the nociceptive signature we have
observed in several of our past fNIRS datasets. The functional dissociation between mPFC and
S1 hemodynamic response to acute pain was unique to noxious stimuli and diminished following
opioid administration. Such functional relationship between brain regions may be calculated
using functional connectivity, defined as the statistical dependencies between signals across time.
These connectivity measures, when evaluated across spatially distant anatomical regions, will
allow the study of the brain as a network. Network connections, also known as connectome,
can be unique markers of individual,115 trait, state, disease, etc. In this case, the functional
connectome between the prefrontal cortex and somatosensory and perhaps other regions may be
used as a nociception signature under general anesthesia. However, since surgery is a dynamic
event where surgical events may be considered analogous to exogenous task stimuli, we propose
a sliding-window correlation technique, where we calculate the pairwise correlation of the two
regions over smaller time windows116,117 (Fig. S3 in the Supplementary Material). The prepro-
cessed time series from the regions of interest (mPFC and S1) will be correlated using Pearson’s r
correlation within an overlapping window of 20 s duration to generate a log of dynamic func-
tional connectivity. Additional window lengths of 10, 30, 40, 50, 60 s durations can be used to

Peng et al.: Machines, mathematics, and modules: the potential to provide. . .

Neurophotonics 010701-12 Jan–Mar 2024 • Vol. 11(1)

https://doi.org/10.1117/1.NPh.11.1.010701.s01
https://doi.org/10.1117/1.NPh.11.1.010701.s01
https://doi.org/10.1117/1.NPh.11.1.010701.s01


generate secondary dynamic functional connectivity logs in parallel. The Pearson’s r correlation
values are then converted to Fisher-z scores using Fisher r to z transformation before inputting
into the classifier.

5.2.4 Block D – general linear model beta value analysis

The functional dissociation between mPFC-S1 may also be evaluated by comparing the activa-
tion levels of mPFC-S1 as opposed to FC (Block C). General linear model using a canonical HRF
can quantify the activation level in response to acute events, although a negative HRF (denoting
deactivation) will be necessary to model the mPFC response. By extending the dynamic FC
approach, we propose a GLM based dynamic evaluation of activation levels across time i.e.,
surgery (Fig. S4 in the Supplementary Material). The activation level (beta estimates) and other
parameters of GLM at single-window level will be compared between the mPFC and S1 regions.
Based on our hypothesis, a functional dissociation resulting from acute surgical pain will be
reflected by (a) negative activation in mPFC and positive activation in S1 as modeled using
pre-specified HRFs, and (b) low levels of Sum of squared errors in both mPFC and S1 regions.
The use subject-specific HRF’s using a prior run or the use of the first surgical event as a subject
baseline can improve the accuracy of this technique further.118 These estimates will be recorded
over time (to generate a GLM log) and inputted into the classifier along with physiological
responses to detect periods of evoked painful activity.

5.2.5 Block E – frequency analysis

The buffered hemoglobin concentration time courses are first converted into the frequency
domain using the FFT (Fig. S5 in the Supplementary Material). Power spectral density
(PSD) is computed as the square of the FFT amplitude at each frequency component. The frac-
tional power spectral density (fPSD) of the slow-5 sub-band (i.e., 0.01 to 0.027 Hz) is extracted
by adding the PSD components of the slow-5 sub-band and normalized to the summed power of
the entire frequency range (0.01 to 0.5 Hz). The fPSD of slow-5 is then transferred to the clas-
sifier as an input for pain/nociception classification.

5.2.6 Block F – pain classifier

Once each of the N chosen parameters have been collected, distinctions can then be made within
real time between the current signal that is analogous to the first pain event (PE) as opposed to
a non-painful baseline period, flagging events of concern to the end user. This requires a binary
classification, where using a fixed number of features (which may vary from n ¼ 1 to N), the
algorithm classifies a given surgical period as pain or no pain state. Considering the real-time
nature and limited number of samples for training, we require a classifier with high accuracy, that
is computationally efficient with low memory requirements, and can continuously update with
real-time data. A feature selection may be performed using a filtering or embedded algorithm,
however, we propose to assign a multiplier value or weighting factor that determines how
relevant to the categorization approach the end user wants it to be for the algorithm (Fig. S6
in the Supplementary Material). Based on prior data from our group and others, cortical-based
features will be assigned greater weightage than physiological data. Alternatively, this can be set
to 0 and ignored entirely if so desired. The result can undergo a form of dimension reduction such
as PCA or linear discriminant analysis (LDA) to create a component matrix X in a reduced set of
dimensions. Although, there is a risk of overfitting the data when using a lot of features. From
here, we could implement a linear classifier such as logistic regression. Logistic regression uses a
linear combination of the predictive features to generate the probability of a PE. At least one to
three PEs conducted initially by the surgeons are recorded for a duration equal to the chosen time
window (TW). A series of TW’s are also observed for the baseline region where no pain events
(NPE) have been conducted. These are the only training datasets available for a classifier. Thus,
classifier methods such as support vector machine may be computational taxing and unsuited for
real-time monitoring in the OR.
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Alternatively, we could implement a rule-based learning classifier. Pearson correlations can
be taken between the variables that make up the component matrix X for the current time t and the
series of pain and no pain TW’s. If most of these correlations are shown to be more positive
toward the series of PEs than the baseline events, an adverse event can be recorded. This can be

defined in the equation IF

P
N
x;y¼1

IF corrðXðCTx;yÞ;XðPEx;yÞÞ>corrðXðCTx;yÞ;XðNPEx;yÞÞ
N > CI → P ¼ Pþ 1,

where the IF statement in the numerator provides a boolean answer and the confidence interval
CI is a value between 0 and 1 (0.9 and 0.95 are common examples of potential intervals). If this
condition is met, the number of recorded PEs P is updated with the current time point t rec-
ognized as a PE.

Currently, the fNIRS process we propose could provide a response signaling that pain is
occurring during the evoked stimuli and ongoing background index of pain. Specific quantifi-
cation of the level of pain has not been evaluated today since amplitudes may vary across indi-
viduals due to anesthetic levels, premorbid psychological status, premorbid pain status, etc. The
approach we have used applies a threshold above which “pain/nociception” is determined with
confidence. More sophisticated approaches are likely to be developed in future, for example,
measures of amplitude, frequency, or time-frequency or spectral measures that indicate levels of
pain intensity or resolution.

6 Clinical Use – Adoption Process using Biomarker Standards

6.1 Disrupting the Status Quo – Becoming a Standard in the OR
There is a clear need for an objective marker/biomarker for pain.119–121 Such efforts have been
supported by NIH with the view that objective methods allow for better analysis of disease state
and/or treatment efficacy. The proposed system will also set precedence for any future autono-
mous biomarker-based pain mapping and further studies, with training providing finer ranges for
when pain occurs and how surgeons are informed in the OR by the monitoring procedure.

The operating room is a complex and dynamic environment that is significantly limited on
time. Therefore, any adaptations to the routine clinical care would have to be quick and easy to
setup for clinical staff to operate. The proposed framework involving NIRS-based brain mon-
itoring and its components can be easily integrated into the surgical setup due its small size and
portability. Some of the physiological data such as heart rate, heart rate variability, respiration,
etc. is also collected as part of clinical monitoring. These physiological sensors could be
used simultaneously with fNIRS, also known as systemic physiology augmented fNIRS
(SPA-fNIRS).122,123 SPA-fNIRS records physiological signals in tandem through equipment such
as bracelets, patient monitors, and modules to measure systemic physiological activity such as
heart rate, heart rate variability, mean arterial pressure, partial pressure of oxygen, etc. Some
commercially available NIRS systems (NIRSport2, NIRx Inc.) are equipped with biosensors
that can be time-synchronized with the fNIRS device. However, integrating the fNIRS-based
system with the clinical monitors will simplify the setup in the operating room. As a light-based
technique, the fNIRS system is unlikely to interfere with other electronic equipment or impose
a radiation risk to the patient. Moreover, fNIRS devices have a long track record of being used
to monitor cerebral oxygen saturations during cardiac surgeries within a complex operating
room environment124–126 as well as in several non-cardiac surgery models.127 Our framework,
leveraging the same imaging technique, could seamlessly be incorporated into existing practices
(e.g., as an “upgrade” of the current systems), without imposing cumbersome procedural
changes.

6.2 Specificity and Sensitivity

6.2.1 What concerns are there regarding the specificity and sensitivity
of the approach?

This is indeed a major issue in the field of pain. While we agree that the medial FPC fNIRS signal
is not specific for pain, the signal responding to the specific evoked or ongoing stimulus
(i.e., pain) is consistent with the sensory (nociceptive) and emotional (aversive) nature of pain
and is context specific. Thus, although it is currently not possible to state that this is a specific
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pain signal, we feel confident that the proposed signal can be used as a good surrogate marker of
nociception/pain as previously used for other applications such as disease diagnosis. Pain signals
produced by the brain can take on many forms based on intra-patient variability. The proposed
system will have to be fine turned to capture as many of these pain markers as possible, being
sensitive enough to catch outlier events but specific to the point of not flagging any false positives
that could occur in the OR.

6.2.2 Subject variability: age, skin color and other physiological variables
need to be considered

Dark skin color may alter the quality of fNIRS signal128 – notably the SNR is reduced. Our short
source separations approach takes into account extracerebral systemic confounds to brain hemo-
dynamic data. Skin melanin content can alter the fNIRS signal and this needs to be taken into
account (viz., a compare data from dark skin versus light skin). We will use a threshold for the
light intensity and intensity below a certain level will indicate optical uncoupling. Sensors will
also be affected by any hair on the subject’s scalp and will need to be considered before future
procedures are conducted. Further factors are to be considered as any bias present in the training
data will be replicated when determining pain. Following this, a wide range of participants should
be considered as factors relating to age, gender, skin color, present comorbidities, etc., should be
logged so a spectrum of variations can be accounted for before final pain analysis.

6.2.3 Variability of anesthesia

Cortical Regions are a target for the hypnotic effects of many anesthetics, which are known to
alter cerebral connectivity.129 While previous studies have shown that neurovascular coupling is
intact across multiple anesthetics,130 in cases where anesthetics alter the brain metabolism and
neurovascular coupling, for instance, in people with premorbid autonomic dysfunction, it would
be possible to account for these differences by integrating simultaneous fNIRS-EEG systems.
EEG systems measure the large-scale neuronal oscillatory activity from the cortical and subcort-
ical regions. In its simplest form, we could use an fNIRS-EEG system, with electrodes placed on
the forehead, to compute the depth of anesthesia, like a BIS. However, stand-alone fNIRS has
also been able to differentiate the different phases of anesthesia reliably.131 Integrated fNIRS-
EEG systems could help quantify both neuronal and neurovascular activity during surgery.
Pain-related evoked potential (PREP), defined by negative and positive peaks of EEG activity
following peripheral nociceptive stimulation, has been reported to be an objective assessment of
nociceptive activity.132 ERPs are generally low in magnitude ∼0.1 to 1 microVolt, thus it is
unclear whether these pain-related ERP features may be detected at a single-subject level.133

Furthermore, studies show that the N2 and P2 (the second negative and second positive peaks)
components of PREP are associated with emotional valence and arousal to the nociceptive stimu-
lation,134 both eliminated under anesthesia. Thus, further work is necessary to understand how
ERP features may be integrated with fNIRS measures for real-time pain detection under anes-
thesia. Other practical limitations of EEG include greater susceptibility to motion, poor spatial
resolution, and an extensive number of electrodes needed to achieve source localization, which
can be challenging in surgery.

6.2.4 Depth sensitivity

One of the recognized limitations of continuous wave fNIRS technique is the limited penetration
depth, where only the hemodynamic changes in the superficial regions of the cortex (<1 cm) are
quantifiable depending on the source-detector distance.135 Though our proposed approach does
not depend on deep brain activity, the ability to capture and integrate deep brain activity into the
algorithm could offer superior performance. Time-domain fNIRS (TD-fNIRS), another modality
of fNIRS that employs time gating technology to discriminate the photons arriving at different
penetrating depths, could possibly resolve this issue by providing up to 5 to 6 cm of depth
penetration from the head surface and the ability to calculate absolute hemoglobin concentration
and tissue oxygen saturation.136,137 The limiting factor, however, has been the practicality of
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this modality in a clinical setting; as the systems are bulky, computationally and operationally
complex, with only one commercially available system.137 Despite these limitations, there are
numerous studies involving in-house and commercial versions of the TD-fNIRS to quantify
cerebral blood flow changes in the operating room during carotid artery repair, obstetrics surgery,
and pregnancy complications.138 Given the advancements in laser/detector technology, TD-
fNIRS could capture more cerebral hemodynamic, perfusion, and metabolism information than
CW-fNIRS. Thus, future work should be directed at replicating and translating the current
evidence captured using CW devices to a TD-based implementation.

6.2.5 Issues pertaining to somatotopy and measures over
the primary sensory cortex

One of the issues relating to measures of sensory changes is the relationship of the probes to the
sensory homunculus that represents the map of major input from specific peripheral end organs
to the higher-order cortical region (somatotopy). The placement of the probes covers the sensory
cortex with the exception of the foot/toes, which dip into the medial part of the cortex. While
major inputs correlate with the overall homunculus as shown by cortical mapping using electro-
physiology,72,139 EEG140 and fMRI,141 the interactions are more complex and integrated.

The representations derived from somatic tissues (skin, muscles, tendons, and joints) are not
specific or focal as noted by plasticity of these regions in development and functional use142–144

and following amputation or stroke.145 In support of this, widespread activation is noted that
coexists with localized representation of a body part.146–148 Furthermore, recent data suggests
that while primary activation is focused on different regions, there is also activation in non-
dominant cortical regions including the secondary somatosensory cortex, which may also be
bilateral.149,150 With visceral nociception does not have the same level of somatotopy activation
in the paraylvian region of SI is present in experimental studies in humans (e.g., esophageal
stimulation151 as well as activation in the same regions of the prefrontal cortex.82

While visceral sensation is represented in the insular cortex, there are major connections
with the frontal lobes152 as there are from primary somatosensory regions, independent of other
afferent inputs processing cognitive and affective information.14 As noted above, and from prior
work, both experimental and clinical pain results in activation in the frontopolar cortex,19 a dom-
inant region being measures in our fNIRS approach.

6.2.6 Real-time applications of fNIRS

Offline analysis of NIRS is most common due to the slow nature of the hemodynamic response
and the confounding noise sources that require significant processing of the data. However, on-
line or real-time use of NIRS is not a new concept. Online analysis is particularly useful in
brain–computer interfaces and NIRS is an excellent option for BCI due to its moderate spatial
resolution, high temporal resolution and flexibility to be integrated with EEG. Several real-time
adaptations of NIRS for BCI exist in the literature using classifiers such as multiple linear clas-
sifier,153 support vector machines,154 deep learning,155,156 etc. Real-time fMRI along with real-
time fNIRS has been used as BCI neural feedback system to provide motor training in stroke
survivors.157 Though computationally complex, real-time processing of NIRS is accessible to
non-experts using Turbo-satori toolbox by NIRx Inc.158 More recent efforts have focused on
improving the accuracy of real-time NIRS analysis. Ortega-Martinez and colleagues have
demonstrated the use of Kalman filtering159 by means of a temporally embedded canonical
correlation analysis to perform physiological noise correction of fNIRS data to improve online
classification accuracy.160 Another group have proposed the use of moving average convergence
divergence for noise reduction in NIRS data for online processing.161

6.2.7 Other signal processing method considerations

In addition to the proposed FFT and low-frequency hemodynamic oscillation metrics, wavelet-
based time-frequency analysis could be useful in comparing the brain and physiological response
during ongoing nociceptive stimuli. Application wise, the process has degrees of flexibility to it,
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as it can often be computationally intensive compared to a simple cross-correlation or power
spectrum analysis. However, it could provide important insights into how physiological response
and brain response may potentially synchronize during nociceptive events and non-nociceptive
events, like those performed in hyperscanning162,163 and SPA-fNIRS studies.164

6.2.8 Will fNIRS measures improve short- and long-term outcomes?

The deployment of the system through wireless communication could theoretically mean that it
can be performed for multiple patients simultaneously. An example of a multi-patient pain
monitoring dashboard is shown in Fig. S7 in the Supplementary Material, where the user
(i.e., clinician) may enter patient specific priors such as sex, baseline parameters, anesthetic
induction, analgesic dose, etc. into the framework. Although, more work is needed to identify
what confounds are needed to optimize model performance. Though we have defined a particular
classifier approach, ideally one would have to evaluate multiple classifier performances, and
validate and fine-tune the model parameters.

6.2.9 Predictive value

The use of an objective measure has the possibilities in a number of areas related to effective
treatment providing improved outcomes. These include (1) immediate response to pain/nocicep-
tion or keeping pain/nociception low on an ongoing basis. As evidenced by a number of clinical
parameters, either combined/multimodal anesthesia techniques165 or use of higher doses of intra-
operative analgesia are associated with decreased levels of chronic pain as well as analgesic
use;166 (2) prevention of central sensitization at the time of injury (an unusual opportunity or
circumstance in the chronic pain domain) may contribute to the decrease of the acute to chronic
pain transition.167,168 Such changes may have a neurobiological underpinning in preventing
“neuronal ensembles” from becoming dysfunctional and contribute to enhanced processes
in the acute to chronic pain transition (e.g., hyperaglgesia and anxiety);169 (3) premorbid con-
ditions (e.g., catastrophizing) defined prior to surgery are known to predict poorer outcomes.

Fig. 7 Prediction: Negative relationship between intraoperative cortical connectivity of mPFC and
S1 regions during surgical procedures and pain levels in the post anesthesia unit. Higher negative
connectivity between the two cortical regions, likely indicative of the nociceptive barrage, was
associated with greater pain immediately after surgery (Data from Karunakaran et al.104).
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Such conditions may enhance brain responsivity to trauma during the surgical procedure as well
as pain levels immediately following surgery (Fig. 7). Recent findings from our group show that
increased negative connectivity between mPFC and S1 in response to surgical procedures was
negatively correlated with pain levels immediately after surgery.104 Intraoperative pain monitor-
ing using NIRS may help predict both acute and chronic postsurgical pain outcomes.

6.2.10 Drug overdose/excessive administration of analgesia

While we have focused on the benefits of utilization of fNIRS to provide a quantitative measure
of pain/nociception, fNIRS has applications related to mitigating negative outcomes such as
excessive drug administration. Drugs utilized in the operating room include opioids and inhala-
tional anesthetics that may have deleterious effects on brain function when given in overdose.
Such events may contribute to prolonged emergence and other complications such as emergence
delirium.170 EEG has been used to evaluate anesthesia dosing171 including anesthetic depth172

although some caution the sensitivity of EEG measures for depth monitoring.173 “Since no ‘gold-
standard’ method is available to continuously, reliably, and effectively monitor the effects of
sedatives and anesthetics, such a method is greatly needed.”174 fNIRS has been used to evaluate
anesthetic depth resulting from either ongoing administration of drugs or bolus effects of drugs
on brain function174,175 and data support the use of fNIRS in accurately evaluating classification
of the anesthetized state.175

6.2.11 Surgical awareness

Intraoperative or surgical awareness, which is estimated to affect between 1:1000 and 1:20,000
patients “is characterized by the coincidence of both intraoperative consciousness and explicit,
episodic postoperative recall of events during a planned anesthetic.”176 As a result, patients may
suffer pain as well as psychological trauma from the event. It may be present when with neuro-
muscular blockade or insufficient anesthesia. The issue of “subconscious pain” has not been
easily evaluated when analgesics are not provided. While fNIRS has not been used for anesthetic
depth, the fNIRS measures could easily have added measures/algorithms to signal potential
awareness through a combination of signals for pain and auditory measures as described in
sections above. In addition, fNIRS can measure motor activity,177,178 even imagined motor activ-
ity,179 or patients in a locked in state (i.e., awake but cannot communicate180). In the “paralyzed/
awake state,” increased activity in the motor cortex would be expected due to “escape” or attempt
to motion or speak.

7 Conclusions

7.1 Need for a Biomarker
Currently, there is no biomarker for acute or ongoing pain that can be easily used in the clinic;
and the evaluation of efficacy of therapeutic interventions (drug or behavioral or interventional) is
an issue. If the biomarker is proven in its efficacy, it will certainly have a good chance of adoption
in the clinic, clinical trials, and potentially in new approaches for evaluating treatment efficacy in
the clinic. While anesthesia provides a state of unconsciousness, there are no objective measures
of evoked or ongoing pain (i.e., analgesia) while under anesthesia. The lack of analgesic control
may induce a response in the brain called central sensitization that is the harbinger of two main
deleterious outcomes: (1) increased pain and use of opioids in the postoperative period and (2) the
initiation of a chronic neuropathic pain process (that may also be driven by the nerve damage
from the surgical incisions – peripheral sensitization).

As noted in the introduction the notion that during anesthesia ongoing nociceptive activation
can impact brain systems is perhaps not intuitive. As noted above, accumulating evidence
suggests that peripheral activation of nociceptors may activate brain systems under general
anesthesia including but not limited to (1) brain responses occur to evoked pain under anesthesia
in animal models; (2) while under general anesthesia there is a preservation of lower order sen-
sory networks, including thalamo-cortical connectivity, even at anesthetic concentrations that
suppress responsiveness; (3) preoperative pain or preoperative pain sensitivity predicts increased
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postoperative pain and analgesic requirements and long term persistent pain, suggesting a proc-
ess akin to central sensitization during surgery. Thus, the concept of evoked and ongoing pain
(pain load) in patients undergoing surgery under general anesthesia is a concept that needs to be
challenged because of the consequences of increased postoperative pain, increased analgesic use
and potential pain chronification.

7.2 Older Technologies Do Not Measure Nociception/Pain
The BIS monitor is the only system in regular use that provides some assessment of the depth
of anesthesia.181 Other systems deploying autonomic measures are also being developed for
use of measure of pain in the OR. Whether BIS constitutes an accurate measure of the depth of
anesthesia or not, it certainly does not aid the anesthesiologist in the evaluation of pain.
fNIRS can potentially provide an objective, brain function derived, quantified assessment of
intra-operative pain. The successful outcome of this project would provide a new patient mon-
itoring device that may be as transformative as the pulse-oximeter. Thus, the need is obvious,
the imperative to evaluate pain in the OR might provide significant benefits to patients through
a “nociceptive free” unconscious experience. fNIRS can also be used to determine the depth of
anesthesia.174

7.3 Societal Benefits
The technological development will provide an objective readout of pain state and therefore has
the potential to standardize the evaluation of pain and the effect of analgesics in the clinic and in
clinical trials, and across populations (i.e., adults and children). Such an advance would end the
empirical, subjective assessment of pain and pain killers, would improve the efficiency and
reliability of clinical trials and would therefore decrease the number of subjects exposed to
experimental analgesic drugs. The clinical implementation/use of fNIRS for pain measures may
also result in a number of other potential applications including the assessment of pain in patients
who cannot effectively communicate (such as infants and the physically or neurologically
impaired) and the creation of an automated, self-regulating pain control system for post-operative
patients or mass evacuation of injured persons (e.g., in the military transport of wounded
warriors). In order to be successful, the measure should have high specificity and sensitivity;
easy to implement – including testing procedures and evaluation processes (i.e., analysis, inter-
pretation); and the cost-benefit should be good and adoption by the specific community
(i.e., surgeons or anesthesiologists) is essential.

Disclosures
All authors declare that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest.

Code and Data Availability
Data sharing is not applicable to this article as no new data were created or analyzed.

Acknowledgments
The information contained in this paper has formed the basis for a provisional USPTO patent
application. This work was supported in part by the Cathedral Fund (DB, KK) and The Mayday
Fund, New York (DB, KK).

References
1. B. A. Siddiqui and P. Y. Kim, “Anesthesia stages,” in StatPearls, StatPearls Publishing, Treasure Island,

Florida (2023).
2. E. M. Pogatzki-Zahn and P. K. Zahn, “From preemptive to preventive analgesia,” Curr. Opin. Anaesthesiol.

19(5), 551–555 (2006).
3. G. P. Dobson, “Trauma of major surgery: a global problem that is not going away,” Int. J. Surg. Lond. Engl.

81, 47–54 (2020).
4. S. N. Raja et al., “The revised international association for the study of pain definition of pain: concepts,

challenges, and compromises,” Pain 161(9), 1976–1982 (2020).

Peng et al.: Machines, mathematics, and modules: the potential to provide. . .

Neurophotonics 010701-19 Jan–Mar 2024 • Vol. 11(1)

https://doi.org/10.1097/01.aco.0000245283.45529.f9
https://doi.org/10.1016/j.ijsu.2020.07.017
https://doi.org/10.1097/j.pain.0000000000001939


5. J. H. Chandler et al., “Real-time assessment of mechanical tissue trauma in surgery,” IEEE Trans. Biomed.
Eng. 64(10), 2384–2393 (2017).

6. M. K. Gillette and C. C. Caruso, “Intraoperative tissue injury. Major causes and preventive measures,”
AORN J. 50(1), 66–68, 70–74, 76–78 (1989).

7. A. Margraf et al., “Systemic inflammatory response syndrome after surgery: mechanisms and protection,”
Anesth. Analg. 131(6), 1693–1707 (2020).

8. I. Ghanty and S. Schraag, “The quantification and monitoring of intraoperative nociception levels in
thoracic surgery: a review,” J. Thorac. Dis. 11(9), 4059–4071 (2019).

9. G. Lichtner et al., “Effects of propofol anesthesia on the processing of noxious stimuli in the spinal cord and
the brain,” NeuroImage 172, 642–653 (2018).

10. P. Martinez-Vazquez and E. W. Jensen, “Different perspectives for monitoring nociception during general
anesthesia,” Korean J. Anesthesiol. 75(2), 112–123 (2022).

11. K. Peng et al., “Rhythmic change of cortical hemodynamic signals associated with ongoing nociception in
awake and anesthetized individuals: an exploratory functional near infrared spectroscopy study,”
Anesthesiology 135(5), 877–892 (2021).

12. Y.-Y. I. Shih et al., “BOLD fMRI mapping of brain responses to nociceptive stimuli in rats under ketamine
anesthesia,” Med. Eng. Phys. 30(8), 953–958 (2008).

13. F. Zhao et al., “Qualification of fMRI as a biomarker for pain in anesthetized rats by comparison with
behavioral response in conscious rats,” NeuroImage 84, 724–732 (2014).

14. K. Peng et al., “Brodmann area 10: collating, integrating and high level processing of nociception and pain,”
Prog. Neurobiol. 161, 1–22 (2018).

15. D. Borsook et al., “Surgically induced neuropathic pain: understanding the perioperative process,”
Ann. Surg. 257(3), 403–412 (2013).

16. G. I. Juhl et al., “Central sensitization phenomena after third molar surgery: a quantitative sensory testing
study,” Eur. J. Pain Lond. Engl. 12(1), 116–127 (2008).

17. T. Mui et al., “Central sensitization adversely affects quality of recovery following lumbar decompression
surgery,” J. Orthop. Sci. 29(1), 78–82 (2022).

18. S. Green et al., “Measuring ‘pain load’ during general anesthesia,” Cereb. Cortex Commun. 3(2), tgac019
(2022).

19. K. D. Karunakaran et al., “NIRS measures in pain and analgesia: fundamentals, features, and function,”
Neurosci. Biobehav. Rev. 120, 335–353 (2021).

20. T. G. Weiser et al., “An estimation of the global volume of surgery: a modelling strategy based on available
data,” Lancet Lond. Engl. 372(9633), 139–144 (2008).

21. A. Gupta et al., “Clinical aspects of acute post-operative pain management & its assessment,” J. Adv.
Pharm. Technol. Res. 1(2), 97–108 (2010).

22. P. Glare, K. R. Aubrey, and P. S. Myles, “Transition from acute to chronic pain after surgery,” Lancet Lond.
Engl. 393(10180), 1537–1546 (2019).

23. D. M. N. Hoofwijk et al., “Prevalence and predictive factors of chronic postsurgical pain and poor global
recovery 1 year after outpatient surgery,” Clin. J. Pain 31(12), 1017–1025 (2015).

24. L. Wang et al., “Prevalence and intensity of persistent post-surgical pain following breast cancer surgery:
a systematic review and meta-analysis of observational studies,” Br. J. Anaesth. 125(3), 346–357 (2020).

25. K. H. Gjeilo, R. Stenseth, and P. Klepstad, “Risk factors and early pharmacological interventions to prevent
chronic postsurgical pain following cardiac surgery,” Am. J. Cardiovasc. Drugs Drugs Devices Interv.
14(5), 335–342 (2014).

26. S. R. Humble, A. J. Dalton, and L. Li, “A systematic review of therapeutic interventions to reduce acute
and chronic post-surgical pain after amputation, thoracotomy or mastectomy,” Eur. J. Pain Lond. Engl.
19(4), 451–465 (2015).

27. P. Skrejborg et al., “Presurgical comorbidities as risk factors for chronic postsurgical pain following total
knee replacement,” Clin. J. Pain 35(7), 577–582 (2019).

28. L. C. Burns et al., “Pain catastrophizing as a risk factor for chronic pain after total knee arthroplasty:
a systematic review,” J. Pain Res. 8, 21–32 (2015).

29. E. M. Giusti et al., “Psychological and psychosocial predictors of chronic postsurgical pain: a systematic
review and meta-analysis,” Pain 162(1), 10–30 (2021).

30. R. S. Khan et al., “Catastrophizing: a predictive factor for postoperative pain,” Am. J. Surg. 201(1), 122–131
(2011).

31. R. Cowen et al., “Assessing pain objectively: the use of physiological markers,” Anaesthesia 70(7), 828–847
(2015).

32. A. L. Miller, D. Theodore, and J. Widrich, “Inhalational anesthetic,” in StatPearls, StatPearls Publishing,
Treasure Island, Florida (2023).

33. L. Delgado-Herrera, R. D. Ostroff, and S. A. Rogers, “Sevoflurance: approaching the ideal inhalational
anesthetic. A pharmacologic, pharmacoeconomic, and clinical review,” CNS Drug Rev. 7(1), 48–120 (2001).

Peng et al.: Machines, mathematics, and modules: the potential to provide. . .

Neurophotonics 010701-20 Jan–Mar 2024 • Vol. 11(1)

https://doi.org/10.1109/TBME.2017.2664668
https://doi.org/10.1109/TBME.2017.2664668
https://doi.org/10.1016/S0001-2092(07)67636-4
https://doi.org/10.1213/ANE.0000000000005175
https://doi.org/10.21037/jtd.2019.08.62
https://doi.org/10.1016/j.neuroimage.2018.02.003
https://doi.org/10.4097/kja.22002
https://doi.org/10.1097/ALN.0000000000003986
https://doi.org/10.1016/j.medengphy.2007.12.004
https://doi.org/10.1016/j.neuroimage.2013.09.036
https://doi.org/10.1016/j.pneurobio.2017.11.004
https://doi.org/10.1097/SLA.0b013e3182701a7b
https://doi.org/10.1016/j.ejpain.2007.04.002
https://doi.org/10.1016/j.jos.2022.11.020
https://doi.org/10.1093/texcom/tgac019
https://doi.org/10.1016/j.neubiorev.2020.10.023
https://doi.org/10.1016/S0140-6736(08)60878-8
https://doi.org/10.1016/S0140-6736(19)30352-6
https://doi.org/10.1016/S0140-6736(19)30352-6
https://doi.org/10.1097/AJP.0000000000000207
https://doi.org/10.1016/j.bja.2020.04.088
https://doi.org/10.1007/s40256-014-0083-2
https://doi.org/10.1002/ejp.567
https://doi.org/10.1097/AJP.0000000000000714
https://doi.org/10.2147/JPR.S64730
https://doi.org/10.1097/j.pain.0000000000001999
https://doi.org/10.1016/j.amjsurg.2010.02.007
https://doi.org/10.1111/anae.13018
https://doi.org/10.1111/j.1527-3458.2001.tb00190.x


34. Y. Xing et al., “Analgesic efficacy of nitrous oxide in adults in the emergency department: a meta-analysis of
randomized controlled trials,” Am. J. Emerg. Med. 56, 92–99 (2022).

35. Y. Zhang et al., “Inhaled anesthetics have hyperalgesic effects at 0.1 minimum alveolar anesthetic concen-
tration,” Anesth. Analg. 91(2), 462–466 (2000).

36. D. Borsook and L. Becerra, “CNS animal fMRI in pain and analgesia,” Neurosci. Biobehav. Rev. 35(5),
1125–1143 (2011).

37. J. T. Da Silva and D. A. Seminowicz, “Neuroimaging of pain in animal models: a review of recent
literature,” Pain Rep. 4(4), e732 (2019).

38. S. J. Thompson and M. C. Bushnell, “Rodent functional and anatomical imaging of pain,” Neurosci. Lett.
520(2), 131–139 (2012).

39. A. G. Hudetz, “General anesthesia and human brain connectivity,” Brain Connect. 2(6), 291–302 (2012).
40. W. Yang et al., “Anesthetics fragment hippocampal network activity, alter spine dynamics, and affect

memory consolidation,” PLoS Biol. 19(4), e3001146 (2021).
41. M. Perouansky and R. A. Pearce, “How we recall (or don’t): the hippocampal memory machine and anes-

thetic amnesia,” Can. J. Anaesth. J. Can. Anesth. 58(2), 157–166 (2011).
42. O. Yu et al., “Texture analysis of brain MRI evidences the amygdala activation by nociceptive stimuli under

deep anesthesia in the propofol-formalin rat model,” Magn. Reson. Imaging 25(1), 144–146 (2007).
43. T. Shirai et al., “Pharmacologic modulation of noxious stimulus-evoked brain activation in cynomolgus

macaques observed with functional neuroimaging,” J. Am. Assoc. Lab. Anim. Sci. 59(1), 94–103 (2020).
44. E. W. Jensen et al., “Monitoring hypnotic effect and nociception with two EEG-derived indices, qCON and

qNOX, during general anaesthesia,” Acta Anaesthesiol. Scand. 58(8), 933–941 (2014).
45. M. M. Sahinovic et al., “Accuracy of the composite variability index as a measure of the balance between

nociception and antinociception during anesthesia,” Anesth. Analg. 119(2), 288–301 (2014).
46. O. Akeju et al., “Disruption of thalamic functional connectivity is a neural correlate of dexmedetomidine-

induced unconsciousness,” eLife 3, e04499 (2014).
47. M. A. S. Weerink et al., “Clinical Pharmacokinetics and Pharmacodynamics of Dexmedetomidine,”

Clin. Pharmacokinet. 56(8), 893–913 (2017).
48. W. Barrett, M. Buxhoeveden, and S. Dhillon, “Ketamine: a versatile tool for anesthesia and analgesia,”

Curr. Opin. Anaesthesiol. 33(5), 633–638 (2020).
49. J. Frauenknecht et al., “Analgesic impact of intra-operative opioids vs. opioid-free anaesthesia: a systematic

review and meta-analysis,” Anaesthesia 74(5), 651–662 (2019).
50. M. W. Stomberg, B. Sjöström, and H. Haljamäe, “Assessing pain responses during general anesthesia,”

AANA J. 69(3), 218–222 (2001).
51. D. Radovanovic and Z. Radovanovic, “Awareness during general anaesthesia–implications of explicit

intraoperative recall,” Eur. Rev. Med. Pharmacol. Sci. 15(9), 1085–1089 (2011).
52. N. Sigalovsky, “Awareness under general anesthesia,” AANA J. 71(5), 373–379 (2003).
53. I.-S. Lee, E. A. Necka, and L. Y. Atlas, “Distinguishing pain from nociception, salience, and arousal:

how autonomic nervous system activity can improve neuroimaging tests of specificity,” NeuroImage
204, 116254 (2020).

54. D. Mischkowski et al., “Pain or nociception? Subjective experience mediates the effects of acute noxious
heat on autonomic responses,” Pain 159(4), 699–711 (2018).

55. C. Rosow and P. J. Manberg, “Bispectral index monitoring,” Anesthesiol. Clin. N. Am. 19(4), 947–966, xi
(2001).

56. R. M. Coleman et al., “Changes in the bispectral index in response to experimental noxious stimuli in
adults under general anesthesia,” ISRN Pain 2013, 583920 (2013).

57. P. S. García et al., “Effects of noxious stimulation on the electroencephalogram during general anaesthesia:
a narrative review and approach to analgesic titration,” Br. J. Anaesth. 126(2), 445–457 (2021).

58. C. Weyer et al., “The strength of alpha oscillations in the electroencephalogram differently affects algo-
rithms used for anesthesia monitoring,” Anesth. Analg. 133(6), 1577–1587 (2021).

59. D. F. Hight et al., “Transient electroencephalographic alpha power loss during maintenance of general
anaesthesia,” Br. J. Anaesth. 122(5), 635–642 (2019).

60. M. Kreuzer et al., “Spectral and entropic features are altered by age in the electroencephalogram in patients
under sevoflurane anesthesia,” Anesthesiology 132(5), 1003–1016 (2020).

61. V. O. Puntmann, “How-to guide on biomarkers: biomarker definitions, validation and applications with
examples from cardiovascular disease,” Postgrad. Med. J. 85(1008), 538–545 (2009).

62. M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-infrared spectroscopy
(fNIRS) development and fields of application,” NeuroImage 63(2), 921–935 (2012).

63. M. A. Rahman et al., “A narrative review on clinical applications of fNIRS,” J. Digit. Imaging 33(5), 1167–
1184 (2020).

64. F. Scholkmann et al., “A review on continuous wave functional near-infrared spectroscopy and imaging
instrumentation and methodology,” NeuroImage 85 Pt 1, 6–27 (2014).

Peng et al.: Machines, mathematics, and modules: the potential to provide. . .

Neurophotonics 010701-21 Jan–Mar 2024 • Vol. 11(1)

https://doi.org/10.1016/j.ajem.2022.03.028
https://doi.org/10.1097/00000539-200008000-00044
https://doi.org/10.1016/j.neubiorev.2010.11.005
https://doi.org/10.1097/PR9.0000000000000732
https://doi.org/10.1016/j.neulet.2012.03.015
https://doi.org/10.1089/brain.2012.0107
https://doi.org/10.1371/journal.pbio.3001146
https://doi.org/10.1007/s12630-010-9417-y
https://doi.org/10.1016/j.mri.2006.09.022
https://doi.org/10.30802/AALAS-JAALAS-18-000143
https://doi.org/10.1111/aas.12359
https://doi.org/10.1213/ANE.0000000000000274
https://doi.org/10.7554/eLife.04499
https://doi.org/10.1007/s40262-017-0507-7
https://doi.org/10.1097/ACO.0000000000000916
https://doi.org/10.1111/anae.14582
https://doi.org/10.1016/j.neuroimage.2019.116254
https://doi.org/10.1097/j.pain.0000000000001132
https://doi.org/10.1016/S0889-8537(01)80018-3
https://doi.org/10.1155/2013/583920
https://doi.org/10.1016/j.bja.2020.10.036
https://doi.org/10.1213/ANE.0000000000005704
https://doi.org/10.1016/j.bja.2018.11.029
https://doi.org/10.1097/ALN.0000000000003182
https://doi.org/10.1136/pgmj.2008.073759
https://doi.org/10.1016/j.neuroimage.2012.03.049
https://doi.org/10.1007/s10278-020-00387-1
https://doi.org/10.1016/j.neuroimage.2013.05.004


65. P. Pinti et al., “The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive
neuroscience,” Ann. N. Y. Acad. Sci. 1464(1), 5–29 (2020).

66. G. E. Strangman, Z. Li, and Q. Zhang, “Depth sensitivity and source-detector separations for near infrared
spectroscopy based on the Colin27 brain template,” PLoS One 8(8), e66319 (2013).

67. K. D. Davis et al., “fMRI of human somatosensory and cingulate cortex during painful electrical nerve
stimulation,” Neuroreport 7(1), 321–325 (1995).

68. R. Peyron, B. Laurent, and L. García-Larrea, “Functional imaging of brain responses to pain. A review and
meta-analysis (2000),” Neurophysiol. Clin. Clin. Neurophysiol. 30(5), 263–288 (2000).

69. A. V. Apkarian et al., “Human brain mechanisms of pain perception and regulation in health and disease,”
Eur. J. Pain Lond. Engl. 9(4), 463–484 (2005).

70. C. J. Vierck et al., “Role of primary somatosensory cortex in the coding of pain,” Pain 154(3), 334–344
(2013).

71. M. Al-Chalabi, V. Reddy, and S. Gupta, “Neuroanatomy, spinothalamic tract,” in StatPearls, StatPearls
Publishing, Treasure Island, Florida (2023).

72. F.-E. Roux, I. Djidjeli, and J.-B. Durand, “Functional architecture of the somatosensory homunculus
detected by electrostimulation,” J. Physiol. 596(5), 941–956 (2018).

73. B. L. Whitsel et al., “Nociceptive afferent activity alters the SI RA neuron response to mechanical skin
stimulation,” Cereb. Cortex 20(12), 2900–2915 (2010).

74. H. Yamasaki et al., “Effects of distraction on pain-related somatosensory evoked magnetic fields and poten-
tials following painful electrical stimulation,” Brain Res. Cogn. Brain Res. 9(2), 165–175 (2000).

75. S. Yazawa et al., “Painful focal sensory seizure arising from the primary somatosensory cortex,” Intern.
Med. 42(9), 875–879 (2003).

76. J. Motogi et al., “Cortical responses to C-fiber stimulation by intra-epidermal electrical stimulation: an
MEG study,” Neurosci. Lett. 570, 69–74 (2014).

77. S. Omori et al., “Pain-related evoked potentials after intraepidermal electrical stimulation to Aδ and C fibers
in patients with neuropathic pain,” Neurosci. Res. 121, 43–48 (2017).

78. R. Baron et al., “Activation of the somatosensory cortex during Abeta-fiber mediated hyperalgesia. A MSI
study,” Brain Res. 871(1), 75–82 (2000).

79. B. G. Oertel et al., “Differential opioid action on sensory and affective cerebral pain processing,”
Clin. Pharmacol. Ther. 83(4), 577–588 (2008).

80. D. D. Price and G. N. Verne, “Does the spinothalamic tract to ventroposterior lateral thalamus and soma-
tosensory cortex have roles in both pain sensation and pain-related emotions?” J. Pain 3(2), 105–108;
discussion 113–114 (2002).

81. M. A. Yücel et al., “Specificity of hemodynamic brain responses to painful stimuli: a functional near-infra-
red spectroscopy study,” Sci. Rep. 5, 9469 (2015).

82. L. Becerra et al., “Brain measures of nociception using near-infrared spectroscopy in patients undergoing
routine screening colonoscopy,” Pain 157(4), 840–848 (2016).

83. B. D. Kussman et al., “Capturing pain in the cortex during general anesthesia: near infrared spectroscopy
measures in patients undergoing catheter ablation of arrhythmias,” PLoS One 11(7), e0158975 (2016).

84. C. M. Aasted et al., “Frontal lobe hemodynamic responses to painful stimulation: a potential brain marker of
nociception,” PLoS One 11(11), e0165226 (2016).

85. W. W. Seeley et al., “Dissociable intrinsic connectivity networks for salience processing and executive
control,” J. Neurosci. 27(9), 2349–2356 (2007).

86. M. Catani et al., “Short frontal lobe connections of the human brain,” Cortex J. Devoted Study Nerv. Syst.
Behav. 48(2), 273–291 (2012).

87. J. S. Feinstein et al., “From sensory processes to conscious perception,” Conscious. Cogn. 13(2), 323–335
(2004).

88. C. Linnman et al., “Neuroimaging of the periaqueductal gray: state of the field,” NeuroImage 60(1),
505–522 (2012).

89. V. Oliva et al., “Central pain modulatory mechanisms of attentional analgesia are preserved in fibromyal-
gia,” Pain 163(1), 125–136 (2022).

90. W.-Y. Ong, C. S. Stohler, and D. R. Herr, “Role of the prefrontal cortex in pain processing,”Mol. Neurobiol.
56(2), 1137–1166 (2019).

91. X. Cui et al., “A quantitative comparison of NIRS and fMRI across multiple cognitive tasks,” NeuroImage
54(4), 2808–2821 (2011).

92. T. Huppert et al., “Comparison of group-level, source localized activity for simultaneous functional near-
infrared spectroscopy-magnetoencephalography and simultaneous fNIRS-fMRI during parametric median
nerve stimulation,” Neurophotonics 4(1), 015001 (2017).

93. Y. Moriguchi et al., “Validation of brain-derived signals in near-infrared spectroscopy through multivoxel
analysis of concurrent functional magnetic resonance imaging,” Hum. Brain Mapp. 38(10), 5274–5291
(2017).

Peng et al.: Machines, mathematics, and modules: the potential to provide. . .

Neurophotonics 010701-22 Jan–Mar 2024 • Vol. 11(1)

https://doi.org/10.1111/nyas.13948
https://doi.org/10.1371/journal.pone.0066319
https://doi.org/10.1097/00001756-199512000-00077
https://doi.org/10.1016/S0987-7053(00)00227-6
https://doi.org/10.1016/j.ejpain.2004.11.001
https://doi.org/10.1016/j.pain.2012.10.021
https://doi.org/10.1113/JP275243
https://doi.org/10.1093/cercor/bhq039
https://doi.org/10.1016/S0926-6410(99)00056-7
https://doi.org/10.2169/internalmedicine.42.875
https://doi.org/10.2169/internalmedicine.42.875
https://doi.org/10.1016/j.neulet.2014.04.001
https://doi.org/10.1016/j.neures.2017.03.007
https://doi.org/10.1016/S0006-8993(00)02444-6
https://doi.org/10.1038/sj.clpt.6100441
https://doi.org/10.1054/jpai.2002.122950
https://doi.org/10.1038/srep09469
https://doi.org/10.1097/j.pain.0000000000000446
https://doi.org/10.1371/journal.pone.0158975
https://doi.org/10.1371/journal.pone.0165226
https://doi.org/10.1523/JNEUROSCI.5587-06.2007
https://doi.org/10.1016/j.cortex.2011.12.001
https://doi.org/10.1016/j.cortex.2011.12.001
https://doi.org/10.1016/j.concog.2003.10.004
https://doi.org/10.1016/j.neuroimage.2011.11.095
https://doi.org/10.1097/j.pain.0000000000002319
https://doi.org/10.1007/s12035-018-1130-9
https://doi.org/10.1016/j.neuroimage.2010.10.069
https://doi.org/10.1117/1.NPh.4.1.015001
https://doi.org/10.1002/hbm.23734


94. K. D. Karunakaran et al., “Brain-based measures of nociception during general anesthesia with remifenta-
nil: a randomized controlled trial,” PLoS Med. 19(4), e1003965 (2022).

95. K. Peng et al., “Using prerecorded hemodynamic response functions in detecting prefrontal pain response:
a functional near-infrared spectroscopy study,” Neurophotonics 5(1), 011018 (2018).

96. K. Peng et al., “Morphine attenuates fNIRS signal associated with painful stimuli in the medial frontopolar
cortex (medial BA 10),” Front. Hum. Neurosci. 12, 394 (2018).

97. M. N. Baliki et al., “Chronic pain and the emotional brain: specific brain activity associated with sponta-
neous fluctuations of intensity of chronic back pain,” J. Neurosci. 26(47), 12165–12173 (2006).

98. H. Gündel et al., “Altered cerebral response to noxious heat stimulation in patients with somatoform pain
disorder,” Pain 137(2), 413–421 (2008).

99. Y. Tu et al., “Abnormal medial prefrontal cortex functional connectivity and its association with clinical
symptoms in chronic low back pain,” Pain 160(6), 1308–1318 (2019).

100. S. Green et al., “fNIRS brain measures of ongoing nociception during surgical incisions under anesthesia,”
Neurophotonics 9(1), 015002 (2022).

101. V. Gangadharan and R. Kuner, “Pain hypersensitivity mechanisms at a glance,” Dis. Model. Mech. 6(4),
889–895 (2013).

102. P. Thapa and P. Euasobhon, “Chronic postsurgical pain: current evidence for prevention and management,”
Korean J. Pain 31(3), 155–173 (2018).

103. C. J. Woolf, “Central sensitization: implications for the diagnosis and treatment of pain,” Pain 152(3),
S2–S15 (2011).

104. K. D. Karunakaran et al., “Can pain under anesthesia be measured? Pain-related brain function using
functional near-infrared spectroscopy during knee surgery,” Neurophotonics 10(2), 025014 (2023).

105. D. J. Hodkinson et al., “Increased amplitude of thalamocortical low-frequency oscillations in patients with
migraine,” J. Neurosci. 36(30), 8026–8036 (2016).

106. Z. Alshelh et al., “Disruption of default mode network dynamics in acute and chronic pain states,”
NeuroImage Clin. 17, 222–231 (2017).

107. L. Gu et al., “Bidirectional alterations in ALFF across slow-5 and slow-4 frequencies in the brains of
postherpetic neuralgia patients,” J. Pain Res. 12, 39–47 (2018).

108. S. Malinen et al., “Aberrant temporal and spatial brain activity during rest in patients with chronic pain,”
Proc. Natl. Acad. Sci. U.S.A. 107(14), 6493–6497 (2010).

109. F. Zhou et al., “Altered low-frequency oscillation amplitude of resting state-fMRI in patients with disco-
genic low-back and leg pain,” J. Pain Res. 11, 165–176 (2018).

110. M. Hall et al., “Pain induced changes in brain oxyhemoglobin: a systematic review and meta-analysis of
functional NIRS studies,” Pain Med. 22(6), 1399–1410 (2021).

111. G. Bauernfeind et al., “Separating heart and brain: on the reduction of physiological noise from multichan-
nel functional near-infrared spectroscopy (fNIRS) signals,” J. Neural Eng. 11(5), 056010 (2014).

112. K. Peng et al., “Using patient-specific hemodynamic response function in epileptic spike analysis of human
epilepsy: a study based on EEG-fNIRS,” NeuroImage 126, 239–255 (2016).

113. J. A. Noah et al., “Comparison of short-channel separation and spatial domain filtering for removal of non-
neural components in functional near-infrared spectroscopy signals,” Neurophotonics 8(1), 015004 (2021).

114. D. Wyser et al., “Short-channel regression in functional near-infrared spectroscopy is more effective when
considering heterogeneous scalp hemodynamics,” Neurophotonics 7(3), 035011 (2020).

115. E. S. Finn et al., “Functional connectome fingerprinting: identifying individuals using patterns of brain
connectivity,” Nat. Neurosci. 18(11), 1664–1671 (2015).

116. C. Chang and G. H. Glover, “Time-frequency dynamics of resting-state brain connectivity measured with
fMRI,” NeuroImage 50(1), 81–98 (2010).

117. A. Zilverstand et al., “Windowed correlation: a suitable tool for providing dynamic fMRI-based functional
connectivity neurofeedback on task difficulty,” PloS One 9(1), e85929 (2014).

118. A. von Lühmann et al., “Using the general linear model to improve performance in fNIRS single trial
analysis and classification: a perspective,” Front. Hum. Neurosci. 14, 30 (2020).

119. D. Borsook, L. Becerra, and R. Hargreaves, “Biomarkers for chronic pain and analgesia. Part 1: the need,
reality, challenges, and solutions,” Discov. Med. 11(58), 197–207 (2011).

120. D. Borsook, L. Becerra, and R. Hargreaves, “Biomarkers for chronic pain and analgesia. Part 2: how, where,
and what to look for using functional imaging,” Discov. Med. 11(58), 209–219 (2011).

121. K. D. Davis et al., “Discovery and validation of biomarkers to aid the development of safe and effective pain
therapeutics: challenges and opportunities,” Nat. Rev. Neurol. 16(7), 381–400 (2020).

122. A. J. Metz et al., “Continuous coloured light altered human brain haemodynamics and oxygenation
assessed by systemic physiology augmented functional near-infrared spectroscopy,” Sci. Rep. 7(1), 10027
(2017).

123. F. Scholkmann et al., “Systemic physiology augmented functional near-infrared spectroscopy: a powerful
approach to study the embodied human brain,” Neurophotonics 9(3), 030801 (2022).

Peng et al.: Machines, mathematics, and modules: the potential to provide. . .

Neurophotonics 010701-23 Jan–Mar 2024 • Vol. 11(1)

https://doi.org/10.1371/journal.pmed.1003965
https://doi.org/10.1117/1.NPh.5.1.011018
https://doi.org/10.3389/fnhum.2018.00394
https://doi.org/10.1523/JNEUROSCI.3576-06.2006
https://doi.org/10.1016/j.pain.2007.10.003
https://doi.org/10.1097/j.pain.0000000000001507
https://doi.org/10.1117/1.NPh.9.1.015002
https://doi.org/10.1242/dmm.011502
https://doi.org/10.3344/kjp.2018.31.3.155
https://doi.org/10.1016/j.pain.2010.09.030
https://doi.org/10.1117/1.NPh.10.2.025014
https://doi.org/10.1523/JNEUROSCI.1038-16.2016
https://doi.org/10.1016/j.nicl.2017.10.019
https://doi.org/10.2147/JPR.S179077
https://doi.org/10.1073/pnas.1001504107
https://doi.org/10.2147/JPR.S151562
https://doi.org/10.1093/pm/pnaa453
https://doi.org/10.1088/1741-2560/11/5/056010
https://doi.org/10.1016/j.neuroimage.2015.11.045
https://doi.org/10.1117/1.NPh.8.1.015004
https://doi.org/10.1117/1.NPh.7.3.035011
https://doi.org/10.1038/nn.4135
https://doi.org/10.1016/j.neuroimage.2009.12.011
https://doi.org/10.1371/journal.pone.0085929
https://doi.org/10.3389/fnhum.2020.00030
https://doi.org/10.1038/s41582-020-0362-2
https://doi.org/10.1038/s41598-017-09970-z
https://doi.org/10.1117/1.NPh.9.3.030801


124. S. R. Bennett, N. Smith, and M. R. Bennett, “Cerebral oximetry in adult cardiac surgery to reduce the
incidence of neurological impairment and hospital length-of-stay: a prospective, randomized, controlled
trial,” J. Intensive Care Soc. 23(2), 109–116 (2022).

125. A. Nenna et al., “Near-infrared spectroscopy in adult cardiac surgery: between conflicting results and
unexpected uses,” J. Geriatr. Cardiol. 14(11), 659–661 (2017).

126. C. Ortega-Loubon et al., “Near-infrared spectroscopy monitoring in cardiac and noncardiac surgery: pair-
wise and network meta-analyses,” J. Clin. Med. 8(12), 2208 (2019).

127. H. B. Nielsen, “Systematic review of near-infrared spectroscopy determined cerebral oxygenation during
non-cardiac surgery,” Front. Physiol. 5, 93 (2014).

128. E. B. Wassenaar and J. G. H. Van den Brand, “Reliability of near-infrared spectroscopy in people with dark
skin pigmentation,” J. Clin. Monit. Comput. 19(3), 195–199 (2005).

129. V. Bonhomme et al., “Influence of anesthesia on cerebral blood flow, cerebral metabolic rate, and brain
functional connectivity,” Curr. Opin. Anaesthesiol. 24(5), 474–479 (2011).

130. M. A. Franceschini et al., “The effect of different anesthetics on neurovascular coupling,” NeuroImage
51(4), 1367–1377 (2010).

131. V. Vijayakrishnan Nair et al., “Monitoring anesthesia using simultaneous functional Near Infrared
Spectroscopy and Electroencephalography,” Clin. Neurophysiol. 132(7), 1636–1646 (2021).

132. N. Hansen et al., “Amplitudes of pain-related evoked potentials are useful to detect small fiber involvement
in painful mixed fiber neuropathies in addition to quantitative sensory testing - an electrophysiological
study,” Front. Neurol. 6, 244 (2015).

133. H. Parvar et al., “Detection of event-related potentials in individual subjects using support vector machines,”
Brain Inf. 2(1), 1–12 (2015).

134. R. Zaslansky et al., “Pain-evoked potentials: what do they really measure?” Electroencephalogr. Clin.
Neurophysiol. 100(5), 384–391 (1996).

135. H. Dehghani et al., “Depth sensitivity and image reconstruction analysis of dense imaging arrays for
mapping brain function with diffuse optical tomography,” Appl. Opt. 48(10), D137–143 (2009).

136. A. Ortega-Martinez et al., “How much do time-domain functional near-infrared spectroscopy (fNIRS)
moments improve estimation of brain activity over traditional fNIRS?”Neurophotonics 10(1), 013504 (2023).

137. A. Torricelli et al., “Time domain functional NIRS imaging for human brain mapping,” NeuroImage
85 Pt 1, 28–50 (2014).

138. F. Lange et al., “MAESTROS: a multiwavelength time-domain NIRS system to monitor changes in
oxygenation and oxidation state of Cytochrome-C-Oxidase,” IEEE J. Sel. Top. Quantum Electron. 25(1),
1–12 (2019).

139. F. Sun et al., “Functional characteristics of the human primary somatosensory cortex: an electrostimulation
study,” Epilepsy Behav. EB 118, 107920 (2021).

140. F. Sun et al., “Functional organization of the human primary somatosensory cortex: a stereo-electroencepha-
lography study,” Clin. Neurophysiol. 132(2), 487–497 (2021).

141. G. H. Glover, “Overview of functional magnetic resonance imaging,” Neurosurg. Clin. N. Am. 22(2),
133–139, vii (2011).

142. N. Jamann, M. Jordan, and M. Engelhardt, “Activity-dependent axonal plasticity in sensory systems,”
Neuroscience 368, 268–282 (2018).

143. B. Kolb, A. Harker, and R. Gibb, “Principles of plasticity in the developing brain,” Dev. Med. Child Neurol.
59(12), 1218–1223 (2017).

144. S. E. Shore, L. E. Roberts, and B. Langguth, “Maladaptive plasticity in tinnitus–triggers, mechanisms and
treatment,” Nat. Rev. Neurol. 12(3), 150–160 (2016).

145. P. Goodin et al., “Altered functional connectivity differs in stroke survivors with impaired touch sensation
following left and right hemisphere lesions,” NeuroImage Clin. 18, 342–355 (2018).

146. M. A. Nicolelis et al., “Simultaneous encoding of tactile information by three primate cortical areas,”
Nat. Neurosci. 1(7), 621–630 (1998).

147. J. L. Reed et al., “Widespread spatial integration in primary somatosensory cortex,” Proc. Natl. Acad. Sci.
U. S. A. 105(29), 10233–10237 (2008).

148. R. C. Thompson et al., “Percutaneous transluminal coronary angioplasty in the elderly: early and long-term
results,” J. Am. Coll. Cardiol. 17(6), 1245–1250 (1991).

149. G. Lamp et al., “Activation of bilateral secondary somatosensory cortex with right hand touch stimulation:
a meta-analysis of functional neuroimaging studies,” Front. Neurol. 9, 1129 (2018).

150. L. Tamè et al., “Bilateral representations of touch in the primary somatosensory cortex,” Cogn.
Neuropsychol. 33(1–2), 48–66 (2016).

151. I. A. Strigo et al., “Visceral and cutaneous pain representation in Parasylvian cortex,” Neurosci. Lett.
384(1–2), 54–59 (2005).

152. P. W. Fettes et al., “Abnormal functional connectivity of frontopolar subregions in treatment-nonresponsive
major depressive disorder,” Biol. Psychiatry Cogn. Neurosci. Neuroimaging 3(4), 337–347 (2018).

Peng et al.: Machines, mathematics, and modules: the potential to provide. . .

Neurophotonics 010701-24 Jan–Mar 2024 • Vol. 11(1)

https://doi.org/10.1177/1751143720977280
https://doi.org/10.11909/j.issn.1671-5411.2017.11.001
https://doi.org/10.3390/jcm8122208
https://doi.org/10.3389/fphys.2014.00093
https://doi.org/10.1007/s10877-005-1655-0
https://doi.org/10.1097/ACO.0b013e32834a12a1
https://doi.org/10.1016/j.neuroimage.2010.03.060
https://doi.org/10.1016/j.clinph.2021.03.025
https://doi.org/10.3389/fneur.2015.00244
https://doi.org/10.1007/s40708-014-0006-7
https://doi.org/10.1016/0168-5597(96)95654-3
https://doi.org/10.1016/0168-5597(96)95654-3
https://doi.org/10.1364/AO.48.00D137
https://doi.org/10.1117/1.NPh.10.1.013504
https://doi.org/10.1016/j.neuroimage.2013.05.106
https://doi.org/10.1109/JSTQE.2018.2833205
https://doi.org/10.1016/j.yebeh.2021.107920
https://doi.org/10.1016/j.clinph.2020.11.032
https://doi.org/10.1016/j.nec.2010.11.001
https://doi.org/10.1016/j.neuroscience.2017.07.035
https://doi.org/10.1111/dmcn.13546
https://doi.org/10.1038/nrneurol.2016.12
https://doi.org/10.1016/j.nicl.2018.02.012
https://doi.org/10.1038/2855
https://doi.org/10.1073/pnas.0803800105
https://doi.org/10.1073/pnas.0803800105
https://doi.org/10.1016/S0735-1097(10)80130-5
https://doi.org/10.3389/fneur.2018.01129
https://doi.org/10.1080/02643294.2016.1159547
https://doi.org/10.1080/02643294.2016.1159547
https://doi.org/10.1016/j.neulet.2005.04.067
https://doi.org/10.1016/j.bpsc.2017.12.003


153. L. C. Schudlo and T. Chau, “Dynamic topographical pattern classification of multichannel prefrontal NIRS
signals: II. Online differentiation of mental arithmetic and rest,” J. Neural Eng. 11(1), 016003 (2014).

154. F. M. Noori et al., “Optimal feature selection from fNIRS signals using genetic algorithms for BCI,”
Neurosci. Lett. 647, 61–66 (2017).

155. J. Kwon and C.-H. Im, “Subject-independent functional near-infrared spectroscopy-based brain–computer
interfaces based on convolutional neural networks,” Front. Hum. Neurosci. 15, 646915 (2021).

156. N. Naseer and K.-S. Hong, “fNIRS-based brain-computer interfaces: a review,” Front. Hum. Neurosci.
9, 3 (2015).

157. A. K. Matarasso et al., “Combined real-time fMRI and real time fNIRS brain computer interface (BCI):
training of volitional wrist extension after stroke, a case series pilot study,” PloS One 16(5), e0250431 (2021).

158. M. Lührs and R. Goebel, “Turbo-Satori: a neurofeedback and brain-computer interface toolbox for real-time
functional near-infrared spectroscopy,” Neurophotonics 4(4), 041504 (2017).

159. A. F. Abdelnour and T. Huppert, “Real-time imaging of human brain function by near-infrared spectroscopy
using an adaptive general linear model,” NeuroImage 46(1), 133–143 (2009).

160. A. Ortega-Martinez et al., “Multivariate Kalman filter regression of confounding physiological signals for
real-time classification of fNIRS data,” Neurophotonics 9(2), 025003 (2022).

161. G. Durantin et al., “Moving Average Convergence Divergence filter preprocessing for real-time event-
related peak activity onset detection: application to fNIRS signals,” in Annu. Int. Conf. IEEE Eng. Med.
Biol. Soc., pp. 2107–2110 (2014).
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