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ABSTRACT. The Frontiers in Neurophotonics Symposium is a biennial event that brings together
neurobiologists and physicists/engineers who share interest in the development of
leading-edge photonics-based approaches to understand and manipulate the
nervous system, from its individual molecular components to complex networks
in the intact brain. In this Community paper, we highlight several topics that have
been featured at the symposium that took place in October 2022 in Québec City,
Canada.
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1 Introduction: The Frontiers in Neurophotonics Symposium and
Summer School

Understanding the nervous system requires an integrated comprehension of its building blocks,
including its cells, their structural and functional connections, their mode of operations at the
molecular level, and how they are organized in networks to sense, decode, respond, and instruct/
control the rest of the body. Advances in understanding cell function critically depend on our
capacity to improve the resolution of dynamic molecular mechanisms and the availability of the
appropriate tools to study these events in live cells and intact tissue. This is particularly true in
the field of neurosciences, where challenges in spatial and temporal resolution are pushed to the
extreme. These challenges include: breaking the diffraction limits of light to follow molecular
events in submicron scale dendritic spines or to understand the mechanics of neurotransmitter
release in synaptic terminals; following the spatiotemporal dynamics of signaling proteins on
highly fluid membranes; developing novel probes to detect enzyme activity in real time in situ;
recording simultaneously the activity of multiple nerve cells, at millisecond time scales, within a
large area to decipher network interactions; probing deeper and deeper into the brain; monitoring
intrinsic cellular events at high resolution with minimal invasiveness in intact animals; achieving
label-free chemical imaging in live tissue; exploiting light to control neuronal activity in specific
brain nuclei in freely moving animals; and more.

Starting in 2008, these transdisciplinary challenges and the proposed solutions have been
presented and debated at the Frontiers in Neurophotonics Symposium jointly organized by
Université Laval (Canada) and Université de Bordeaux (France) (Fig. 1). The meeting has been
taking place approximately every two years, bringing together neurobiologists and physicists/
engineers who share interest in the development of leading-edge photonics-based approaches to
understanding and manipulating the nervous system, from its individual molecular components
to complex networks in the intact brain. The meeting showcases new methodology demonstrat-
ing how novel neurophotonic methods are leading to fascinating discoveries and stimulating
conceptual advances. The themes and methods covered during the meeting range from measuring
single molecule dynamics at synapses to imaging sensory processing in intact brains, including:

• Nanophotonics probes for biosensing and molecular tracking

• Molecular dynamics in nanoscale compartments

Fig. 1 Frontiers in Neurophotonics Symposium 2022.
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• Monitoring molecular interactions in live neurons
• Non-linear optics for high resolution, in vivo deep-tissue imaging
• Overcoming temporal resolution challenges for optical monitoring of network activity
• Nanoscopy: super-resolution optical imaging at live synapses
• Intrinsic, label-free molecular imaging and spectroscopy
• Fiber probes for sensing, imaging, and stimulating
• Microendoscopy
• Optical tomography
• Photoablation techniques
• Multimodal imaging
• Optogenetics and photomanipulation
• Image analysis and computational approaches
• Application of photonics to neurosurgery

With this wide and immersive scope, the Frontiers in Neurophotonics Symposium has,
in the last sixteen years, cultivated a multidisciplinary community, fostered new ideas and
collaborations, and offered a forum for students and fellows to discuss their work with leading
experts and peer trainees. In 2025, the 7th edition of the symposium will take place at Université
de Bordeaux.

Complementary to the symposium and drawing from the same community of experts, the
annual Frontiers in Neurophotonics International Summer School has provided practical knowl-
edge to doctoral and postdoctoral trainees around the world in data acquisition, data processing,
appropriate interpretation, and understanding the underlying physical principles of operation
(Fig. 2). The goal of the school has been to ensure that trainees become versed in the neuro-
photonic tools and leave the program with sufficient “know-how” expertise to successfully carry
out neuroimaging projects in their home institutes and universities. In 2024, the 17th edition of
the school is taking place at the CERVO Brain Research Center in Québec City.

Given the rapid growth and evolution of neurophotonic technologies, a comprehensive
account of the tools and applications discussed at the symposium and taught at the school over
the years would be a massive undertaking. Instead, we choose to highlight several topics that
have been featured at the last symposium that took place in October 2022. We hope that this
sampler will make our readers interested in learning more and participating in these events!

2 Optical Contrasts and Probes

2.1 Label-Free Live Cell Imaging
Label-free imaging relies on interactions of light with brain tissue in the absence of any extrinsic
(synthetic or genetically encoded) probes. Quantitative-phase imaging (QPI) is a label-free

Fig. 2 Flavie Lavoie-Cardinal introducing the principles of fluorescence at Frontiers in
Neurophotonics International Summer School 2023.
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imaging modality that has been used for imaging of live cells.1 Nowadays, one of its most popu-
lar implementations is digital holographic microscopy (DHM) due to its computational flexibility
originating from the numerical reconstruction of the wavefront up to the plane of the specimen.2

By fully simulating light-wave propagation and conditioning, it opens the possibility for auto-
focusing,3 thereby compensating thermal and experimental drifts,4 enabling total correction of
aberrations and distortions,5 and allowing extended depth-of-focus.6 Due to its interferometric
nature, the quantitative-phase signal (QPS) of DHM is extremely accurate, allowing sensitivity
down to the nanometer scale.7 As a single shot technique, DHM is particularly well suited to
capturing dynamic biological processes.8 Moreover, to preserve the size of the field-of-view,9

especially in an off-axis configuration and to record holograms exhibiting well-defined interfer-
ence fringes, a prerequisite for accurate and precise phase retrieval,10,11 a light source with a
certain level of coherence is necessary. However, the coherence property of the light source itself
generates coherent noise (CN), an acknowledged source of image quality limitation which
mitigates some of the many advantages of DHM.12 The CN causes a well-recognized granular
appearance in quantitative-phase images, obscuring thin and small cellular structures.
Polychromatic DHM (P-DHM) has the ability to drastically reduce CN in quantitative-phase
images and is particularly effective at revealing fine cellular processes, such as neuronal con-
nections and neurites [Fig. 3(a)].14 Ongoing work using deep learning is attempting to make
P-DHM noise reduction accessible to conventional digital holographic microscopes.

2.2 Labeling of Endogenous Proteins with CRISPR/Cas9-Based Genome
Editing

Mapping the distribution and dynamics of proteins is key for a mechanistic understanding of
neuronal functioning.15 Astonishing progress has been made in fluorescence microscopy tech-
niques that can now resolve subcellular protein organization at increasingly high resolution.
Yet, the power of these imaging techniques ultimately relies on methods that accurately tag
proteins without adverse side effects. Standard labeling approaches in the field often rely on
overexpression of exogenous tagged proteins that can have detrimental effects on neuronal struc-
ture and function. An alternative approach that overcomes this limitation is to label endogenous
proteins in neurons.16

This can be achieved using CRISPR/Cas9-based genome editing to modify, remove or add
DNA segments to the genome. With the CRISPR/Cas9 vector system, one can insert epitope tags
in specific genes and generate a library of CRISPR/Cas9 knock-in vectors to tag a range of syn-
aptic, trafficking, and signaling proteins in neurons [Fig. 3(b)].13 This allows tagging of proteins
for standard microscopy applications, as well as super-resolution microscopy, in cultured neu-
rons and in vivo. It can then be used to study cell-type- and synapse-type-specific regulatory
mechanisms controlling protein distribution and function. To analyze the spatial distribution of
proteins both in conventional and super-resolution imaging one can use SODA (Standard Object
Distance Analysis) plugin— a free software able to detect colocalization and apposition.17 In the
context of synapses, SODA enables the detection of pre- and post-synaptic protein alignment.

Fig. 3 Intrinsic and engineered optical contrasts. (a) Label-free imaging: split-view of a neuronal
cell culture comparing a classical DHM image (top left) with an image acquired using the auto-
mated P-DHM (bottom right). (b) CRISPR/Cas9-based tagging of endogenous proteins. Left:
knock-in vector (top) and strategy (bottom). Right: synaptic protein Shank2 knock-in neuron.
Adapted from Ref. 13. (c) Optimization of optical biosensors in a feedback loop between devel-
opers and testers.
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2.3 Dissemination of Novel Optical Biosensors
For true impact, new tools should not be restricted to few highly specialized labs with niche
expertise but serve the collective imagination of the largest collection of labs possible. One can
facilitate adoption of new technologies by non-expert labs by building an active feedback
loop between the developing and testing teams. In this context, the Canadian Optogenetics
and Vectorology Foundry (neurophotonics.ca/COVF) has developed a BioFoundry based on
a design-build-test (DBT) cycle where groups dedicated to design and development collaborate
with series of testers across biological model systems [Fig. 3(c)].18 Tools developed by this
BioFoundry include the near infrared calcium sensor NIR-GECO19,20 and the lactate sensor
LACCO.21

3 Imaging and Manipulating Synaptic Function
The number and nanoscale organization of neurotransmitter receptors localized at the post-
synaptic density are key determinants of the efficacy of synaptic transmission, while the rapid
and dynamic spatial regulation the receptors constitute a major mechanism underlying the plas-
ticity of synaptic transmission.22 The complex subcellular morphology and connectivity patterns
of neurons, combined with the optical scattering properties of brain tissue and high signal density
of protein(s) of interest, create technical limitations for studying the mechanisms of synaptic
function in live tissue preparations. However, recent developments in advanced imaging methods
and molecular approaches to label or functionalize proteins of interest have brought these
questions within reach of experimental neuroscientists.15 Among these advances are lattice light
sheet microscopy (LLSM) combined with CRISPR-Cas9-assisted fluorescent tagging of endog-
enous proteins, fluorescence microscopy of single exocytosis and endocytosis events in neuronal
dendrites exploiting the tagging of post-synaptic receptors with pH-sensitive fluorescent pro-
teins, and continuing development and optimization of optogenetic tools.

3.1 Lattice Light Sheet Microscopy
The study of dynamic neurobiological processes, such as synaptic plasticity, requires imaging of
live samples at the sub-cellular level with high temporal resolution and minimal phototoxicity.
LLSM23 specifically addresses these needs. LLSM has been used to image neuronal activity in
brain slices.23–26 However, imaging at high resolution and contrast inside an opaque bio-tissue,
such as brain slice, is a challenging task. Indeed, both the excitation and detection optical paths
are subject to aberrations because of inhomogeneities of refraction indices. In particular, the light
sheet is deflected, such as a blurred image of the sample is projected onto the camera. These
deleterious effects can be mitigated using active image improvement techniques that have been
developed for light sheet microscopes including auto-focusing and wavefront correction with
adaptive optics.27–29

Combined with CRISPR-Cas9 genome editing, LLSM allows imaging of endogenous pro-
teins, such as the AMPA subtype of glutamate receptors (AMPAR). One can measure the surface
diffusion of endogenous AMPARs using a knock-in mouse model with a functionalized GluA2
subunit that allows sparse labeling of AMPARs in slice preparations and in vivo.24 In this mouse
model, CRISPR-Cas9 genome editing was used to knock-in the 15 amino acid biotin acceptor
peptide tag (AP) on the extracellular N-terminus of GluA2 (AP-GluA2). Labelling specificity of
AP-GluA2 containing AMPAR was achieved by target-specific expression of biotin ligase
(BirA), which selectively biotinylates the AP tag.30,31 This in turn allows for the use of small,
high-affinity biotin binding proteins (avidins) conjugated to fluorescent dyes to monitor the
surface mobility of endogenous AMPAR. Due to their small size (∼3-6 nm), avidins efficiently
target membrane proteins in organized brain tissue and confined synaptic domains.32,33 Because
the AP-tag knock-in strategy can be broadly adapted for the study of cell surface proteins,
the same labeling approach can be applied to a wide range of biological research questions.
Further, fluorescent labeling of endogenous synaptic proteins, such as AMPAR, in LLSM can
be combined with a photo-stimulation module (PSM) for all-optical synaptic physiology experi-
ments,23,24 including fluorescence recovery after photobleaching (FRAP) imaging of AMPAR
diffusion dynamics24 [Figs. 4(a)-4(b)]. These new molecular tools and high-resolution imaging
techniques enable detailed studies of synaptic organization and plasticity.15,22
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3.2 Imaging Endo- and Exocytosis of Proteins Tagged with pH-Sensitive
Fluorescent Labels

Membrane trafficking of post-synaptic receptors is a key determinant of synaptic transmission
and synaptic plasticity. Imaging individual trafficking steps in the post-synaptic neuron is thus
important to perform for understanding the cellular mechanisms of synapse regulation.
Specifically, the imaging of single exocytosis and endocytosis events in neuronal dendrites is
best achieved by tagging transmembrane proteins, such as post-synaptic receptors, with pH-
sensitive fluorescent proteins, including the superecliptic pHluorin (SEP), in their extracellular
portion.34 Exocytosis is detected by the transition in pH, from acidic (5.5, inside an acidic vesicle)
to neutral (7.4, extracellular medium). Therefore, one can map exocytic events relative to spines
and PSDs and assess the modulation of exocytosis events during the induction of synaptic
plasticity. For example, the direct regulation of exocytosis mode by L-type calcium channels35

or the contribution of various classes of recycling endosomes36 were shown to be involved in
long-term potentiation (LTP).

Detection of endocytosis with the highest spatial and temporal resolution is achieved by
testing with repetitive pH changes (or pulsed pH, ppH) the accessibility of newly formed
endocytic vesicles containing SEP-tagged receptors. It is then possible to map these endocytic
events relative to PSDs and show the transient increase in endocytosis frequency following
the induction of LTD.37,38 These imaging modalities have been so far used mostly in cultured
neurons. It is now possible to use sensitive imaging modalities, such as LLSM, to image
endocytic structures in living tissue28,34 [Figs. 4(c)–4(d)]. Together with genome editing strat-
egies to tag with SEP endogenous receptors or transporters,16,39–41 these new approaches are
paving the way to a detailed understanding of the trafficking steps at play in intact neuronal
networks.

Fig. 4 Live imaging of synaptic function. (a), (b) FRAP imaging of AMPAR diffusion.
(a) Schematics of GluA2 labeling (left) and a reconstructed LLSM image of a GFP-expressing
CA1 pyramidal neuron with labeled GluA2. (b) FRAP experiments performed with PSM. Top left:
FRAP schematics. Top right: fluorescence recovery kymographs. Bottom left: spine regions
(dashed circles) before (baseline) and after targeted photobleaching (bleach) and diffusion-depen-
dent recovery (recovery). Bottom right: fluorescence recovery time-courses. Adapted from Ref. 24.
(c), (d) Imaging of membrane trafficking with pH-sensitive pHluorin. (c) Left: schematics showing
SEP-labeled cargo (brown sticks), visible at neutral pH (green lollipops) but not at the acidic pH of
REs (dark gray). Blue, presynaptic terminal; gray, post-synaptic spine. Top right: kymograph show-
ing detection of exocytosis events (top). Bottom right: an increase in exocytosis following long
term potentiation (LTP). (d) Images neuronal dendrites transfected with Homer1c-tdTomato and
clathrin-GFP and kymographs of clathrin-GFP showing that clathrin-coated structures are stable in
cultured neurons but transient in the slice. Adapted from Ref. 34.
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3.3 Optogenetics and Synaptic Function
Optogenetic techniques take advantage of the exquisite levels of cellular control that are enabled
using the combination of light and genetically targeted constructs. They are becoming increas-
ingly mainstream in neuroscience laboratories and there is hope for therapeutic applications in
the future. However, simultaneous stimulation of more than a single location (a neuron or
a synapse) is usually implemented using complex optical setups. On the other hand, for cell
culture applications, one can reduce the complexity using a digital light processor (DLP) with
an integrated digital micromirror device (DMD) aligned to the EPI-fluorescence port of a spin-
ning disk microscope. Thanks to the DMD, the DLP device can create custom spatial light
patterns with a resolution down to ∼3 μm with a 20x objective.42 This platform can be coupled
with optical or electrophysiological monitoring to perform experiments involving the selective
excitation/inhibition of a few cells in a neuronal network, followed by the molecular, physio-
logical, and morphological characterization. Reductionistic by design, the platform can be used
to investigate basic processes occurring in neuronal cultures at the cellular and synaptic levels,
otherwise difficult to address in vivo.

As in the case of fluorescent biosensors, addressing specific biological questions often
requires application-specific optimization, which often exceeds the expertise and capabilities
of one team. Therefore, an easy adoption can be facilitated by push-pull collaboration between
a series of Cores and the endpoint user [Fig. 3(c)]. In the context of the Canadian Optogenetics
and Vectorology Foundry, new optogenetic constructs are designed by the Optogenetic Protein
Engineering Core at CERVO, which are then transferred to the Viral Vector Core for assembly
into a delivery vehicle that can be custom configured for the user.

Optogenetics and opsins have emerged as a powerful method to photo-manipulate the func-
tion of individual or ensembles of neurons or glia in the central nervous system (CNS).43 For
example, the use of optogenetics is necessary to model in vivo neurodegenerative disorders for
which persistent neuronal activation or inhibition for several months is involved.44 This can be
achieved using stable step-function opsin (SSFO)45 to generate a model of sustained neuronal
hyperactivity in the rodent hippocampus (Fig. 5) that replicates several pathological aspects
typical for epilepsy and Alzheimer’s disease (AD).46

4 Imaging Peripheral Nerves
Multiphoton microscopy enables intravital, label-free, and deep imaging of the nervous
system.47,48 Second and third harmonic generation (SHG and THG) microscopy are powerful
label-free multiphoton imaging techniques for visualizing and quantifying myelinated axons
in peripheral nerve.49 Perineural collagen and lipid-rich structures, such as myelin sheaths, gen-
erate strong SHG and THG signals, respectively. Highly scattering components of peripheral
nerves, such as collagen and myelin lipids, limit the achievable imaging depth of two-photon
excitation microscopy to ∼75 μm. An ultrafast fiber laser at 1300 nm was recently used to reduce

AAV.CaMKIIa.SSFO.mCherry
or AAV.CaMKIIa.tdTomato 

1 2 3 (months)

Surgery light stimulation
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Proteomics
Analysis

Sustained neuronal hyperactivity

Fig. 5 Schematics of the experimental design to generate a model of sustained hippocampal
hyperactivity. Left: intrahippocampal injection of an adeno-associated virus (AAV) into the CA1
of wild-type (WT) or 5xFAD mice enables the expression of the SSFO-mCherry opsin or the fluor
tdTomato (control). Center: experimental timeline (top) and an example trace recorded with
a micro-optrode coupled with a 470 nm laser diode from a mouse expressing SSFO-mCherry
(bottom). Right: an example interactome diagram of functional protein to protein associations
generated after the proteomic analysis.
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light scattering in neural tissue, resulting in doubling the penetration depth in ex vivomultiphoton
imaging of mouse peripheral nerves (∼150 μm).49 Figure 6 highlights a combination of the label-
free and fluorescence deep imaging capabilities of multiphoton microscopy in paraformalde-
hyde-fixed sectioned and whole-mounted peripheral nerves. Improvement on the imaging depth
may facilitate three-dimensional histomorphometry of peripheral nerves with minimal tissue
processing. Future work will further explore THG imaging at a longer illumination wavelength
(1700 nm window) to increase imaging depth of nervous tissue. In addition, live and deep im-
aging of peripheral nerve will be obtained by combining THG with Iodixanol, an effective refrac-
tive index matching solution for in vivo experiments.50 Future development of high-peak-power
lasers that produce optimal multiphoton excitation at reduced average power could help to bring
THG microscopy to the clinic. In particular, in vivo THG could be employed on intraoperative
assessment of tissue innervation and decision-making during nerve transfer surgeries.51

5 In Vivo Imaging of Rodent Cerebral Cortex

5.1 Super-Resolution Imaging in Vivo
Super-resolution imaging methods have shattered the diffraction limit of optical microscopy.
Among them, stimulated emission depletion (STED) microscopy is a deterministic super-
resolution modality based on point-scanning fluorescence imaging and spatial beam shaping.52

STED has been successfully used in neuroscience for more than fifteen years, offering diffrac-
tion-unlimited visualization of protein distributions in fixed tissues but also volumetric live im-
aging of neuronal morphology in various animal models and preparations.53,54 Yet, its application
to the brain of a living animal remains technically challenging, to the extent that the perfect
STED image generally remains a distant and elusive target.

To date only a handful of studies have ventured into the in vivo realm, establishing proof-of-
concept of longitudinal monitoring of nanoscale structures in the cortex55–57 and hippocampus58

of anesthetized mice [Fig. 7(a)]. For in vivo super-resolution imaging, the sample is viewed
through a cranial window,63 where a piece of the skull is cut away and replaced with a glass
coverslip, to provide optical access to the brain situated right underneath. This imposes the use
of relatively long working distance objectives, at the expense of the numerical aperture.
Additionally, a certain amount of imaging depth is required to reach the structures of interest,
and blood pulsations and breathing tend to blur the images.57 Lastly, STED performance cru-
cially depends on the shape and quality of the point-spread function (PSF) of the depletion beam,
which is very sensitive to optical aberrations of the STED light passing from the microscope to
the brain via the cranial window. The resulting mismatch in refractive index, along with potential
imperfect optical alignment, distort the wavefront and subsequently reduce spatial resolution and
signal-to-noise ratio.64–66

The geometry and positioning of the cranial window under the microscope are very impor-
tant. For instance, a tilt of the coverslip relative to the optical axis by just 1° can dramatically
distort the PSF.67 Ongoing optimization of the surgical procedures is bound to significantly

Fig. 6 Multiphoton imaging of murine peripheral nerves. (a) A 2-photon image of in a facial nerve
cross-section from Thy1-CFP/Sox10-Venus mouse. Schwann cells (Venus, green), axons (CFP,
blue) and perineurial collagen (SHG, white). (b) An image of sciatic nerve from Thy1-YFP mouse
120 μm below the nerve surface showing 3-photon excitation of YFP in axons (green) and THG
(blue) signals in myelin sheaths.49 (c) A 2-photon image of the facial nerve from ChAT-GFP mouse
50 μm below the nerve surface showing GFP in axons (green) and SHG (white) signals from
the perineurium sheath. Scale bar: 50 μm.
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improve image quality and stability. In parallel, the penetration depth of STED microscopy
was increased from just a few to tens of microns by means of 2-photon excitation and the use
of new objective lenses with high numerical apertures, long working distances, and correction
collars.68,69 The use of adaptive optics to pre-compensate PSF distortions makes it possible to
further increase the depth penetration of super-resolution imaging in live conditions.57,64,66

Motion-induced artifacts are a common problem for in vivo imaging, in particular for STED.
While post hoc correction offers some remedy, it may require active motion correction
strategies70 to reduce motion blur sufficiently. Wide-field illumination based on optical
lattices71,72 has emerged as a promising strategy to increase temporal resolution and throughput.
Lastly, the relatively high laser power required for STED microscopy makes it prone to photo-
bleaching and phototoxicity.73 Thus, STED microscopy can certainly benefit from the develop-
ment of brighter and more photostable fluorescent probes. Various technically sophisticated
solutions have been developed to mitigate this issue (e.g. RESCue, DyMin, MinField),74 but
they remain to be demonstrated in vivo. More recently, an alternative and rather straightforward
approach sidesteps the bleaching and toxicity issue almost entirely, namely super-resolution
shadow imaging (SUSHI).75 It is based on 3D-STED microscopy and inverse labelling of the
brain tissue, where a diffusible, yet membrane-impermeable, fluorescent dye is added to the
interstitial fluid. SUSHI generates high-contrast and bleaching-insensitive “negative imprints”
of all cellular structures, while at the same time also visualizing the extracellular space (ECS)
of the brain, which is of considerable interest for neurobiologists.

Fig. 7 In vivo imaging of the mouse cerebral cortex. (a) Schematic of the in vivo 2P-STED micros-
copy configuration. Regular 2-photon and 2P-STED image of a segment of dendrite in the
hippocampus of a Thy1-GFP mouse illustrating the gain in spatial resolution. Scale bar: 1 μm.
(b) Two-photon imaging of cortical microvasculature and neuronal calcium activity through trans-
parent optically graphene microelectrode arrays (gMEAs). Left: schematic of the setup (top) and
bright field image of surface gMEA (bottom). Electrodes in the center are invisible, gold wires are
seen in black. Middle: XZ projection of Alexa 680-labeled vasculature below an electrode (A) from
the cortical surface (S) to a depth of ∼800 μm. Right: LFP in response to stimulation of the whisker
pad (red arrows) acquired simultaneously with imaging (top) of OGB1-loaded neurons (n1-n7)
underneath electrode 15 (blue traces). Adapted from Ref. 59. (c) Two-photon imaging and
gMEAs for investigation of human iPSC-derived cortical organoids implanted into mouse cortex.
Left: experimental approach. Center: LFP recorded above mouse cortex (blue) and organoid (red)
in response to a visual stimulus. Right: low- and high-magnification vascular images; organoid
borders are outlines in red. Adapted from Ref. 60. (d) A silicon microneedle electrode array
(SiMNA) with transparent backing. Top left: experimental configuration. Top right: bright field image
of the array. Bottom left: two-photon image of the surface vasculature. Bottom right: multi-unit
activity elicited by optogenetic stimulation of excitatory neurons. The blue spot shows stimulated
area. Adapted from Ref. 61. (e) Platinum nanorod (PtNR) surface microelectrode arrays with
transparent backing. Left: bright field image of the array. Right: two-photon image of the surface
vasculature. Adapted from Ref. 62.
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Leveraging various strands of technical developments, the prospects for STED are very
bright, widening and solidifying its scope and performance for nanoscale investigations of
complex biological systems.

5.2 In Vivo Imaging Through Microelectrode Arrays
In recent years, diverse strategies have been developed to merge in vivo neurophotonics with
in vivo neuroelectronics, including transparent surface electrode arrays and penetrating electrode
shanks with integrated light sources, light guides, and photodetectors.76–84 For optical modalities
that interface with brain tissue through large numerical aperture objectives that have a wide foot-
print and working distance of a few millimeters, unobstructed access to the surface is necessary.
One such modality is 2-photon microscopy. Therefore, combination of 2-photon imaging with
neurorecording devices requires that electronic circuit boards are positioned on the side and not
immediately above the electrodes as customary for extracellular neurophysiology. Figures 7(b)–
7(c) illustrate 2-photon imaging though transparent graphene microelectrode arrays (gMEA)
placed on the cortical surface.59,85 The presence of the array does not impede the penetration
depth and minimally degrades resolution of 2-photon imaging. Likewise, the infrared laser used
for 2-photon imaging and blue laser used for optogenetic stimulation cause minimal photovoltaic
artifacts in electrophysiological recordings, as long as the imaging laser is not focused on the
electrode pad [Fig. 7(b)]. In another study, the same multimodal setup was used to investigate
integration of human cortical organoids, derived from induced pluripotent stem cells (iPSCs),
into the mouse cortex60 [Fig. 7(c)]. Stimulation of the mouse with white-light flashes to the con-
tralateral eye evoked local field potentials (LFP) and spikes (multiunit activity, MUA) in both the
mouse cortex and the implanted organoid, suggesting the development of functional connections
between the host (mouse) and xenograft (human) neurons. In the same study, 2-photon vascular
imaging through gMEA was used to confirm vascularization of the engrafted organoid by the
host blood vessels [Fig. 7(c)].

Another strategy to engineer electrode arrays compatible with 2-photon imaging is to use
nontransparent microelectrodes that are small enough, such that their shadows virtually disappear
with penetrating depth.86 Figure 7(d) illustrates one such case where an array of poly(3,4-ethyl-
enedioxythiophene) poly(styrene sulfonate) (PEDOT:PSS)-coated silicone microneedles was
manufactured on a flexible and transparent substrate to allow simultaneous 2-photon imaging
and optogenetic stimulation.61 Another example is platinum nanorod electrodes on a transparent
substrate62 [Fig. 7(e)]. The electrochemical properties of these non-transparent materials allow
reducing the electrode size to single microns while maintaining the low impedance necessary to
sense not only LFP but also spikes.

As for biosensors for calcium and voltage, the choice of a neurorecording device depends on
the application. The weighting considerations include dimensionality (e. g., surface electrode
grids or linear penetrating arrays), measurement resolution (pitch), sensitivity (electrode size and
material properties), spatial coverage, stability in a chronic setting and geometrical constraints of
specific optical modalities.

6 Conclusion
In recent years, advances in neurophotonic technologies82 have been instrumental in gaining
deeper understanding of how neurons and neural circuits work and govern our behavior.87,88

In the next decade, we expect that further developments in synthetic chemistry, protein engineer-
ing, and parallel advances in optical instrumentation will push our ability to detect, measure,
manipulate, and follow the intricate components of the central and peripheral nervous system.
This basic knowledge will increase our ability to design novel treatments for neurological
and psychiatric disorders. Along the way, invaluable opportunities for sharing, training, and
cross-pollination will be awaiting at summits and summer schools such as Frontiers in
Neurophotonics. We look forward to seeing you there!
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