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ABSTRACT. Significance: Prefrontal cortex (PFC) hemodynamics are regulated by numerous
underlying neurophysiological components over multiple temporal scales. The pat-
tern of output signals, such as functional near-infrared spectroscopy fluctuations
(i.e., fNIRS), is thus complex. We demonstrate first-of-its-kind evidence that this
fNIRS complexity is a marker that captures the influence of endurance capacity and
the effects of hydrogen gas (H2) on PFC regulation.

Aim: We aim to explore the effects of different physical loads of exercise as well as
the intaking of hydrogen gas on the fNIRS complexity of the PFC.

Approach: Twenty-four healthy young men completed endurance cycling exercise
from 0 (i.e., baseline) to 100% of their physical loads after intaking 20min of either H2

or placebo gas (i.e., control) on each of two separate visits. The fNIRS measuring
the PFC hemodynamics and heart rate (HR) was continuously recorded throughout
the exercise. The fNIRS complexity was quantified using multiscale entropy.

Results: The fNIRS complexity was significantly greater in the conditions from 25%
to 100% of the physical load (p < 0.0005) compared with the baseline and after
intaking H2 before exercise; this increase of fNIRS complexity was significantly
greater compared with the control (p ¼ 0.001 ∼ 0.01). At the baseline, participants
with a greater fNIRS complexity had a lower HR (β ¼ −0.35 ∼ −0.33,
p ¼ 0.008 ∼ 0.02). Those with a greater increase of complexity had a lower increase
of the HR (β ¼ −0.30 ∼ −0.28, p ¼ 0.001 ∼ 0.002) during exercise.

Conclusions: These observations suggest that fNIRS complexity would be a
marker that captures the adaptive capacity of PFC to endurance exercise and to
the effects of interventions on PFC hemodynamics.
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1 Introduction
Endurance exercise often induces fatigue,1 leading to diminished performance in athletes2 and
increased injury risk3 in both athletic and non-athletic populations.4 In addition to peripheral
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neurophysiological procedures (e.g., muscle contractility and excitatory contraction coupling5),
the maintenance of performing endurance exercise depends upon the capacity of supraspinal
components6,7 to send appropriate neural control commands to actively modulate the motor
units.8,9 Among them, the prefrontal cortex (PFC) of the brain is the region where the information
pertaining to fatigue is processed and the command to terminate exercise (i.e., inhibitory control)
is initiated10–12 when the physical load of exercise alters the homeostasis of the individual.13

Studies have demonstrated that the changes in PFC activation, which can be assessed by
measuring the changes in oxygenation hemodynamics within this region using functional near-
infrared spectroscopy (fNIRS) technique, are linked to the performance of endurance exercise
and the degree of fatigue. Specifically, the increase of PFC activation, as assessed by the
increased concentration level of the oxygenated hemoglobin (i.e., HbO2 of fNIRS), is associated
with an increase of the physical load, and inversely, the decline of oxygenated hemoglobin con-
centration is associated with the presence of fatigue, indicating the failure to maintain
exercise.14,15 For example, it was observed that the capacity of elite Kenyan runners to maintain
the PFC activation during self-paced five-kilometer running contributes significantly to their
success in this task.16 In one of our previous studies,17 we observed that, during the performance
of endurance exercise, the changes of PFC activation induced by an increased physical load were
closely associated with that of the fatigue level, as quantified using the heart rate (HR).18–20 These
kinds of evidence suggest that the regulation of the hemodynamics of PFC is critical to main-
taining the performance of endurance exercise under the influences of fatigue.

Traditionally, the characterization of the hemodynamic regulation of PFC via fNIRS relies
primarily on the mean or variation of the concentration level in oxygenated and deoxygenated
hemoglobin (i.e., HHb of fNIRS).21 These measurements are based upon single scale, which,
although important, do not fully characterize the hemodynamic regulation of PFC over multiple
temporospatial scales. The regulation of PFC activation, indeed, depends upon numerous under-
lying control elements interacting across multiple scales of time and space, including the vascular
tone of brain tissue at the “micro” scale,22,23 the cellular metabolisms at the “meso” scale, and the
circadian rhythms at the “macro” scale. The dynamics of the output signals of this regulation
procedure (e.g., the continuous fNIRS time series) are thus “complex,” even during the resting
condition and contain rich, non-random, and meaningful information that reflects the interaction
of underlying bio-physiological control elements related to the activation of PFC acting over
multiple temporospatial scales.24,25

Recent studies have utilized techniques derived from chaos theory, such as multiscale
entropy (MSE), to quantify the complexity of fNIRS signals of PFC and link it to multiple
health-related conditions.26,27 For example, Perpetuini et al.27 observed that the complexity
of the fNIRS signal recorded during the free and cued selective reminding test was higher for
patients with early Alzheimer’s disease compared with healthy counterparts. These observations
indicate that the fNIRS complexity may be a promising marker for characterizing the regulation
of PFC activation that pertains to health-related conditions that the traditional measures cannot
capture. However, the effects of different physical loads of endurance exercise on the fNIRS
complexity of PFC, as well as the relationship between exercise-induced changes in fNIRS com-
plexity and that of the underlying physiologic characteristics pertaining to fatigue (e.g., HR),
have not been explicitly explored. Additionally, it has been shown that intaking hydrogen
(H2), an antioxidant, holds great promise for helping to alleviate exercise-induced
fatigue.28,29 We previously observed that such effects of H2 on fatigue are associated with its
effects on the maintenance of PFC activation during the endurance exercise. Still, the effects
of H2 on the multiscale regulation of PFC hemodynamics, which can be assessed using
fNIRS complexity, are unclear.

Here we aim to characterize the fNIRS complexity of PFC hemodynamics during the per-
formance of endurance exercise based upon the data from a previous study17 that consists of a
group of healthy younger adults. The fNIRS complexity was quantified in each condition of 0%
(i.e., warm-up), 25%, 50%, 75%, and 100% of the physical loads when performing the endurance
exercise with and without intaking H2 before exercise. Specifically, we hypothesized that
(1) compared with a 0% physical load, the fNIRS complexity of PFC would decrease along
with the increase of the physical load; (2) compared with the control, the intake of H2 gas may
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induce greater improvement in fNIRS complexity; and (3) those with a greater baseline fNIRS
complexity would have lower fatigue during exercise.

2 Materials and Methods

2.1 Participants
Twenty-four young men were recruited from Beijing Sport University. The sample size was
determined using PASS version 15.0 (NCSS, LLC, Kaysville, Utah). Specifically, using repeated
measures, within-between interaction ANOVAmodels at the expected alpha (α) level of 0.05 and
the desired power (1-β) of 0.9 indicated a minimum sample size of 17 participants to enable the
detection of a statistically-significant effects. Considering a 30% drop-off rate, 24 participants
were needed. The inclusion criteria were as follows: (1) age between 18 and 35 years and (2) the
ability to complete the incremental exercise test and the cycling time to exhaustion prior to the
formal trial. The exclusion criteria were as follows: (1) a self-reported acute illness, injury, or
unstable medical condition or hospitalization within the past 3 months; (2) report of any con-
ditions in the musculoskeletal system (e.g., pain or orthopedic problems) that may affect the
exercise performance; and (3) the use of antipsychotics, anti-seizure, or other neuroleptic medi-
cation. Before the study visits, participants were instructed to refrain from exercise that might
cause fatigue for 48 h and alcohol and caffeine intake for 24 h. All participants were informed of
the relevant benefits and possible risks involved in participating in this study and provided signed
informed consent to participate in this study. The consent form included information contained in
the Helsinki Declaration as well as the purpose of the study and details of the study’s protocols.
This study was reviewed and approved by the Institutional Review Board of Beijing Sport
University (number: 2021163H).

2.2 Study Protocol
The specific study protocol was demonstrated in our previous paper.17 Each participant com-
pleted four study visits. During the first visit, an exercise was performed until exhaustion on
an electromagnetically braked cycle ergometer (Excalibur Sport, Lode, Groningen,
Netherlands) to measure the peak power output of each participant. After an interval of at least
48 h, on the second visit, participants performed a time-to-exhaustion cycling test to measure
their maximum riding time (MRT). The test consisted of a 3 min warm-up at 40% of peak power
output followed by a rectangular workload corresponding to 80% of peak power output that was
achieved in the first visit. Then on the following two visits, participants completed the cycling
test and functional assessments after intaking H2 gas or placebo gas (as designed in a randomized
order).27 These two visits were separated by one week to avoid potential after effects of the
interventions from the prior visit.17 Specifically, on each of these two visits, participants first
inhaled H2 gas (i.e., H2 group) or placebo gas (i.e., control group) for 20 min.30 After the inha-
lation, participants were asked to sit quietly for 2 min to record the baseline resting-state fNIRS
data. Then after warming up at a load of 40% peak power output for 3 min (i.e., 0% of the
physical load), participants were instructed to ride at a workload corresponding to 80% of peak
power output for their MRT, which was considered to be the protocol of maximal physical load to
each participant (i.e., peak power multiplied by MRT).31 The HR and fNIRS time series of PFC
were recorded. The whole test duration was then separated into four periods of different physical
loads, i.e., from 0% to 25% (i.e., 25% of the physical load), 25% to 50% (i.e., 50% physical load),
50% to 75% (i.e., 75% physical load), and 75% to 100% (i.e., 100% physical load) of the maxi-
mum workload.

2.3 Assessment of fNIRS
The fNIRS signals of both oxygenate (HbO2) and de-oxygenated (HHb) hemoglobin of PFC
were recorded throughout the tasks using a multichannel continuous-wave fNIRS device
(Oxymon, Artinis, Netherlands) consisting of 10 light sources and eight detectors mounted
on a head cap. The head cap placement was centered around Cz (10/ 20 international system
for electrode placement), the mid-point between the nasion to inion and left to right preauricular
distances. Figure 1 shows the fNIRS montage including the placement of the fNIRS probes. The
signals of the fNIRS were then obtained via 27 channels (including 12 in the right PFC and 12 in
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the left PFC) of the device. The sampling frequency was 10 Hz. To avoid the potential influences
of the prior task condition (e.g., the physical load in the prior) on the following signals, the data of
two minutes with the length of 1200 points in the middle of each physical load condition were
extracted and used in the following analyses.

2.4 Assessment of Fatigue Using Heart Rate
We used the Firstbeat HR belt (Firstbeat Analytics, Jyvaskyla, Finland) to monitor the HR of
each participant during the endurance cycling exercise. The HR belt was worn on the
participant’s chest, and the receiver was positioned to the left of the midline. The elastic band
was adjusted, so the position of the receiver did not change during the ride. During exercise,
cardiovascular restriction is an important factor in fatigue.32 Studies have shown that the HR
is closely associated with both exercise intensity33,34 and fatigue.18–20 Thus, we thus use the aver-
age HR within each condition of the physical load to assess fatigue.

2.5 Data Processing and Analysis
The recorded time series of HbO2 and HHb fluctuations were first pre-processed following well-
established protocol17 as follows: (1) the relative coefficient of variation (CV in %) of the raw
data in each channel was first calculated to estimate the data quality, and the data with CVs above
15% were rejected;35 (2) the large drifts of the signal were then removed by applying a first-order
detrend;36 (3) the time derivative distribution repair (TDDR) algorithm was employed for the
motion correction;37 and (4) a third-order low-pass filter with the cutoff threshold of 0.2 Hz was
used to remove the noise fluctuations that were not related to the actual PFC hemodynamics.38

After these pre-processing steps, the average level of the first 2-min resting-state signals before
exercise was obtained. The relative concentration changes of oxyhemoglobin (ΔHbO2) and
deoxyhemoglobin (ΔHHb) from the averaged baseline value to the performance of endurance
exercise were then obtained and used in the following analyses.

2.5.1 Multiscale entropy

The complexity of the pre-processed time series of ΔHbO2 and ΔHHb within each physical load
condition was then quantified using MSE. Specifically, the pre-processed time series of each
channel was first “coarse-grained” from scale 1 to 5 by dividing the original time series into
non-overlapping windows of length equaling a scale factor from 1 to 5 sampling points.39

For example, the series at scale 1 was the original time series consisting of 1200 points; at scale
5, the coarse-grained series was constructed by averaging every five non-overlapping points,
thereby creating a new series of 240 points (i.e., 1200 points/5). Next, the sample entropy of
the coarse-grained series at each scale was caculated, as defined by the negative of the natural
logarithm of the conditional probability that a series, having repeated itself for m consecutive
data points (m is the length of the pre-defined pattern, and the repeatability is determined by the
number of patterns in this series with a difference from the pre-defined pattern smaller than the
standard deviation of this series multiplied by a tolerance parameter, r), will also repeat itself for
mþ 1 points within the same tolerance without self-matches.39–41 Following the same procedure

Fig. 1 fNIRS montage. (a) Anonymized photo of a subject wearing fNIRS probes; (b) schematic
diagram showing the configuration of the fNIRS probes.
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of MSE calculation in previous studies,39,41,42 we computed the sample entropy of each coarse-
grained series by choosing the parameter of tolerance r ¼ 0.15 and the number of matching
points m ¼ 2. Notably, to obtain a reliable estimation of entropy, it is recommended that the
number of data points in the coarse-grained time-series at the largest scale should be at least
10m to 17m (here m ¼ 2, so n ¼ 100 ∼ 289).40 On the maximum scale here (i.e., scale 5), the
number of points was 240, greater than the recommended number, which suggests that the esti-
mation of the entropy was reliable.

The averaged entropy from scale 1 to 5 was then obtained for the time series of each channel.
The primary outcome was the complexity of ΔhbO2 and ΔHHb signals of the whole PFC by
averaging the entropy across all 27 channels. Second, we also obtained the fNIRS complexity
within the left and right hemispheric PFC to explore the potential hemispheric differences.

2.6 Statistical Analysis
Statistical analyses were performed using JMP 16 (SAS Institute, Cary NC). The significance
level of the analyses was set at p < 0.05. The normality of the data was examined using the
Shapiro–Wilk test, and the homogeneity of variance was examined using Levene’s test.

To examine the effects of the physical load on the fNIRS complexity, we used one-way
ANOVA models within the control group when the data were normally distributed. The model
factor was the physical load (i.e., resting, warm-up, 25%, 50%, 75%, and 100%), and the de-
pendent variable was the primary outcome, i.e., the complexity of ΔhbO2 and ΔHHb of the
whole PFC in separate models. Tukey’s post-hoc analysis was used to compare the factor means
when a significance was observed. When data were not normally distributed, we used the
Kruskal–Wallis test. Second, similar models were also used to examine the effects of the physical
load on the fNIRS complexity within the left and right prefrontal regions.

Then, to examine the relationships between fNIRS complexity and the degree of exercise-
induced fatigue, linear regression models were used. First, the relationships between the ΔhbO2

and ΔHHb complexity and the HR at the baseline were examined in separate models. The group
was included as a covariate in the models. Then, within the control group, the relationships
between the percent change of ΔHbO2 and ΔHHb complexity and that of HR as induced by
physical loads were examined. The physical load was included as the covariate in the models.
Second, similar models were used to examine the relationships between the fNIRS complexity of
each hemispheric PFC and HR. The hemispheric side (i.e., left and right) was included in the
model to examine if there is any significant difference in the observations between the left and
right PFC.

Next, to examine the effects of the H2 gas intake on fNIRS complexity, we first calculated
the percent change of the ΔHbO2 and ΔHHb complexity from 0% load to other loads (i.e., 25%,
50%, 75%, and 100%). A one-way repeated-measures ANOVA model was used when the data
were normally distributed. The model factor was the group of intervention (i.e., H2 and control),
and the dependent variable was the percent change of ΔHbO2 and ΔHHb complexity in separate
models. The level of the physical load and its interaction with the group was also included in the
model to examine the potential significant contributions of any specific physical load to the
effects of H2 on fNIRS complexity. The hemispheric side (i.e., left and right) was included
in the model to examine if there is any significant difference in the observations between the
left and right PFC.

When data were not normally distributed, we used the Kruskal–Wallis test. Second, similar
models were also used to examine the effects of H2 gas on the fNIRS complexity within the left
and right prefrontal regions.

3 Results
All 24 male participants (age: 21.33� 2.68 years; BMI: 22.45� 1.93 kg∕m2; peak power out-
put: 209.17� 30.35 w; maximal riding time: 20.48� 8.27 min) successfully completed this
study. However, the signal quality of the fNIRS channel was poor in three participants, so the
data of 21 participants were included in the analyses.

Table 1 shows the mean and standard deviation of ΔHbO2 and ΔHHb complexity in
the H2 and control groups in different physical load conditions. No significant differences in
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the fNIRS complexity or HR were observed at a physical load between the H2 and control
groups (p > 0.13).

3.1 Effects of Physical Loads on fNIRS Complexity
Figure 2 shows the average and standard error of MSE curves of ΔHbO2 in different physical
load conditions of the control group. It is observed that the sample entropy at scale 1 was rel-
atively similar between different physical loads, but starting from scale 2, they were obviously
different. A greater physical load was associated with a greater MSE.

One-way ANOVAmodels demonstrated significant effects of the physical loads on the com-
plexity of both ΔHbO2 (p ¼ 0.0005) and ΔHHb (p < 0.0001). The Tukey’s post-hoc analysis
revealed that, compared with the condition of a 0% physical load, the complexity was

Table 1 fNIRS complexity in the H2 and control groups in different physical loads.

H2 group Control group

0% 25% 50% 75% 100% 0% 25% 50% 75% 100%

ΔHbO2

Whole 0.98 ±

0.24

1.47 ±
0.15

1.60 ±
0.17

1.60 ±
0.19

1.63 ±
0.17

0.86 ±
0.43

1.27 ±
0.45

1.41 ±
0.51

1.40 ±
0.49

1.41 ±
0.44

Left 0.99 ±
0.27

1.45 ±
0.20

1.63 ±
0.19

1.59 ±
0.25

1.61 ±
0.21

0.85 ±
0.42

1.27 ±
0.46

1.40 ±
0.51

1.39 ±
0.50

1.41 ±
0.46

Right 0.99 ±
0.34

1.38 ±
0.38

1.55 ±
0.42

1.51 ±
0.44

1.50 ±
0.43

0.89 ±
0.43

1.27 ±
0.45

1.43 ±
0.52

1.41 ±
0.51

1.43 ±
0.44

ΔHHb

Whole 0.94 ±
0.26

1.49 ±
0.18

1.59 ±
0.15

1.56 ±
0.23

1.55 ±
0.18

0.86 ±
0.39

1.31 ±
0.38

1.44 ±
0.44

1.49 ±
0.35

1.49 ±
0.34

Left 0.89 ±
0.24

1.47 ±
0.23

1.58 ±
0.17

1.56 ±
0.25

1.57 ±
0.20

0.82 ±
0.38

1.33 ±
0.28

1.43 ±
0.43

1.45 ±
0.46

1.51 ±
0.36

Right 0.99 ±
0.30

1.52 ±
0.16

1.62 ±
0.16

1.58 ±
0.21

1.55 ±
0.20

0.89 ±
0.40

1.30 ±
0.42

1.47 ±
0.47

1.46 ±
0.48

1.49 ±
0.34

Fig. 2 MSE curves (mean and standard error) of ΔHbO2 in each condition of physical loads (i.e.,
0%, 25%, 50%, 75%, 100%). Entropy at scale 1 (i.e., traditional sample entropy) was relatively
similar between conditions and appeared to be different at larger scales.
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significantly greater when participants exercised with physical loads (i.e., 25%, 50%, 75%, and
100% of the physical load), and no significant difference was observed between these four
physical loads (Table 1).

Second, similar ANOVA models showed significant effects of the physical loads on the
complexity of both ΔHbO2 (left: p ¼ 0.0006; right: p ¼ 0.0006) and ΔHHb (left: p < 0.0001;
right: p < 0.0001) within the left or right hemispheric PFC. Tukey’ post-hoc analyses also
revealed that, compared with the condition of a 0% physical load, the complexity significantly
increased when participants exercised with physical loads (Table 1).

3.2 Relationship between fNIRS Complexity and Fatigue
The linear regression models adjusted for the group showed significant associations between
the ΔHbO2 (β ¼ −0.35, p ¼ 0.008) and ΔHHb (β ¼ −0.33, p ¼ 0.02) complexity and HR
at a 0% physical load, i.e., participants with a greater fNIRS complexity had a lower HR
(Fig. 3). Such associations were independent of group (p ¼ 0.12 ∼ 0.13). Second, the fNIRS
complexity of both the left and right PFC was also significantly associated with the HR
(β ¼ −0.35 ∼ −0.47, p ¼ 0.003 ∼ 0.01), and no significant effects of the group or hemispheric
side on such relationships were observed (p ¼ 0.22 ∼ 0.89).

Then the linear regression models adjusted for physical load showed that, within the control
group, the percent changes of both ΔHbO2 and ΔHHb complexity, as induced by the physical
load, were associated with that of HR (ΔHbO2: β ¼ −0.28, p ¼ 0.002; ΔHHb: β ¼ −0.30,
p ¼ 0.001) (Fig. 4), i.e., those with a greater increase of the fNIRS complexity had a lower
increase of HR during the endurance exercise (i.e., less fatigue). Such relationships were inde-
pendent of the level of the physical load (p ¼ 0.19 ∼ 0.25). Second, similar relationships
between the percent change of fNIRS complexity with the left and right PFC and that of
HR (β ¼ −0.35 ∼ −0.29, p ¼ 0.001 ∼ 0.008) were also observed. Neither the level of the physi-
cal load nor the hemispheric side had significant effects on such relationships (p ¼ 0.23 ∼ 0.37).

3.3 Effects of the H2 Gas Intake on fNIRS Complexity
The percent changes of ΔHbO2 and ΔHHb complexity are shown in Table 2. One-way ANOVA
models demonstrated significant effects of the group on the percent change of both ΔHbO2

(p ¼ 0.001) and ΔHHb (p ¼ 0.01) complexity. The percent change of complexity in the H2

group was significantly greater compared with that of the control group (Table 2). No significant
effects of the physical load or its interaction with the group (p ¼ 0.12 ∼ 0.98) on fNIRS com-
plexity were observed, indicating that there were no significant contributions from any specific
physical load condition to the observations.

Fig. 3 (a) The association between the percent change of ΔHbO2 and (b) ΔHHb complexity and
that of HR within the control group. The linear regression models showed that, within the control
group, participants with a greater increase of ΔHbO2 (β ¼ −0.28, p ¼ 0.002) and/or ΔHHb
(β ¼ −0.30, p ¼ 0.001) complexity had a smaller increase of HR during the endurance exercise,
indicating a lower level of fatigue. These associations were independent of the influence of the
physical load condition.
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Similarly, the secondary ANOVA models showed that the percent change of both ΔHbO2

(p ¼ 0.0002 ∼ 0.001) and ΔHHb (p < 0.0001) complexity within the left and right PFC in the
H2 group was significantly greater compared with that of the control group (Table 2), and no
significant effects of the physical load and its interaction with the group (p ¼ 0.36 ∼ 0.99) were
observed. Within the H2 group, a greater percent increase of complexity was observed in the left
PFC compared with the right side (Table 2), but no significant difference was observed (ΔHbO2:
p ¼ 0.12, ΔHHb: p ¼ 0.15).

4 Discussion
To our knowledge, for the first time, we characterize the multiscale dynamics of the PFC oxy-
genation activities in different physical loads during the performance of endurance exercise using

Table 2 Percent change of fNIRS complexity of different physical loads in the H2 and control
groups.

%

H2 group Control group

25% 50% 75% 100% 25% 50% 75% 100%

ΔHbO2

Whole 59.55 ±
44.93

75.09 ±
45.02

75.71 ±
46.15

78.29 ±
47.98

29.09 ±
50.50

45.65 ±
60.09

60.89 ±
0.71.55

50.91 ±
60.79

Left 58.81 ±55.09 81.06 ±
61.96

77.99 ±
65.54

78.75 ±
61.51

33.42 ±
50.95

45.78 ±
56.06

64.61 ±
71.42

55.79 ±
65.11

Right 47.91 ±
49.24

67.76 ±
55.51

63.67 ±
52.12

63.13 ±
54.16

25.36 ±
52.48

47.47 ±
69.42

58.84 ±
73.42

48.13 ±
60.35

ΔHHb

Whole 72.45 ±
57.54

87.81 ±
58.27

82.35 ±
56.49

84.41 ±
64.96

37.03 ±
52.23

52.17 ±
59.09

65.39 ±
70.47

64.32 ±
58.22

Left 76.41 ±
57.06

93.59 ±
54.65

90.58 ±
59.82

94.23 ±
65.52

47.38 ±
56.87

56.91 ±
60.05

73.39 ±
73.59

72.94 ±
60.06

Right 67.47 ±
60.63

82.28 ±
65.25

76.09 ±
60.03

76.14 ±
68.37

29.31 ±
51.52

49.20 ±
60.48

60.94 ±
69.85

58.97 ±
58.09

Fig. 4 (a) The association between ΔHbO2 and (b) ΔHHb complexity and HR in the condition of a
0% physical load. The linear regression models showed that, across both the H2 and control
groups, participants with greater ΔHbO2 (β ¼ −0.35, p ¼ 0.008) and/or ΔHHb (β ¼ −0.33,
p ¼ 0.02) complexity had a lower HR, respectively. Such a significant association was indepen-
dent of the group.
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the complexity of continuous fNIRS fluctuations in this region. The findings of this pilot study
demonstrate that, in healthy younger adults with the capacity to successfully complete the endur-
ance task, the fNIRS complexity increases when exercising, intaking H2 gas before exercise can
induce a greater improvement of the fNIRS complexity, and the fNIRS complexity is closely
associated with the degree of fatigue as assessed by the HR. Taken together, these results suggest
that a more complex regulation of the PFC is critical to maintaining the performance of an endur-
ance task and that the fNIRS complexity may capture the influences of exercise load and the
benefits of interventions on this important neurophysiological procedure in humans.

The results of this study reveal that, as we expected, at 0% of the physical load, participants
with a greater fNIRS complexity had a lower HR. Studies have linked a lower HR, within the
normal range, to better cardiovascular function pertaining to blood supply.43,44 This function is
critical to the cerebral autoregulation and perfusion pertaining to the PFC hemodynamics.
Therefore, the observation here suggests that greater fNIRS complexity of PFC captures better
a cardiovascular function pertaining to the cerebral regulation. On the other hand, not as we
hypothesized, healthy younger adults presented with a significantly greater fNIRS complexity
of the PFC during the performance of endurance exercise. Greater complexity in the output fluc-
tuation of a neurophysiological system or procedure is directly associated with a better capacity
of that system/procedure to adapt to stressors/perturbations.45 Previous studies have suggested
that, compared with the resting state, more neural resources, such as greater cortical activation,
are devoted to maintaining the task performance.36–48 Our study consists of a group of healthy
younger adults with an intact adaptive capacity to the “stressor” (i.e., all of them successfully
completed the endurance exercise task); therefore, the exercised-related increase of fNIRS com-
plexity of the PFC suggests that a more complex regulation of the PFC oxygenation hemodynam-
ics pertaining to performing the endurance task is presented in this cohort. This is further
supported by the evidence that a greater increase of the fNIRS complexity is associated with
a lower increase of HR (i.e., less fatigue). This indicates that, even in this healthy cohort, indi-
viduals who can initiate a more complex regulation of the PFC when starting to exercise (i.e., a
greater increase of fNIRS complexity) may have a greater adaptive capacity to exercise, thus
presenting with a lower degree of fatigue.

Numerous studies have demonstrated that aging and/or age-related conditions often alter the
multiscale regulation of the biophysiological system/procedures of humans, leading to the dimin-
ished capacity of the system to adapt to stressors or perturbations, which can be captured by a
decreased physiologic complexity in the systems’ output fluctuation.49–51 On the other hand,
evidence has also shown that such a loss of complexity is not obligatory, but it can be restored
or improved via appropriate strategies. For example, Zhou et al.52 showed that applying sub-
sensory vibratory random stimuli on foot soles can increase the complexity of the standing pos-
tural sway in older adults and such an increase of complexity is associated with the improvement
of mobility. We here observe that, compared with the control, intaking the H2 gas can induce a
greater improvement in the fNIRS complexity of the PFC when performing the endurance exer-
cise, suggesting that H2 may be an appropriate strategy for enhancing the activation of PFC that
pertains to the maintenance of endurance performance, as we demonstrated in our previous
publication,17 by facilitating more complex regulation in the PFC hemodynamics. Thus, in future
studies, exploring how the intake of H2 influences the fNIRS complexity of the PFC in older
adults or those with limited capacity of the cortical control (e.g., cognitive impairment) to appro-
priately allocate the neural resources to different tasks is required.

One potential underlying bio-physiological mechanism of such H2-induced benefits may be
the antioxidant effects of H2. The exceeded reactive oxygen species (ROS) as induced by the
endurance exercise often damage the neurons and mitochondrial membranes of the brain, leading
to a diminished neural efficiency that is critical to the regulation of exercise performance.
Evidence has been shown that H2 can selectively scavenge ROS53 by successfully crossing the
blood-brain barrier,54 helping to improve mitochondrial function and increase the efficiency of
the brain, which thus benefits such a complex regulation of the PFC, as captured by the increase
of the fNIRS complexity in this region. Future studies are thus warranted to explicitly measure
the underlying bio-neurophysiological characteristics (e.g., mitochondrial function) related to
endurance exercise, enabling the exploration of the underlying pathological mechanism through
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which the H2 can help augment the multiscale complex regulations of the PFC during the endur-
ance exercise.

We here also compared the potential hemispheric difference in the fNIRS complexity. The
fNIRS complexity of both the left and right PFC is significantly increased, but a greater increase
of the fNIRS complexity within the left PFC is observed compared with the right (Table 2),
although the difference is not statistically significant (p ¼ 0.12 ∼ 0.15) (may be due to the lack
of enough statistical power). Studies have shown that the PFC is involved in the control of moti-
vation that allows the continuation of the motion/movement by suppressing those peripheral
signals from stopping the movement (e.g., fatigue).55,56 Moreover, recent evidence has shown
that, uniquely, the left hemispheric PFC may contribute more to such inhibitory control57,58 than
the right PFC. For example, Rubia and colleagues observed that, in a group of healthy adults, the
activation within the left, not the right PFC, as assessed by an increased blood-oxygenation-level-
dependent signal of functional magnetic resonance imaging, was associated with the inhibitory
control performance of the go/no-go task.58 Our findings may thus provide novel but preliminary
support to the particular role of the left PFC in the inhibitory control. Still, future studies with
large sample sizes are needed to examine and confirm this potential hemispheric difference in the
function of PFC. With this knowledge, a more in-depth understanding of the regional character-
istics of the supraspinal regulation of endurance exercise can be had, ultimately helping the
design of training and rehabilitative strategies with a more appropriate target for endurance exer-
cise and its related fatigue.

Some limitations should be noted in this pilot study. Due to the relatively small sample size,
we did not perform the channel-based analysis of fNIRS complexity but characterized it only for
the whole PFC and each hemisphere. The fNIRS probes were placed following the 10/20 tem-
plate across all participants. Using the spatial registration method for each participant may pro-
vide more consistent and precise placement.59 Therefore, future studies with greater sample size
and using the spatial registration technique are warranted to ensure more consistent and precise
probe placement and help characterize the topographical map of the fNIRS complexity of the
PFC and other related regions that may also contribute to the endurance performance (e.g., pri-
mary motor cortex). Only healthy younger men were included in this study; therefore, the poten-
tial influences of sex on the observation and how physical loads influences the fNIRS complexity
in other cohorts (e.g., those in the recovery period of sports injury) were not explored.
Additionally, only the immediate effects of one-dose H2 on the fNIRS complexity were exam-
ined. Future studies implementing a longer term of intervention are thus required to explore the
potential longitudinal relationships between fNIRS complexity and the endurance performance.
Meanwhile, the pre-processing of fNIRS data is important for obtaining valid and reliable hemo-
dynamic signals as the fNIRS recording, especially when performing tasks (e.g., cycling), often
consists of noise due to the interference from the task (e.g., the body motion) and the fluctuations
that are not related to the hemodynamics (e.g., global physiological noise from the superficial
tissues of the scalp). Therefore, advanced pre-processing techniques are highly-demanded in this
field to help improve the validity of the data processing and interpretate and confirm the obser-
vations. Nevertheless, this study provides novel evidence of the influences of endurance exercise on
the multiscale regulation of the PFC oxygenation, which can be captured by fNIRS complexity.

5 Conclusion
This study suggests that intaking the hydrogen gas before exercise can induce a significantly
greater increase of fNIRS complexity, revealing the benefits of hydrogen gas for the facilitation
of more complex regulation of PFC hemodynamics, which is critical to a better performance of
the endurance task. These exciting findings suggest that the fNIRS complexity may serve as a
marker of the integrity of multiple interacting physiologic mechanisms that regulate the PFC
hemodynamics and is sensitive to both significant and subtle changes in this important function
as induced by endurance exercise and interventions.
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