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Abstract. We perform a comprehensive analysis of uniform-velocity bilayer spacetime crystals, combining
concepts of conventional photonic crystals and special relativity. Given that a spacetime crystal consists of
a sequence of spacetime discontinuities, we do this by solving the following sequence of problems: (1) the
spacetime interface, (2) the double spacetime interface, or spacetime slab, (3) the unbounded crystal, and
(4) the truncated crystal. For these problems, we present the following results: (1) an extension of the Stokes
principle to spacetime interfaces, (2) an interference-based analysis of the interference phenomenology,
(3) a quick linear approximation of the dispersion diagrams, a description of simultaneous wavenumber and
frequency bandgaps, and (4) the explanation of the effects of different types of spacetime crystal truncations
and the corresponding scattering coefficients. This work may constitute the foundation for a virtually unlimited
number of novel canonical spacetime media and metamaterial problems.
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1 Introduction
Crystals are structures that are periodic, either at the atomic level
(e.g., electronic crystals)1 or at the supermolecular level of
artificial scatterers (e.g., photonic crystals).2 Their periodicity
confers them a dispersion in the form of a bandgap structure,
which leads to spatiotemporal filtering. They have a myriad of
applications, such as for instance x-ray imaging3 and Bragg
gratings4 in the case of electromagnetics.

In conventional crystals, the periodicity is purely spatial:
the structure is composed of a one-, two-, or three-dimensional
(1-, 2-, or 3-D) lattice of molecules or artificial particles, which
may be seen as a variation of medium parameters in space.
Medium variation may also occur in time and a periodic time
variation leads then to time crystals. Time crystals were first
studied in the 1960s under the form of temporally modulated
1-D structures, whose controlled instabilities led to parametric
amplifiers5,6 and whose asymmetric frequency transitions led
to nonreciprocal devices.7,8 Such time crystals,9–13 and more gen-
erally time-varying structures,14–16 have recently experienced a
renewed attention. Moreover, the concept of spontaneous time

crystals, which are time crystals produced by a nonperiodic
stimulus, was introduced as a new state of matter.17

In general, medium variation may occur in both space and
time, and a periodic spacetime variation leads to spacetime crys-
tals, supporting extremely rich and largely unexplored physics.
Spacetime crystals may be moving-medium structures18–21 or
modulated-medium structures, the former involving the motion
of matter, and the latter involving the motion of a perturbation.
The two share much of the same physics, including Doppler-like
frequency transitions,22 amplification,23,24 and Bradley-aberra-
tion deflections.25 Modulated structures are easier to realize,26

more practical, and more diverse, as they may be superluminal,
i.e., faster than the speed of light, have multiple periods, and
accelerate without the application of any force.27 For these rea-
sons, this paper focuses on modulated structures while compar-
ing them with moving structures whenever appropriate.

Spacetime crystals may generally include the three dimen-
sions of space and the single dimension of time and are hence
(3þ 1)-D. In this paper, the quantitative developments are
restricted to a single dimension of space, corresponding to
(1þ 1)-D crystals, but the qualitative concepts equally apply
to (1, 2, 3þ 1)-D spacetime crystals.

Figure 1 represents two canonical spacetime crystals in
spacetime diagrams, where z and t denote space and time,
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and c is the speed of light in free space. For simplicity, through-
out the paper, we consider crystals composed of just two homo-
geneous media with refractive indices ni and nj separated by
sharp, step discontinuities. The first crystal type, represented
in Fig. 1(a), is a multiple-periodicity structure [two periods
in the (1þ 1)-D rectangular-scatterer case]. Such multiple-
periodicity, which may involve up to four periods (three spatial
and one temporal) in the (3þ 1)-D case, requires the presence of
different slopes in the spacetime diagram, and hence multiple
velocities. The set of velocities may be discrete (e.g., two veloc-
ities in the figure) or continuous (e.g., as obtained by rounding
the corners of the gray areas in the figure). Some of the features
of such crystals may be studied using spacetime ray tracing.28–32

The second crystal type, shown in Fig. 1(b), is a single-
periodicity structure, featuring perturbation that moves along
the z axis with a single and uniform velocity. Such uniform-
velocity modulated spacetime crystals have been investigated
under the form of traveling-wave amplifiers,33–35 and, more re-
cently, under various forms for magnetless nonreciprocity.36–41

This paper focuses on this type of spacetime crystal because
of its greater simplicity, and because this fundamental problem
already exhibits unreported and interesting physics. Since a
crystal consists of a periodic sequence of medium discontinu-
ities, we devote a considerable amount of time to the study of
spacetime interfaces corresponding to such discontinuities.

This work studies the scattering of waves from uniform-
velocity spacetime crystals [Fig. 1(b)] by generalizing standard
crystallography and leveraging special relativity. It retrieves the
known dispersion diagrams42,43 and transfer-matrix results44 and
presents a number of new results, including the generalization
of the Stokes principle for spacetime interfaces, the derivation
of the interference condition in spacetime slabs, and a complete
description of the dispersion diagrams of spacetime crystals,
with the identification and explanation of dispersion-slope
asymmetry, the demonstration of simultaneous frequency and
wavenumber bandgaps, and the analytical derivation of the
bandgap positions. The calculation of the scattered-wave ampli-
tudes for finite crystals is also provided.

The paper is organized as follows. Section 2 presents prelimi-
nary concepts and principles, including the description of a
spacetime interface, the introduction of generalized spacetime
diagrams, the distinction of three velocity regimes in spacetime
structures, our strategy to compute the fields scattered by

spacetime structures, a brief recall on Lorentz transformations,
the proper selection of Lorentz frames for subluminal and super-
luminal structures, and a discussion on the duality existing be-
tween space and time in spacetime systems. Section 3 deals with
a single interface of a spacetime crystal, deriving its scattering
coefficients, its frequency transitions, and generalizing the
Stokes relations. Section 4 solves the double-interface problem
of a spacetime slab, describing its scattering phenomenology,
deriving its frequency transitions, phase shifts, and scattering
coefficients, and graphically illustrates the gap interference con-
dition. Section 5 studies an unbounded bilayer crystal. It devel-
ops a linear approximation of the dispersion diagram, finds the
position of the centers of the bandgaps, derives the transfer ma-
trix for a unit cell of a spacetime crystal, subsequently computes
the dispersion relation, and explains its spacetime specifics in
terms of the Brillouin zone, the complex bandgaps, and the
bandgap edges. Section 6 uses the previously derived unit-
cell transfer matrix to compute the scattered amplitudes across
a finite spacetime crystal. Finally, conclusions are provided in
Sec. 7.

2 Preliminaries

2.1 Physical Nature of a Modulated Spacetime Interface

Modulated spacetime interfaces should be understood as pertur-
bations propagating in a stationary medium. This may be under-
stood using the following analogy: consider a chain of standing
domino tiles, sufficiently closely spaced to topple their neigh-
bors upon falling so that a chain reaction can be launched by
knocking down the first tile. In such a reaction, one clearly sees
the “interface” between the fallen and standing parts of the chain
propagating along the structure at a specific velocity, with the
dominoes themselves on either side of the interface either stand-
ing or fallen but not moving in the direction of propagation. The
velocity of such an interface along the chain would be limited
by the time it takes for one tile to topple the next. We could
nevertheless imagine the situation where the tiles could be
knocked down by independent external triggers distributed
along the domino chain. If these triggers were activated succes-
sively at vanishingly small time intervals, the interface velocity
would be superluminal, and it would even be infinite if the
triggers were operated simultaneously. We stress again that the
interfaces described above should be distinguished from the
moving interfaces that constitute an altogether different physical
system due to the physical movement of the media. For exam-
ple, in such structures, the superluminal regime is physically
prohibited.

2.2 Spacetime Diagrams

Subluminal and superluminal modulation regimes give rise
to distinct physics27,42,43 and require distinct treatments.
Figures 2(a) and 2(b) sketch the interaction of an incident wave
with a spacetime interface. In the subluminal case of Fig. 2(a),
the incident wave catches up with the receding interface. In the
superluminal case of Fig. 2(b), the interface, which is faster than
the wave, overcomes the incident wave, which was launched
earlier. Figures 2(c) and 2(d) graphically summarize the scatter-
ing from a subluminal interface and from a superluminal
interface in spacetime diagrams, with corresponding spacetime
interface trajectories (white and gray areas), wave trajectories
(in blue), scattering coefficients (in black), and relevant

(a) (b)

Fig. 1 Representation of two canonical spacetime crystals. Here,
the variable z is intended to represent the hyperspace, i.e., the
three dimensions of space. The white and gray regions corre-
spond to media with refractive indices ni and nj , respectively.
(a) Double-period (pA and pB ) structure, characterized by two
velocities, υm1 and υm2, which may be interpreted as acceleration
at the corner. (b) Single-period (p) structure, characterized by
a unique and uniform velocity, υm.
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spacetime coordinate frames (laboratory frame in black and
moving frame in red).

Given our assumption that the transitions between the
homogeneous media i and j forming the crystal are step-like
transitions, the spacetime interface problem is mathematically
described by the following refractive index function:

nðz − vmtÞ ¼ ni þ ðnj − niÞθðz − vmtÞ; (1a)

for Fig. 2(a) and

nðt − z∕vmÞ ¼ ni þ ðnj − niÞθðt − z∕vmÞ; (1b)

for Fig. 2(b), where θð·Þ is the Heaviside step function and vm is
the velocity of the modulated interface. Although such a step
transition cannot be realized in practice, the step profile is an
adequate description of it as long as the transition width is
smaller that the wavelength in the subluminal case or the tran-
sition time is smaller than the period in the superluminal case.

The problem of scattering from gradual spacetime interfaces
does not generally admit closed-form solutions, but solutions
for specific gradual profile may be found.45,46 In the case of
a crystal, scattering from gradual spacetime profiles are found
using a coupled-mode approach.42,43 Note also that setting
vm ¼ 0 in Eq. (1a) reduces the interface to a purely spatial
one while setting vm ¼ ∞ in Eq. (1b) reduces the interface
to a purely temporal one. Purely spatial and purely temporal
problems have been widely investigated, and our results
throughout the paper may be verified to correspond to those in
the literature at these limit cases. Also note that Eqs. (1a) and
(1b) are different from each other, because we have chosen here
to have the incident wave always in medium i, for symmetry
with respect to the luminal axis ct ¼ z; the other option would
have been to use Eq. (1a) for all regimes, with an increasing vm
corresponding to a rotation of the interface in Fig. 2(a). In that
case, the incidence medium would be different for the sublumi-
nal or superluminal regimes. The symmetry between subluminal
and superluminal problems will be further discussed in Sec. 2.3.

The trajectories of the interfaces in the spacetime diagrams
of Fig. 2 have a slope that is inversely proportional to their
velocity, i.e., equal to ∂ðctÞ∕∂ztraj:ðtÞ ¼ ½∂ztraj:ðtÞ∕∂ðctÞ�−1 ¼
c∕velocity. The slope is therefore steeper for the subluminal
case than for the superluminal case. Since the media at either
side of the interface are homogeneous, the waves propagate
in them at uniform velocities vi ¼ c∕ni and vj ¼ c∕nj, which
correspond to straight trajectories with slopes c∕vi ¼ ni and
c∕vj ¼ nj. Thus, the slopes of the wave trajectories are steeper
in the slower, or denser, medium j. Throughout the paper, we
restrict our analysis to nondispersive structures, which would
be a valid approximation in a system of moderate dispersion.
In a regime of stronger dispersion, the velocity of the reflected
wave would be different from that of the incident wave given
the frequency shift induced by the interface.

The waves in medium ði; jÞ in the �z directions are denoted
ψ�
i;j, with ψ representing any of the transverse components of

the electromagnetic fields E, D,H, and B.47 The scattering prob-
lem for incidence from the left is called the forward problem,
and for incidence from the right, the backward problem. The
scattering coefficients for the forward problem are γ and τ
for the subluminal regime and ζ and ξ for the superluminal re-
gime, and the scattering coefficients for the backward problem
are denoted by barred oversets (γ, τ and ζ, ξ) that we shall sim-
ply refer to as “barred” for conciseness. All these coefficients
are detailed in Sec. 3.1. Note that the incident wave can propa-
gate in the same direction as the interface or medium, i.e.,
sgnðvincÞ ¼ sgnðvmÞ, as in Fig. 2, or in the direction opposite
to the interface or medium, i.e., sgnðvincÞ ¼ −sgnðvmÞ. These
two cases, which we refer to here as codirectional and contra-
directional, respectively, are important to distinguish because
they involve drastically different physics, as clearly apparent in
the Doppler phenomenon.

To solve scattering problems involving constant velocities,
we will use the Lorentz transformations between the laboratory
frame and the moving frame, moving at the uniform velocity vf.
These frames are shown in Fig. 2, with coordinates axes ðz; ctÞ
and ðz 0; ct 0Þ, respectively. In the subluminal case [Fig. 2(a)],
the interface appears stationary in the moving frame, i.e., the
ct 0 axis is parallel to the interface. In the superluminal case
[Fig. 2(b)], the interface appears purely temporal in the moving
frame, i.e., the z 0 axis is parallel to the interface. The justifica-
tion for this choice is provided in Sec. 2.6.

(a) (b)

(c) (d)

Moving frame

Laboratory frame

Fig. 2 Scattering at a spacetime interface. The white and gray
regions correspond to media i and j , with refractive indices ni

and nj (ni < nj ). (a) Sketch of a wave incident on a subluminal
interface. (b) Same as (a) but for a superluminal interface.
(c) Scattering from a subluminal (υm < c) interface in a spacetime
diagram. The blue arrows represent wave trajectories (referring
to a specific phase point of the waveform), and the black arrows
represent scattering coefficients. The dashed lines correspond to
incidence from the right. The laboratory and moving frames are
superimposed with common origin, and the moving frame has
the same velocity as the interface (υf∕c ¼ υm∕c). (d) Same as
(c) but for a superluminal interface (υm > c), with moving frame
having the inverse velocity of the interface (υf∕c ¼ c∕υm).

Deck-Léger et al.: Uniform-velocity spacetime crystals

Advanced Photonics 056002-3 Sep∕Oct 2019 • Vol. 1(5)



2.3 Spacetime Duality

Subluminal and superluminal structures are symmetric around
the light line (z ¼ ct) in the spacetime diagram, as shown in
Fig. 3 for the cases of an interface and a slab. This symmetry
is due to the fact that changing from a subluminal to a
superluminal problem reverts to exchanging space and time:
vsub∕c ¼ ∂z∕∂ðctÞ↔∂ðctÞ∕∂z ¼ c∕vsub ¼ vsup∕c. The sub-
luminal and superluminal structures are thus related through
a spacetime inversion. This geometrical symmetry manifests
a fundamental duality between the subluminal and superluminal
problems.

This structural duality is completed by the spacetime duality
of Maxwell equations. Consider for instance the electric field in
any of the (homogeneous) media on either side of the disconti-
nuities,

∂2Ex

∂z2 − n2ðz − vmtÞ
∂2Ex

∂ðctÞ2 ¼ 0: (2)

Interchanging space and time in this equation, and also applying
n → 1∕n since n ¼ c∕v ¼ ∂ðctÞ∕∂z and vm∕c → c∕vm indeed
transforms the equation into itself. Thus, the wave equation is
also symmetric under spacetime inversion.

Therefore, subluminal and superluminal spacetime electro-
magnetic problems are the dual of each other. Table 1 lists
the variables related to the spacetime duality. The first four
row substitutions are the ones just discussed for the problem
of an interface. The fifth row refers to the duality between

the length l of a subluminal slab and the duration cd of a super-
luminal slab, as illustrated in Fig. 3(b). The sixth and sevenths
rows correspond to the duality of plane wave solutions in space-
time scattering problems.

Note that the duality between space and time is incomplete,
because one can go backward in space but not in time. As a
consequence, we shall see that the scattering coefficients are not
related to each other, although the phase quantities will always
be. Therefore, once the phase quantities are found for the sub-
luminal case, the phases for the superluminal case are deduced
by applying the substitutions noted in Table 1.

2.4 Interluminal Regime

In the preceding sections, we distinguished the subluminal and
the superluminal regimes but omitted to discuss a third velocity
regime, which we will describe here. To be more precise, we
should refer to a modulated system as strictly subluminal when
the modulation is slower than the slowest wave involved, i.e.,
here, vm < vj, with vj < vi, and strictly superluminal when
it is faster than the fastest wave involved, i.e., here, vm > vi.
The velocity range between these two regimes, vj ≤ vm ≤ vi,
corresponds to a third regime, which we call here the inter-
luminal regime. This regime involves yet different physics and
requires yet a different treatment than the strictly sub- and
superluminal regimes, as shown in Fig. 4: the incident wave
in medium i scatters a single wave in the codirectional case
[Fig. 4(a)] and three waves in the contradirectional case
[Fig. 4(b)].48–50

Let us first consider the codirectional case. In the forward
problem of the strictly subluminal regime [Fig. 2(a)], the inci-
dent wave, ψþ

i , is scattered into a reflected wave, ψ−
i , and a

transmitted wave, ψþ
j . Progressively increasing vm, and there-

fore decreasing the slope of the interface, brings the interface
closer and closer to the trajectory of the transmitted wave. At
the point where the interface propagates at the same velocity
as the wave transmitted in medium j, i.e., vm ¼ vj, a shock
wave is produced from the accumulation of the transmitted
wave at the interface. This is the upper limit of the strictly sub-
luminal regime and the lower limit of the interluminal regime.
Beyond this limit (vm > vj, but still with vm < vi), the incident
wave cannot penetrate any more into medium j because it would
otherwise be overtaken by the interface. Thus, scattering re-
duces here to a single reflected wave. Further increasing the

(a) (b)

Fig. 3 Spacetime-inversion symmetry of subluminal (SUB) and
superluminal (SUP) structures. (a) Interfaces. (b) Slabs.

(a) (b)

Fig. 4 Graphical description of the interluminal regime in space-
time diagram. (a) Codirectional case, with a single scattered
wave. (b) Contradirectional case, with three scattered waves.

Table 1 Duality transformations between the subluminal and
superluminal regimes.

Subluminal regime Superluminal regime

Space z Time ct

Time ct Space z

Modulation velocity vm∕c Inverse velocity c∕vm

Refractive index n Inverse index 1∕n
Phase velocity v∕c ¼ 1∕n Inverse phase

velocity
c∕v ¼ n

Length l Duration cd

Wavelength λ Period cT

Frequency ω∕c Wavenumber k
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velocity leads to the situation where the interface propagates at
the same velocity as the incident wave, i.e., vm ¼ vi. At this
point, the incident wave is barely catching up with the interface
and so reflection tends to zero. Beyond this limit, we enter the
strictly superluminal regime, where the incident wave cannot
catch up with the interface unless it was launched earlier than
it, which is the case in Fig. 2(b).

For the contradirectional case, we perform a similar thought
experiment: starting with a strictly subluminal contradirectional
problem, by setting a negative slope for the interface in Fig. 2(a),
and increasing the velocity, we arrive to a point where the veloc-
ity of the modulation is equal to the velocity of the wave in the
media, i.e., vm ¼ −vj, and so a wave will form, propagating
along the interface. The scattering will therefore include three
waves: a reflected wave, a later backward wave, and a later
forward wave. For a further increased velocity, the interface
catches up with the reflected wave, i.e., vm ¼ −vi, leading to
another shock wave from the accumulation of the reflected
wave. Beyond this limit, we enter the strictly superluminal
regime.

In this paper, we focus on the strictly subluminal and strictly
superluminal regimes, which we call subluminal or superlumi-
nal for brevity.

2.5 Recall of Special Relativity Concepts

We noted in Sec. 2.2 that we will use Lorentz transformations
between the laboratory and moving frames to solve spacetime
problems. We present here a brief recall of the Lorentz transfor-
mation tools required for this.

2.5.1 Lorentz transformations and Lorentz frames

Intervals of space and time in frames moving at a relative veloc-
ity vf are related through the Lorentz transformations51

z 0 ¼ γ

�
z − vf

c
ct

�
; ct 0 ¼ γ

�
ct − vf

c
z

�
; (3)

where

γ ¼ ð1 − v2f ∕c2Þ−1∕2 (4)

is the Lorentz factor, and where the primed and unprimed quan-
tities refer to quantities measured in the moving frame and in the
laboratory frame, respectively. The inverse relations are found
by exchanging the primed and unprimed quantities and replac-
ing vf by −vf in Eq. (3):

z ¼ γ

�
z 0 þ vf

c
ct 0

�
; ct ¼ γ

�
ct 0 þ vf

c
z 0
�
: (5)

From these Lorentz transformations, we may superimpose
laboratory and moving frames onto the same spacetime plot,
as done in Fig. 2. The laboratory frame coordinates are chosen
to be orthogonal, and so the moving frame coordinates must
be skewed, with the axes slopes found as follows. The z 0 axis
corresponds to ct 0 ¼ 0. Enforcing this in Eq. (5) yields ct ¼
ðvf∕cÞz, which provides vf∕c for the slope of the z 0 axis.
Similarly, the ct 0 axis corresponds to z 0 ¼ 0, and enforcing this
in Eq. (5) yields the z ¼ ðvf∕cÞct, which provides c∕vf for the
ct 0 axis slope.

2.5.2 Velocity addition formula

Velocities measured in different frames do not simply differ by
the frame velocity, i.e., the velocity measured in the laboratory
frame, v, is not the sum of the moving frame velocity, vf , and the
velocity measured in the moving frame, v 0 ¼ dz 0∕dt 0. The cor-
rect relationship between the velocities measured in the different
frames is found by applying the chain rule to the definition of v,
v ¼ dz∕dt, and replacing the resulting terms by the derivative of
the first relation of Eq. (5) with respect to t 0 and by the derivative
of the second relation of Eq. (3) with respect to t, i.e.,

v ¼ dz
dt 0

dt 0

dt
¼ γ2ðv 0 þ vfÞ

�
1 − vfv

c2

�
; (6)

and solving for v. The result is

v ¼ v 0 þ vf
1þ v 0vf

c2

(7a)

and the inverse is

v 0 ¼ v − vf
1 − vvf

c2
: (7b)

2.5.3 Spectral Lorentz transformations

The phase of a wave is observer-independent.52 For instance,
different observers agree whether a wave is at a maximum
or at a minimum, although they do not agree on the distance
between two maxima (wavelength) and the time between two
maxima (period). Thus

ϕ� 0 ¼ ϕ�; (8)

with the phases defined as

ϕ� ¼ k�z� ω�t; ϕ� 0 ¼ k� 0z 0 � ω� 0t 0; (9)

where the wavenumbers k� are related to the corresponding
frequencies through the dispersion relation k� ¼ �ω�∕v.
Using the expressions for z and t in Eq. (5), and resolving in
Eq. (8) provides the frequency and wavenumber transformations

k� 0 ¼ γ

�
k� � vf

c
ω�

c

�
;

ω� 0

c
¼ γ

�
ω�

c
� vf

c
k�

�
: (10)

Comparing these transformation with Eq. (3) reveals that kþ and
ωþ∕c transform as z and ct.

2.5.4 Field transformations

Consider harmonic plane waves propagating along �z with the
electric field phasor E ¼ Exx̂ and magnetic field H ¼ Hyŷ.
These fields may be written as

E�
x ¼ A�e�iϕ�

; with ϕ� ¼ k�z� ω�t: (11)

For later use, we relate the other fields to E�
x through the wave

impedance η ¼ ffiffiffiffiffiffiffiffi
μ∕ϵ

p
and phase velocity v ¼ 1∕ ffiffiffiffiffi

ϵμ
p

as
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H�
y ¼ � 1

η
E�
x ; (12a)

B�
y ¼ � 1

v
E�
x ; (12b)

D�
x ¼ ϵE�

x ¼ 1

vη
E�
x ; (12c)

which follow from Maxwell equations, with the assumption of
a purely dielectric medium having a purely real and positive
permittivity, and no spatial or temporal dispersion.

The fields measured in the laboratory and moving frames are
related through53,54

E 0
x ¼ γðEy − vfByÞ; H 0

y ¼ γðHx − vfDxÞ; (13a)

D 0
x ¼ γ

�
Dx − vf

c2
Hy

�
; B 0

y ¼ γ

�
By − vf

c2
Ex

�
; (13b)

with the inverse relations again obtained by changing the sign of
vf and interchanging the primed and unprimed quantities. The
primed counterpart of Eq. (11) therefore reads

E�0
x ¼ A�0

e�iϕ� 0
; with ϕ�0 ¼ k�0

z 0 � ω�0
t 0; (14)

and the primed counterparts of Eqs. (12) are presented in
Appendix A (Sec. 8). For later use, we note that the phase veloc-
ity v�0

transforms as Eqs. (7)52,55 but with a negative sign for vf
since media appear to be moving in the −z direction if the frame
is moving in the þz direction. Thus, the phase velocity in the
moving frame is

v�0 ¼ v� þ vf
1þ v�vf

c2

: (15)

2.6 Resolution Strategy

Electromagnetic problems involving moving media are conven-
tionally solved in the moving frame where the system is station-
ary. The solutions are then converted back to the laboratory
frame using Lorentz transformations. The situation for modu-
lated media is more subtle. The overall medium is stationary,
with the perturbation propagating through it. In a moving frame
having the same velocity as the perturbation, the perturbation
appears stationary; however, the media on both sides of it appear
to be in motion. As we show in Appendix A (Sec. 8), moving
media appear bianisotropic.52,56,57 The complexity associated
with such a bianisotropy defeats the original purpose of using
the Lorentz transformation. In order to resolve this complica-
tion, we resort to the following hybrid strategy: we first apply
the field continuity conditions in the moving frame, then trans-
form the results to the laboratory frame, and finally apply the
constitutive relations or the dispersion relations in the laboratory
frame.

We stated in Sec. 2.2 that the moving frames for the sub-
luminal and superluminal problems were chosen such that
the problems appeared purely spatial or purely temporal,

respectively, in the moving frames. We now revisit this state-
ment in the light of the space and time Lorentz transformations
presented in Sec. 2.5.1.

In the subluminal regime [Fig. 2(a)], we select the moving
frame so that it is copropagating with the interface, at a velocity
equal to that of the interface, vf ¼ vm, as conventionally done.
The interface is then purely spatial (stationary) in that frame,
positioned here at z 0 ¼ 0, which corresponds to the ct 0 axis
being parallel to the interface.

In the superluminal regime [Fig. 2(b)], as discussed in
Sec. 2.2, the selection of a comoving frame with (vf ¼ vm)
is not possible since Lorentz transformations apply only to
frames moving at subluminal velocities. Indeed, the correspond-
ing superluminal Lorentz transformations would result in non-
physical imaginary space and time quantities, as can be seen
by setting vf > c in Eq. (4). Instead, we choose a frame where
the interface appears to be purely temporal (sudden change of
material properties at a given time t 0), occurring here at t 0 ¼ 0,
which corresponds to the z 0 axis being parallel to the interface.58

We then graphically find that the moving frame velocity is
c∕vm ¼ vf∕c. We may also find this result mathematically
by inspecting Eq. (7b) and finding the condition for v 0

m ¼ ∞,
which was shown in Sec. 2.2 to correspond to a purely temporal
interface (instantaneous change in the material properties).
Since vm > c, we have vf < c, and the Lorentz transformations
are now applicable.

3 Spacetime Interface

3.1 Scattering Coefficients

In this section, we compute the scattering coefficients (denoted
by lowercase Greek symbols in Fig. 2) for the case of a single
interface that moves with a uniform velocity vm through the sta-
tionary media characterized by two distinct refractive indices ni
and nj, respectively, to the left and to the right of the interface.
We start with the subluminal regime following the strategy out-
lined in Sec. 2.6. First, we derive the continuity conditions at the
interface in the moving frame that has the same velocity as that
of the interface, vf ¼ vm, as was suggested in Sec. 2.6. Since the
interface appears purely spatial in the moving frame, the usual
boundary conditions apply in it, i.e.,

E 0
xi ¼ E 0

xjjz 0¼0
; H 0

yi ¼ H 0
yjjz 0¼0

; (16)

which involve the total fields in media i and j, corresponding to
ψ i;j ¼ ψþ

i;j þ ψ−
i;j in Fig. 2(a). We next express these fields in

terms of their unprimed counterparts using the Lorentz transfor-
mations Eq. (13a), which yields the continuity conditions:

Exi − vfByi ¼ Exj − vfByjjz−vf t¼0
; (17a)

Hyi − vfDxi ¼ Hyj − vfDxjjz−vf t¼0
: (17b)

Finally, the frame velocity is set equal to the modulation veloc-
ity, i.e., vf ¼ vm.

To study the forward problem, corresponding to incidence
ψþ
i ≠ 0 and ψ−

j ¼ 0 (see Fig. 2), we enforce the continuity con-
ditions [Eqs. (17)] by inserting Eq. (11) into Eqs. (17) with
ψ−
j ¼ 0, which yields
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γiji ¼
A−
i

Aþ
i

����
A−
j ¼0

¼ ηj − ηi
ηj þ ηi

�
1 − vm∕vi
1þ vm∕vi

�
; (18a)

τji ¼
Aþ
j

Aþ
i

����
A−
j ¼0

¼ 2ηj
ηi þ nj

�
1 − vm∕vi
1 − vm∕vj

�
: (18b)

The subscripts in the reflection coefficient indicate that the wave
travels from medium i, reaches medium j, and then reflects back
to medium i. This notation will be useful later on, to distinguish
forward and backward waves in multiple-interface problems.

The results of Eqs. (18) are valid across the subluminal range,
which was shown in Sec. 2.4 to extend from −vj to vj.
According to Eqs. (18), the transmission coefficient increases
monotonically while the reflection coefficients decrease mono-
tonically across this velocity range. In the contradirectional
case, the reflection coefficient is greater than in the purely spa-
tial case, whereas in the codirectional case, the reflection is less
than in the purely spatial case: the moving interface “cushions”
the wave.

We next study the backward problem, corresponding to the
incidence ψþ

i ¼ 0 and ψ−
j ≠ 0. Inserting Eq. (11) into Eqs. (17),

or alternatively reversing the sign of vm and exchanging i and j
in Eqs. (18), results in

γjijðvmÞ ¼
Aþ
j

A−
j

����
Aþ
i ¼0

¼ ηi − ηj
ηi þ ηj

�
1þ vm∕vj
1 − vm∕vj

�
; (19a)

τijðvmÞ ¼
A−
i

A−
j

����
Aþ
i ¼0

¼ 2ηi
ηj þ ni

�
1þ vm∕vj
1þ vm∕vi

�
: (19b)

We now turn to the superluminal regime. In the moving
frame, where the interface appears purely temporal, the continu-
ous fields are45,59

D 0
xi ¼ D 0

xjjt 0¼0
; B 0

yi ¼ B 0
yjjt 0¼0

: (20)

Applying the Lorentz transformation, Eq. (13b) yields the con-
tinuity relations

Dxi − vf
c2

Hyi ¼ Dxj − vf
c2

Hyj

����
t−vf

c2
z¼0

; (21a)

Byi − vf
c2

Exi ¼ Byj − vf
c2

Exj

����
t−vf

c2
z¼0

: (21b)

We start by studying the forward problem, corresponding to
incidence ψþ

i ≠ 0 and ψ−
i ¼ 0. The scattering coefficients are

found by inserting Eqs. (12) into Eqs. (21) with ψ−
i ¼ 0, which

yields the later backward and later forward coefficients

ζji ¼
A−
j

Aþ
i

����
A−
i ¼0

¼ ηi − ηj
2ηi

�
1 − vm∕vi
1þ vm∕vj

�
; (22a)

ξji ¼
Aþ
j

Aþ
i

����
A−
i ¼0

¼ ηi þ ηj
2ηi

�
1 − vm∕vi
1 − vm∕vj

�
: (22b)

The scattering coefficients for the backward problem are
found by reversing the velocity sign, but not the exchanging
the media, since both waves originate in the same medium,
contrarily to the subluminal case, and read

ζji ¼
Aþ
j

A−
i

����
Aþ
i ¼0

¼ ζjið−vmÞ; (23a)

ξji ¼
A−
j

A−
i

����
Aþ
i ¼0

¼ ξjið−vmÞ: (23b)

Note that Eqs. (17) with the substitution of vf ¼ vm are iden-
tical to Eqs. (21) with the substitution vf∕c2 ¼ 1∕vm, which is a
consequence of the spacetime duality between subluminal and
superluminal regimes, as described in Sec. 2.6. Therefore, the
same boundary conditions apply for all regimes. However, we
note that the results in the subluminal and the superluminal re-
gime are different: this is due to the fact that in the subluminal
case, for the forward problem, ψþ

i þ ψ−
i ¼ ψþ

j , whereas for the
superluminal case, the reflection is on the other side of the
equality sign: ψþ

i ¼ ψþ
j þ ψ−

j . Appendix B (Sec. 9) provides
an alternative derivation of the continuity conditions for all
regimes.

3.2 Generalization of the Stokes Principle

To facilitate the later study of multiple scattering (Sec. 4), we
now establish relations between the scattering coefficients of
forward and backward problems derived in Sec. 3.1. This leads
to a generalization of the conventional Stokes relations60 from
stationary interfaces to spacetime interfaces.

The conventional Stokes relations are derived upon the basis
of a time-reversal symmetry argument: time-reversing, or equiv-
alently, reversing the direction of the waves scattered from an
interface returns them to their origin. We extend this argument
here to the spacetime interface, with the help of Fig. 5. The sub-
luminal problem is represented in Fig. 5(a). The bottom part of
the figure shows the scattering problem that we have already
solved, and the top part shows its time-reversed counterpart,
where the velocity signs of the two scattered waves have been
reversed, along with the velocity sign of the interface. The scat-
tered waves must return to their origin with the same amplitude,
from the time-reversal symmetry argument, and the additional
scattering possibility must therefore cancel out. Enforcing the
symmetry yields then the subluminal generalized Stokes rela-
tions, which may be directly read out from the figure as

γijiγiji þ τijτji ¼ 1; (24a)

τjiγiji þ γjijτji ¼ 0: (24b)

From these two generalized Stokes conditions, we find a third
relation, which will be used in Sec. 4 to simplify the problem of
total scattering from a double interface: barring the unbarred co-
efficients and unbarring the barred coefficients in Eq. (24a) and
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comparing the resulting equations with the original equation of
Eq. (24a), we find that

τijτji ¼ τijτji: (24c)

The superluminal case is represented in Fig. 5(b), with the
initial problem at the bottom and the time-reversed problem
at the top. The generalized superluminal Stokes relations are
again read out from the figure, which gives now

ζijζji þ ξijξji ¼ 1; (25a)

ξijζji þ ζijξji ¼ 0; (25b)

which are of the same form as their subluminal counterparts. An
additional relation, which will be used in Sec. 4 to calculate the
total scattering from a slab, is found by rewriting Eq. (25b) as
ξij ¼ −ξjiζij∕ζji, exchanging i and j in this relation to obtain
ξji ¼ −ξijζji∕ζij, and taking the product of these two, to find

ξijξji ¼ ξjiξij: (25c)

Barring the unbarred coefficients and unbarring the barred
coefficients in Eq. (25a) and using the relation Eq. (25c) leads
then to

ζijζji ¼ ζijζji: (25d)

3.3 Frequency Transitions

The waves scattered from a spacetime interface undergo
Doppler-like frequency transitions. We calculate here these fre-
quency transitions, starting again with the subluminal regime.
Inserting the moving-frame fields [Eq. (14)] into Eq. (16) leads

to the result that the frequencies are conserved in the moving
frame, consistently with the fact that the interface is stationary
in that frame. We denote this conserved frequency ω 0

e, with

ω 0
e ¼ ωþ 0

i ¼ ω 0−
i ¼ ω 0þ

j : (26a)

Applying the frequency Lorentz transformation [Eq. (10)] to
Eq. (26a) with k�i;j ¼ ω�

i;j∕vi;j yields

ωe ¼ ωþ
i

�
1 − vm

vi

�
¼ ω−

i

�
1þ vm

vi

�
¼ ωþ

j

�
1 − vm

vj

�
; (26b)

where the relation between ω 0
e and ωe is found by dividing

Eq. (26a) by Eq. (26b)

ω 0
e∕ωe ¼ γ; (27)

with γ being the Lorentz factor given in Eq. (4). The frequency
transitions for a backward problem, with the incident wave on
the right of the interface, in medium j, would be found by
changing the signs of the superscripts, the sign of vm, and
exchanging i and j in Eq. (26b).

Equations (26) are graphically represented in the inverse
spacetime diagram of Fig. 6(a). The moving-frame axes k 0
and ω 0 are superimposed to the laboratory-frame axes k and
ω. The slopes of the moving frame axes, which are vf∕c and
c∕vf , from Eq. (10), are written in terms of the interface velocity
by setting vf ¼ vm. The dispersion relations ω�

i;j ¼ k�i;jvi;j of the
two involved media are plotted in the laboratory frame. To find
the spectra of the scattered waves, we trace a curve parallel to
the k 0

z axis with intercept ωe and locate the spectra of the inci-
dent and scattered waves at the intersection of this curve and the
dispersion diagrams. Reading out the spectra in the laboratory
frame reveals that the reflected wave, ψ−

i , is downshifted while
the transmitted wave, ψþ

j , is upshifted, consistently with
Eq. (26b) for vi > vj.

For the superluminal regime, we insert the moving-frame
fields [Eq. (14)] into Eq. (20) and find the wavenumbers are
conserved in the moving frame,

k 0
e ¼ kþ 0

i ¼ k 0þ
j ¼ k 0−

j ; (28a)

where k 0
e is the conserved wavenumber.

(a) (b)

Fig. 5 Generalization of the Stokes principle. (a) Subluminal re-
gime. (b) Superluminal regime.

(a) (b)

Fig. 6 Frequency transitions at a spacetime interface corre-
sponding to Fig. 2. (a) Subluminal case. (b) Superluminal case.
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Applying the wavenumber Lorentz transformation [Eq. (10)]
to Eq. (28a) and replacing the frame velocity by the modulation
velocity through vm ¼ c2∕vf with ω�

i;j ¼ k�i;jvi;j provides

ke ¼ kþi

�
1 − vi

vm

�
¼ kþj

�
1 − vj

vm

�
¼ k−j

�
1þ vj

vm

�
: (28b)

Dividing Eq. (28a) by Eq. (28b) gives the relation

k 0
e∕ke ¼ γ: (29)

The frequency transitions for a backward problem, with the
incident wave coming from the right, in medium i, would be
found by changing the signs of the superscripts and the sign of
vm in Eq. (28b).

Equations (28) are represented graphically in Fig. 6(b). Once
again, the axes of the moving frame and the laboratory frame are
superimposed. The slopes of the moving frame axes, which are
again vf∕c and c∕vf from Eq. (10), are written in terms of the
interface velocity, vm, by setting vf∕c ¼ c∕vm. The dispersion
curves of the two media are drawn, and the conservation of k 0 is
enforced by tracing a line parallel to ω 0, with intercept ke. The
solutions are located at the intersections of this line and the
dispersion diagram of medium j, remembering that both scat-
tered waves are in medium j. Reading out the solutions in
the laboratory frame reveals that both waves are downshifted,
with ψ−

j having a negative frequency, associated with time-
reversal. As a consequence of time reversal, the wave reflected
from a purely temporal interface is refocused to its source45,61

and the wave reflected from a superluminal interface is refo-
cused to a shifted position.58

The results of this section are summarized in Table 2.

4 Spacetime Slab

4.1 Scattering Phenomenology

Noting that the succession of two interfaces corresponds to a
slab, we can now address the slab problem upon the basis of

Sec. 3. Figure 7 shows the multiple-reflections that occur in
sub- and superluminal spacetime slabs. The slabs consist of a
medium j sandwiched between media i and k, with media i
and k sharing the same parameters. The two interfaces bounding
the slab propagate at the same velocity and are thus parallel in
the spacetime diagram. The slabs are illuminated by a wave in-
cident from medium i.

The multiple reflections in the subluminal case, represented
in Fig. 7(a), and superluminal case, represented in Fig. 7(b), are
strikingly different. In the subluminal case, the incident wave is
divided into a reflected and a transmitted wave at the first inter-
face. The transmitted wave propagates to the second interface,
where it splits into new reflected and transmitted waves, with the
former traveling back to the first interface, where it splits again
in two parts while the latter reaches the other side of the slab.
This process repeats indefinitely, with the amplitudes of the
exiting waves decreasing at each round trip. The transmitted
wave, ψþ

k , and the reflected wave, ψ−
i , are found by summing

the infinite contributions.

Table 2 Summary of the scattering formulas, derived in Sec. 3,
for a spacetime interface.

Subluminal Superluminal

Coefficients (Fig. 2)

τj i ¼
2ηj

ηi þ ηj

�
1 − αi
1 − αj

�
[Eq. (18b)]

ξj i ¼
ηi þ ηj
2ηi

�
1 − αi
1 − αj

�
[Eq. (22b)]

γi j i ¼
ηj − ηi
ηi þ ηj

�
1 − αi
1þ αi

�
[Eq. (18a)]

ζj i ¼
ηi − ηj
2ηi

�
1 − αi
1þ αj

�
[Eq. (22a)]

Frequencies (Fig. 6)

ω−
i ¼ ωþ

i

1 − αi
1þ αi

[Eq. (26b)] k−
j ¼ kþ

i

1 − 1∕αj
1þ 1∕αi

[Eq. (28b)]

ωþ
j ¼ ωþ

i

1 − αi
1 − αj

[Eq. (26b)] kþ
j ¼ kþ

i

1 − 1∕αi
1 − 1∕αi

[Eq. (28b)]

αi ;j ¼ vm∕v i ;j

(a)

(b)

Fig. 7 Multiple-reflection description of the scattering phenom-
enology in spacetime slabs. Changes in line type (solid↔ dashed)
denote phase reversals. (a) Subluminal slab, with phase change
occurring upon reflection to a lower impedance medium (ηj < ηi ),
according to Eqs. (18). Note that the slope of the trajectories has
been altered for representation convenience. (b) Superluminal
slab, with phase change occurring upon reflection to a higher
impedance medium (ηk > ηj ), according to Eqs. (22).
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For the superluminal case, represented in Fig. 7(b), the wave
incident from medium i splits into a later forward and a later
backward wave at the first interface. The two waves propagate
then to the second interface, where they split again. However,
there is no further scattering so that the total later forward
and later backward waves, ψþ

k and ψ−
k , are the sum of only four

contributions.
We next calculate the frequency transitions and the phase

shifts in the spacetime slabs, to later calculate the amplitudes
of the scattered waves.

4.2 Frequency Transitions

Let us start with the subluminal slab. The frequencies, indicated
in Fig. 7(a), are calculated by noting, as in Eq. (26a), that the
frequencies in the moving frame are conserved, and are all equal
to ω 0

e, i.e.,

ω 0
e ¼ ωþ 0

i ¼ ω− 0
i ¼ ωþ 0

j ¼ ω− 0
j ¼ ωþ 0

k : (30)

Applying the frequency Lorentz transformation [Eq. (10)], we
obtain the same result as in Eq. (26b) but with the additional
frequencies ω−

j and ωþ
k scattered from the second interface

ωe ¼ ωþ
i

�
1 − vm

vi

�
¼ ω−

i

�
1þ vm

vi

�
¼ ωþ

j

�
1 − vm

vj

�

¼ ω−
j

�
1þ vm

vj

�
¼ ωþ

k

�
1 − vm

vk

�
: (31)

Equation (31) reveals that when media i and k share the same
parameters, the wave transmitted through the slab has the same
frequency as the incident wave, ωþ

k ¼ ωþ
i : it is upshifted to ωþ

j
at the first interface and then downshifted by the same amount
at the second interface.

In the superluminal case, the frequencies, indicated in
Fig. 7(b), are calculated by noting, as in Eq. (28a), that the wave-
numbers in the moving frame are conserved and are all equal
to ke, i.e.,

k 0
e ¼ kþ 0

i ¼ kþ 0
j ¼ k− 0

j ¼ kþ 0
k ¼ k− 0

k : (32)

Applying the wavenumber Lorentz transformation [Eq. (10)],
these equalities are expressed in the laboratory frame as

ke ¼ kþi

�
1 − vi

vm

�
¼ kþj

�
1 − vj

vm

�
¼ k−j

�
1þ vj

vm

�

¼ kþk

�
1 − vk

vm

�
¼ k−k

�
1þ vk

vm

�
: (33)

Equation (33) reveals that the later forward wave, ψþ
k , has the

same wavenumber as the incident wave, ψþ
i , i.e., k

þ
k ¼ kþi ,

if media i and k share the same parameters.

4.3 Phase Shift

We start, as usual, with the subluminal case. In the moving
frame, where the slab appears stationary, the phase shift of
the forward and backward waves is

φ� 0
j ¼ k� 0

j l 0
j ¼

ω 0
e

v� 0
j

l 0
j; (34)

where l 0
j is the length of the slab in the moving frame, as shown

in Fig. 7(a), and the second equality was found by using the
dispersion relation k� 0

j ¼ ω� 0
j ∕v� 0

j ¼ ω 0
e∕v� 0

j , from frequency
conservation in the moving frame [Eq. (30)] and with v 0

j the
phase velocity in the moving frame. We decompose this phase
shift as

φ� 0
j ¼ φ̄ 0

j � Δφ 0
j; (35a)

with the average and difference parts

φ̄ 0
j ¼

φþ 0
j þ φ− 0

j

2
and Δφ 0

j ¼
φþ 0
j − φ− 0

j

2
; (35b)

where the bar should not be confused with the bar for the scat-
tering coefficients of the backward problem. Using Eq. (34),
these average and difference parts may be written as

φ̄ 0
j ¼

ω 0
el 0

j

2

�
1

vþ 0
j

þ 1

v− 0
j

�
; (36a)

Δφ 0
j ¼

ω 0
el 0

j

2

�
1

vþ 0
j

− 1

v− 0
j

�
: (36b)

Let us now derive the laboratory-frame counterparts of
Eqs. (34) and (36). From phase invariance [Eq. (8)],
φj ¼ φ 0

j, φ̄j ¼ φ̄ 0
j, and Δφj ¼ Δφ 0

j. The three primed variables
ω 0
e, v�

0
j , and l 0

j in Eqs. (34) and (36) may be converted to their
unprimed counterparts using, respectively, ω 0

e ¼ γωe [Eq. (27)],
the equation for v� 0

j in Eq. (15), and the length contraction
formula,

l 0
j ¼ γlj; (37)

where the lengths lj and l 0
j are indicated in Fig. 7(a) to corre-

spond to the spatial separation between the two parallel lines
separating the slab. Equation (37) is obtained by setting
z 0 ¼ l 0

j, z ¼ lj, and ct ¼ 0 in the left expression of Eq. (3).
Applying the three substitutions results in the phase shift
counterpart of Eq. (34)

φ�
j ¼ γ2ωelj

1� vmvj∕c2

vj � vm
; (38a)

and the average and difference phase counterparts of Eqs. (36)

φ̄j ¼ ωe

ljvj
v2j − v2m

; (38b)

Δφj ¼ ωeljγ
2vm

1 − v2j∕c2

v2j − v2m
: (38c)

For the case of the superluminal slab, the phase shift of the
forward and backward waves is found by inserting Eq. (14) into
Eq. (20)
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φ� 0
j ¼ ω� 0

j d 0
j ¼ k 0

ev�
0

j d 0
j; (39a)

with d 0
j as the duration in the moving frame, as drawn in

Fig. 7(b). Expressing the phase shift in the form of an average
and a difference, as in Eq. (35a), we find

φ̄ 0
j ¼

k 0
ed 0

j

2
ðvþ 0

j þ v− 0
j Þ; (39b)

Δφ 0
j ¼

k 0
ed 0

j

2
ðvþ 0

j − v− 0
j Þ: (39c)

The superluminal results of Eq. (39) are expressed in terms of
laboratory-frame quantities by replacing k 0

e ¼ γke [Eq. (29)], the
equation for v� 0

j in Eq. (15) in which we substitute vf ¼ c2∕vm,
and the duration

d 0
j ¼ γdj; (40)

where d 0
j and dj are indicated in Fig. 7(b) to correspond to the

time separation between the two parallel trajectories delimiting
the slab. Equation (40) is obtained by setting t 0 ¼ d 0

j, t ¼ dj,
and z ¼ 0 in the right expression of Eq. (3). Note that
Eq. (40) does not correspond to the time dilation equation
(which would read d 0

j ¼ γ−1dj) since time dilation compares
the time separation between two fixed events, whereas we
are comparing the time separation between two trajectories.
Applying the substitutions for k 0

e, v� 0
j and d 0

j into Eqs. (39) yield
the phase shift

φ�
j ¼ γ2kedj

1� c2∕ðvjvmÞ
1∕vj � 1∕vm

; (41a)

and the average and difference quantities

φ̄j ¼ ke
djvjv2m
v2m − v2j

; (41b)

Δφj ¼ kedjγ2vmc2
1 − v2j∕c2

v2j − v2m
: (41c)

Note that Eqs. (41) could have been alternatively found by
applying the substitutions of Table 1 into Eqs. (38).

4.4 Scattering Coefficients

For the subluminal case, the reflection coefficient for the for-
ward problem is found by summing up the amplitude of the
wave reflected at the first interface, the amplitude of the wave
having traveled one round trip, the amplitude of the wave having
traveled two round trips and so on, which yields

Γiki ¼
jψ−

i j
jψþ

i j
¼ γiji þ τijγjkjτjie

2iφ̄j þ τijγjkjγjijγjkjτjie
4iφ̄j

þ τijγjkjðγ̄jijγjkjÞ2τjie6iφ̄j

¼ γiji þ τijγjkjτjie
2iφ̄j

X∞
n¼0

ðγjijγjkje2iφ̄jÞn; (42)

which is the same expression as that for a stationary slab,62 but
with the local generalized coefficients, Eqs. (18) and (19), and
the phases φ̄j in Eq. (38b). Since γjij < 1 and γjkj < 1, the geo-
metric series Eq. (42) reduces to

Γiki ¼ γiji þ
τijγjkjτjie

2iφ̄j

1 − γjijγjkje
2iφ̄j

¼ γiji
1 − e2iφ̄j

1 − γjijγjkje
2iφ̄j

; (43)

where the second equality was obtained by using the general-
ized Stokes condition [Eq. (24)].

The transmission coefficient for the forward problem wave is
found by summing the wave traveling through the slab, the wave
reflected at the second interface and traveling one round trip,
the wave traveling two round trips, and so on, i.e.,

Tki ¼
jψþ

k j
jψþ

i j
¼ τkjτjie

iφþ
j þτkjγjijγjkjτjie

iφþ
j e2iφ̄j

þ τkjðγ̄jijγjkjÞ2τjieiφ
þ
j e2iφ̄j

¼ τkjτjie
iφþ

j

X∞
n¼0

ðγjijγjkje2iφ̄jÞn ¼ τkjτjie
iφþ

j

1 − γjijγjkje
2iφ̄j

: (44)

The scattering coefficient extrema are found from Eqs. (43)
and (44) to correspond to φ̄j ¼ nπ∕2, where n is an integer. For
n odd, reflection is maximal and transmission is minimal, and
conversely for n even.

The reflection and transmission coefficients for the backward
problem are found by barring the unbarred coefficients, unbar-
ring the barred coefficients, and exchanging i and k. The phases
φ̄j are unchanged since they correspond to the round trip phase,
but the phases φþ

j are replaced by φ−
j . Thus,

Γkik ¼
jψþ

k j
jψ−

k j
¼ γ̄kjk

1 − e2iφ̄j

1 − γjijγjkje
2iφ̄j

¼ Γiki
γkjk
γiji

; (45a)

Tik ¼
jψ−

i j
jψ−

k j
¼ τijτjke

iφ−
j

1 − γjjγjje
2iφ̄j

¼ Tkie
−iΔφj ; (45b)

where the third equality in Eq. (45b) was found from a conse-
quence of the Stokes relations [Eq. (24c)]. Note that we are com-
paring forward and backward problems that have different
incident frequencies, ωþ

i and ω−
i , respectively, related through

ωe [Eq. (31)] as shown in Fig. 6(a).
In the superluminal case, the situation, although less usual, is

simpler since there are now only three scattering events.
Reading out Fig. 7(b), we find the later backward and later
forward coefficients

Deck-Léger et al.: Uniform-velocity spacetime crystals

Advanced Photonics 056002-11 Sep∕Oct 2019 • Vol. 1(5)



Zki ¼
jψ−

k j
jψþ

i j
¼ ζkjξjie

iφþ
j þ ξkjζjie

−iφ−
j ; (46a)

Ξki ¼
jψþ

k j
jψþ

i j
¼ ξkjξjie

iφþ
j þ ζkjζjie

−iφ−
j : (46b)

Applying the generalized Stokes relations for superluminal
coefficients [Eqs. (25)], [Eqs. (46)] reduce to

Zki ¼ ζkjξjie
−iφ−

j ðeiφ̄j − 1Þ; (47a)

Ξki ¼ e−iφ−
j ½1þ ξkjξjiðeiφ̄j − 1Þ�: (47b)

The scattering coefficient extrema are found from Eqs. (47) to
correspond, again, to φ̄j ¼ nπ∕2, with n an integer. For n even,
both later forward and later backward coefficients are maximal,
whereas for n odd, both coefficients are minimal.

The coefficients for the opposite incidence direction, Zki
and Ξki, are found by barring and unbarring unbarred and
barred coefficients, respectively, and replacing the phase term
φþ
j by φ−

j :

Zki ¼
jψ−

k j
jψ−

i j
¼ ζkjξjie

−iφþ
j ðeiφ̄j − 1Þ ¼ Zki

ζkjξji
ζkjξji

eiΔφj ; (48a)

Ξki ¼
jψþ

k j
jψ−

i j
¼ e−iφ

þ
j ½1þ ξkjξjiðeiφ̄j − 1Þ� ¼ Ξkie

−iΔφj : (48b)

Equations (48) compare the coefficients for the forward and
the backward problems having different incident wavenumbers,
kþi and k−i , respectively, related through ke in Eq. (33) as rep-
resented in Fig. 6(b).

4.5 Interference Condition

The extrema of the scattering coefficients, which were just pre-
viously derived, are now analyzed in terms of Bragg-like inter-
ference conditions, with the help of Fig. 8.

In the subluminal case, constructive interference occurs in
reflection and destructive interference occurs in transmission.
The interference condition may be found geometrically by rec-
ognizing the triangle with slopes c∕vm and c∕vj has a total
length lj related to the period of the wave Tþ

j through

lj ¼
cTþ

j

4

�
vm
c

þ vj
c

�
¼ λþj

4
ð1þ vm∕vjÞ; (49)

where the second equality is found by using Tþ
j ¼ λþj ∕vj. This

can be seen as a generalization of the quarter-wave condition.
Inserting Eq. (49) and the definition of ωe [Eq. (31)] into
Eq. (38b) retrieves φ̄j ¼ π∕2.

In the superluminal case, shown in Fig. 8(b), constructive
interference occurs for both the later forward and later backward
components. The interference condition may be found geomet-
rically by studying the shaded triangle and noticing the total
duration cdj is related to the slopes of the triangle, c∕vm and
c∕vj and to the wavelength λþj ∕4 through

cdj ¼
λþj
4

�
c
vj

þ c
vm

�
¼ cTþ

j

4
ð1þ vj∕vmÞ; (50)

where λþj ¼ vjT
þ
j was used. Inserting Eq. (50) and the defini-

tion of ke [Eq. (33)] into Eq. (39b) retrieves φ̄j ¼ π∕2.
The spacetime slab results are summarized in Table 3.

5 Unbounded Bilayer Crystal
We nowmove on to the study of bilayer crystals, whose periodic
unit cell is composed of a pair of slabs, or layers, as presented
in Fig. 9.

5.1 Linear Approximation of Dispersion Diagram

Crystals are largely described by their dispersion diagrams,
which consist in periodic alternances of passbands and stop-
bands, or bandgaps. The bandgaps are produced by the con-
structive or destructive interference of the wave scattered by
the crystal, as described in Sec. 4.5 for the particular case of
a slab. Away from these bandgaps, the waves are transmitted
through the crystal without attenuation or amplification, and
they undergo little dispersion.

(a)

(b)

Fig. 8 Graphical Bragg-like interference argument. The light and
dark blue trajectories correspond to the maxima and minima of
the incident wave, and changes in line type (solid ↔ dashed) de-
note phase reversals. (a) Subluminal case, with constructive and
destructive interference in reflection and transmission, respec-
tively. Note that the slope of the trajectories has been altered
for representation convenience. (b) Superluminal case, with con-
structive interference in both the later forward and later backward
waves.
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Before presenting the exact construction of the dispersion di-
agrams, whose complexity occults some of the physics of the
problem, we shall derive a simple and useful linear approxima-
tion of the exact solution. This approximation consists of a
diamond-like grid that coincides with the exact diagram away
from the gaps and whose nodes correspond to the exact bandgap
centers, as will be shown in Sec. 5.7.

5.1.1 Average velocity

The slopes of the curves in the dispersion diagram of Fig. 10
correspond to the average group velocities, which are inversely
proportional to the average refractive indices, v�av ¼ c∕n�av. As
the approximation is only valid far from the bandgaps, these
average refractive indices are only valid in the absence of reflec-
tion. The average indices may be found geometrically with the
help of Fig. 9 as the slopes of the straight segments connecting
the entering and exiting points of the trajectory through the crys-
tal unit cell. This leads to expressions for the average velocities
in terms of the refractive indices with weights corresponding to
the time spent or distance traveled by the wave in each medium,
as shown in Fig. 9.

In the subluminal case, represented in Fig. 9(a), the average
index is found as

n�av ¼
t�1 þ t�2

t�1 ∕n1 þ t�2 ∕n2
; (51)

where the superscript refers to the�zwave direction, and where
the terms d�1,2 correspond to the duration of the wave travels in
layers 1, 2 in the � direction. This average index may be more
conveniently written in terms the layer lengths, l1,2. For this
purpose, we express the durations in terms of these lengths,
derived in Appendix C (Sec. 10) as

t�1,2 ¼
l1,2n1,2∕c

1� vmn1,2∕c
; (52)

and insert this relation into Eq. (51), which yields

n�av ¼
n1l1 þ n2l2 � vmn1n2∕cðl1 þ l2Þ
l1 þ l2 � vm∕cðn2l1 þ n1l2Þ

: (53)

It is also useful, for later use, to write the expression of the aver-
age velocity v�av ¼ c∕nav in terms of the velocities in the two
media, i.e.,

v�av ¼
v1v2ðl1 þ l2Þ � vmðl1v1 þ l2v2Þ
ðl1v2 þ l2v1Þ � vmðl1 þ l2Þ

: (54)

In the superluminal case, represented in Fig. 9(b), the average
index is found as

(a)

(b)

Fig. 9 Bilayer spacetime crystal with spacetime unit cell and
out-of-gap wave trajectories. (a) Subluminal equal-length crystal,
with l1 ¼ l2. The slopes of the triangles ① and ② are n1 ¼ ctþ1 ∕
zþ
1 and n2 ¼ ctþ2 ∕z

þ
2 , so zþ

1 ¼ ctþ1 ∕n1 and z2 ¼ ctþ2 ∕n2.
Substituting these lengths into the expression for the slope
nav ¼ ðctþ1 þ ctþ2 Þ∕ðzþ

1 þ zþ
2 Þ, yields Eq. (51). (b) Superluminal

equal-duration crystal, with d1 ¼ d2. From the slopes of the
triangles ① and ②, given in (a), we have ctþ1 ¼ zþ

1 n1 and ct2 ¼
zþ
2 n2. Substituting these durations into the expression for the

average slope, also given in (a), yields Eq. (55).

Table 3 Summary of spacetime slab results.

Subluminal regime Superluminal regime

Phase (Fig. 7)

φ� 0
j ¼ φ̄ 0

j � Δφ 0
j [Eq. (35a)]

φ̄j ¼ ωelj

v j

v2
j − v2

m

[Eq. (38b)] φ̄j ¼ kedj

v j v
2
m

v2
j − v2

m

[Eq. (41b)]

Δφj ¼
φ̄jγ2ð1 − v2

j ∕c
2Þvm

v j

[Eq. (38c)]

Δφj ¼
φ̄jγ2ð1 − v2

j ∕c
2Þc2

v jvm

[Eq. (41c)]

Coefficients (Fig. 7)

Γik i ¼ γi j i
1 − e2i φ̄j

1 − γj i jγjk je2i φ̄j

[Eq. (42)]

Zki ¼ ζkjξj ie
−iφ−

j ðei φ̄j − 1Þ
[Eq. (47)]

Tki ¼
τkjτj ie

iφþ
j

1 − γj i jγjk je2iφ̄j

[Eq. (44)]

Ξki ¼ ½1þ ξkjξj i ðeiφ̄j − 1Þ�e−iφ−
j

[Eq. (47)]

Bragg interference condition (Fig. 8)

lj ¼
λþj
4

�
1þ vm

v j

�
[Eq. (49)] dj ¼

Tþ
j

4

�
1þ v j

vm

�
[Eq. (50)]
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n�av ¼
z�1 n1 þ z�2 n2
z�1 þ z�2

; (55)

where the quantities z�1,2 correspond to the length traveled by the
wave in the � direction in layers 1, 2. The average index may
be more conveniently written in terms the layer durations d1,2.
For this purpose, we express the lengths in terms of these
durations, derived in Appendix C (Sec. 10), as

z�1,2 ¼
cd1,2

n1,2 � c∕vm
; (56)

and insert this relation into Eq. (55), which yields

n�av ¼
d1 þ d2 � c∕vmðd1∕n2 þ d2∕n1Þ

d1∕n1 þ d2∕n2 � c∕ðvmn1n2Þðd1 þ d2Þ
: (57)

It is also useful, for later use, to write the expression of the aver-
age velocity in terms of the velocities in the two media, i.e.,

v�av ¼
vmðd1v1 þ d2v2Þ � v1v2ðd1 þ d2Þ
vmðd1 þ d2Þ � ðd1v2 þ d2v1Þ

: (58)

Note that Eqs. (57) and (58) could have been alternatively
found by applying the substitutions of Table 1 to Eqs. (53)
and (54).

Table 4 lists the forward and backward average refractive
indices at special velocity points for unit cells of equal layer
length or equal layer duration. The first row gives the average
indices for the purely spatial regime, found by setting vm ¼ 0
in Eq. (53). These indices are found to be the same for forward
or backward waves and are the arithmetic average of the two
indices.

The second row provides the average indices for the upper
limit of the subluminal regime (or lower limit of the interluminal
regime, see Sec. 2.4) and are found by setting vm ¼ c∕n2 in
Eq. (53). The forward average index reduces to n2 since the
wave has the same velocity as the modulation and, therefore,
never exits the layer of refractive index n2. The backward wave
travels across both media so that the average index is a function
of the two refractive indices.

The third row corresponds to the superluminal lower limit
(or upper limit of the interluminal regime, see Sec. 2.4) and
is found by setting vm ¼ c∕n1 in Eq. (57). Now, the forward
average index reduces to n1 since the wave remains in medium
n1 while the backward index is the same function as in the pre-
vious case with exchanged indices.

The fourth row provides the indices for the purely temporal
limit, found by setting vm ¼ ∞ in Eq. (57). The average indices
for forward and backward waves are again equal, as is expected
since the structure is symmetric in space. Now the inverse of
the average index is the arithmetic average of the inverses of
two indices, reminiscent of a parallel circuit form. The series
and parallel circuit forms of the spatial and temporal average
indices are akin to the polarization-dependent form of the aver-
age indices in hyperbolic media.63

5.1.2 Dispersion diagram period

The first pair of dispersion curves in Fig. 10 (solid lines),
ω ¼ �v�avk, has its intercept at the origin, whereas the other
pairs of curves are (obliquely) translated from this first pair by

(a)

(b)

Fig. 10 Linear approximation of the dispersion diagram of
bilayer crystals with n2∕n1 ¼ 1.5 and equal electrical lengths.
(a) Subluminal case, with υ ¼ ð1∕3Þc. (b) Superluminal case, with
υ ¼ 2c.

Table 4 Average refractive index for different modulation veloc-
ities, from (53), with l1 ¼ l2 (upper half) and Eq. (57), with d1 ¼
d2 (lower half).

Modulation
regime

Velocity
(vm)

Average index
(nþ

av )
Average index

(n−
av )

Spatial 0
1

2
ðn1 þ n2Þ

1

2
ðn1 þ n2Þ

Subluminal
upper limit

v2 ¼ c

n2

n2 n2

3n1 þ n2

n1 þ 3n2

Superluminal
lower limit

v1 ¼ c

n1

n1 n1

3n2 þ n1

n2 þ 3n1

Temporal ∞
1

2

�
1

n1

þ 1

n2

�
−1 1

2

�
1

n1

þ 1

n2

�
−1
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qp ¼ qðkB;ωBÞ, where q is the integer representing the pair of
curves, p is the spacetime period, and kB and ωB are the wave-
number and frequency translation quantities.

In the subluminal case, the spacetime period vector is found
by recalling that the crystal is stationary in the moving frame
so that the period is simply

p 0 ¼ ðk 0
B; 0Þ ¼

�
2π

l 0
B

; 0

�
: (59)

This period is expressed in terms of laboratory-frame quanti-
ties by first applying the wavenumber Lorentz transformations
k 0
B ¼ kB∕γ and k 0

B ¼ ωB∕ðvmγÞ, which are found by setting
k 0 ¼ k 0

B, ω
0 ¼ 0, k ¼ kB, and ω ¼ ωB in Eq. (10) with vf ¼ vm

(Sec. 2.6), and next applying the length contraction l 0
B ¼ γlB

[as in Eq. (37), replacing lj, l 0
j by lB, l 0

B], so that

kB ¼ 2π

lB

; ωB ¼ 2πvm
lB

; (60)

which may be alternatively obtained from Bloch–Floquet
theory.

In the superluminal case, the spacetime period vector is

p 0 ¼ ð0;ω 0
BÞ ¼

�
0;
2π

d 0
B

�
: (61)

As for the subluminal case, we express this period into labora-
tory frame quantities by first applying the frequency transforma-
tions ω 0

B ¼ ωB∕γ and ω 0
B ¼ kB∕ðγvf∕c2Þ ¼ kBvm∕γ, which are

found by setting ω 0 ¼ ω 0
B, k 0 ¼ 0, k ¼ kB, and ω ¼ ωB in

Eq. (10) with vf ¼ c2∕vm (Sec. 2.6). We then apply the time
contraction d 0

B ¼ dB∕γ, as in Eq. (40), replacing dj, d 0
j by

dB, d 0
B, and this gives

ωB ¼ 2π

dB
; kB ¼ 2π

vmdB
: (62)

For both the subluminal and the superluminal cases, we may
write the equations for the pairs of curves forming the linear
approximation grid as

ωþ qωB ¼ �v�avðkþ qkBÞ; (63)

so that Fig. 10 may be simply plotted from v�av derived in
Sec. 5.1 along with the just derived translation quantities.

5.2 Bandgap Center Position

The bandgap centers are located at the nodes of the linear
approximation grid we have just derived. The bandgap center
BGc

0;−1 is indicated in Fig. 10 at the intersection of curves q ¼ 0

and q ¼ −1, where the superscript c refers to the center of the
bandgap.

Let us start with the subluminal case. We first derive the
k-intercepts of the curves ω ¼ v�avðk − k�q Þ, with k�q being the
k-intercepts of the forward-wave and backward-wave solutions,
found by setting ω ¼ 0 in Eq. (63) as

k�q ¼ qωB

�v�av
− qkB ¼ qkB

�
vm
�v�av

− 1

�
; (64)

where the second equation in Eq. (64) was found using Eq. (60)
The position of bandgap BG0;−1 is then found by intersecting

the curves representing the two relevant modes, i.e., setting
ω ¼ vþavk ¼ −v−avðk − k−q¼−1Þ. Inserting Eq. (64) into this inter-
section condition results in the bandgap center position

kc0;−1 ¼
vm þ v−av
vþav þ v−av

kB: (65)

The other bandgap centers are found by a similar procedure.
This relation reduces to the coupled-mode result64,65 under the
approximation vþav ¼ v−av.

For the superluminal regime, we first calculate the ω-inter-
cepts of the forward and backward curve of each mode. These
intercepts are found by setting k ¼ 0 in Eq. (63), which yields

ω�
q ¼ �qkBv�av − qωB ¼ qωB

��vþav
vm

− 1

�
; (66)

with the second equality again obtained using Eq. (62). From
these intercepts, we find the intersection position of the band-
gap BG0;−1 by intersecting the two curves as k ¼ ω∕vþav ¼
−ðω − ωb

q¼−1Þ∕v−av, which yields

ωc
0;−1 ¼

vþav
vm

v−av þ vm
v−av þ vþav

ωB; (67)

which reduce to the coupled-mode results66 under the approxi-
mation vþav ¼ v−av. The other bandgap centers are again found
by a similar procedure.

5.3 Unit-Cell Transfer Matrix

We now calculate the transfer matrix of a unit cell, extending
the classical transfer matrix of stationary structures,67 with the
help of Fig. 11. Note that this graph corresponds, for later illus-
tration convenience, to the particular design of an equal-phase
crystal, where the forward and backward round-trip trajectories
emerge at the same spacetime point. By definition, the transfer
matrix relates the fields in media i and k at the interfaces Ii;j
and Ik;l as

�
ψþ
k

ψ−
k

�
Ik;l

¼ ½MB�
�
ψþ
i

ψ−
i

�
Ii;j

; (68)

where the two interfaces separate layers i, j and k, l, respec-
tively, as shown in Fig. 11.

The unit-cell matrix is found bymultiplying interface matrices,
½Tji�, and propagation matrices, ½Pj�, according to Fig. 11, i.e.,

½MB� ¼ ½Pk�½Tkj�½Pj�½Tji�: (69)

We first calculate the interface matrix, ½Tm;m−1�, which relates the
fields at both sides of the interface Im;m−1. At the first interface
of the unit cell, we have

Deck-Léger et al.: Uniform-velocity spacetime crystals

Advanced Photonics 056002-15 Sep∕Oct 2019 • Vol. 1(5)



�
ψþ
j

ψ−
j

�
Ii;j

¼ ½Tji�
�
ψþ
i

ψ−
i

�
Ii;j

: (70)

The interface matrix may be computed using the results of
Sec. 3 for interface scattering.

In the subluminal case, reading out Fig. 2(a), we write the
scattered fields in terms of the incident fields

ψþ
j ¼ τjiψ

þ
i þ γjijψ

−
j ; (71a)

ψ−
i ¼ γijiψ

þ
i þ τijψ

−
j ; (71b)

and rearrange these equations to cast them into the form of
Eq. (70), i.e.,

½TSb
ji � ¼

1

τij

�
τjiτij − γjijγiji γjij

−γiji 1

�
; (72)

where the superscript Sb stands for subluminal. Substituting the
interface scattering coefficients [Eqs. (18)] into Eq. (72) yields

½TSb
ji � ¼

1

2ηi

" ðηi þ ηjÞ 1−vm∕vi
1−vm∕vj ðηi − ηjÞ 1þvm∕vi

1−vm∕vj
ðηi − ηjÞ 1−vm∕vi

1þvm∕vj
ðηi þ ηjÞ 1þvm∕vi

1þvm∕vj

#
: (73)

In the superluminal case, reading out Fig. 2(b), we write the
scattered fields in terms of the incident fields as

ψþ
j ¼ ξjiψ

þ
i þ ζjiψ

−
i ; (74a)

ψ−
j ¼ ζjiψ

þ
i þ ξjiψ

−
i : (74b)

These equations can then be cast into the matrix form of
Eq. (70),

½TSp
ji � ¼

�
ξji ζji
ζji ξji

�
; (75)

with the superscript Sp standing for superluminal. We note
that Eq. (75) is much simpler than Eq. (72) since in the super-
luminal case both incident waves are in the first medium and
both scattered waves are in the later medium. In other words,
the scattering matrix is equal to the interface matrix for the
superluminal case. Although Eqs. (75) and (72) have a very dif-
ferent appearance, inserting Eqs. (22) into Eq. (75) reveals that
they are in fact exactly identical, i.e., ½TSb

ji � ¼ ½TSp
ji �, consistent

with the results of Ref. 44.
We next derive the propagation matrix, which relates the

fields at the first and second interface delimiting a given layer.
For instance, the propagation matrix of layer j is given as

�
ψþ
j

ψ−
j

�
Ij;k

¼ ½Pj�
�
ψþ
j

ψ−
j

�
Ii;j

: (76)

Since there is no scattering and only a phase shift between the
interfaces, the matrix simply reads

½Pj� ¼
�
eiφ

þ
j 0

0 e−iφ−
j

�
¼ eiΔφj

�
eiφ̄j 0

0 e−iφ̄j

�
; (77)

with the phase terms defined in Sec. 4.3. Inserting the interface
matrix [Eq. (73)] and the propagation matrix [Eq. (77)] into
Eq. (68) yields the unit-cell transfer matrix

½MB� ¼ eiΔφ
�
a ib
ic a�

�
¼ eiΔφ½MB0�; (78)

where

a ¼ eiφ̄k

�
cos φ̄j þ

i
2

�
ηj
ηk

þ ηk
ηj

�
sin φ̄j

�
; (79a)

b ¼ −e−iφ̄k
1

2

�
ηj
ηk

− ηk
ηj

�
1þ vm∕vj
1 − vm∕vj

sin φ̄j; (79b)

c ¼ eiφ̄k
1

2

�
ηj
ηk

− ηk
ηj

�
1 − vm∕vj
1þ vm∕vk

sin φ̄j: (79c)

Equations (79) are valid for both the subluminal regime and the
superluminal regime, with the phase expressions φ̄j;k and Δφj;k

provided in Table 3. Matrix ½MB0� is unimodular, and so the de-
terminant of MB in Eq. (78) is det½MB� ¼ eiΔφ. Note that this
matrix satisfies the conditions beiΔϕ ¼ −b� and ceiΔϕ ¼ −c�,68
which stems from spacetime reversal symmetry, as shown
in Appendix D (Sec. 11). Identical results were found by

(a)

(b)

Fig. 11 Bilayer spacetime crystal with spacetime unit cell.
(a) Subluminal regime. (b) Superluminal regime.
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Biancalana et al. in Ref. 44 using an alternative approach based
on a symmetric form of Maxwell equations.

5.4 Dispersion Relation Derivation

The exact dispersion diagram may now be computed using the
unit-cell transfer matrix Eq. (78), which we have just derived.
From Bloch–Floquet theory, the fields before and after the unit-
cell of a crystal are related through ψ�

k ¼ eiΦBψ�
i , where ΦB is

the Bloch–Floquet phase. This leads to the eignenvalue problem

�
ψþ
k

ψ−
k

�
Ik;l

¼ ½MB�
�
ψþ
i

ψ−
i

�
Ii;j

¼ eiΦB

�
ψþ
i

ψ−
i

�
Ii;j

: (80)

The eigensolution to this problem is found by substituting
Eq. (78) into Eq. (80), grouping the difference phase
eiΔφ with the Bloch–Floquet phase eiΦB so that ð½MB0�−
eiðΦB−ΔφÞ½I�Þ½ψ i� ¼ 0, and setting the determinant to zero, i.e.,

���� a − eiðΦB−ΔφÞ b
c a� − eiðΦB−ΔφÞ

���� ¼ 0: (81)

This corresponds to a quadratic equation whose solutions are

eiðΦB−ΔφÞ ¼ aþ a�

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
aþ a�

2

�
2 − 1

s
; (82)

where the identity aa� − bc ¼ 1 associated with the unimodu-
larity of ½MB0� has been applied. Equation (82) may be rewritten
in a more standard, trigonometric form by applying the Euler
identity eiðΦBþΔφÞ ¼ cosðΦB þ ΔφÞ þ i sinðΦB þ ΔφÞ to the
left-hand side of Eq. (82) and writing i sinðΦB þ ΔφÞ ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2ðΦB þ ΔφÞ − 1

p
. Comparing the result with the right-

hand side of Eq. (82) implies

cosðΦB − ΔφÞ ¼ aþ a�

2

¼ cos φ̄j cos φ̄k − 1

2

�
ηj
ηk

þ ηk
ηj

�
sin φ̄j sin φ̄k;

(83)

where Eq. (79) has been used in the second equality.
Equation (83) is the dispersion relation, whose graphical rep-

resentation corresponds to the dispersion diagram, which we
will construct next. We may already note that the phase ΦB

in Eq. (83) may be either real or complex since the right-hand
side may be less than 1, and the inverse cosine of a quantity less
than one is complex. A real ΦB phase will be associated with
pure propagation, whereas an imaginary ΦB phase will be as-
sociated with either attenuation or amplification, corresponding
to bandgaps in the dispersion diagram.

5.5 Construction of Dispersion Diagram

The dispersion relation Eq. (83) essentially relates the Bloch–
Floquet phase (ΦB) and the phases in the layers of the crystal
(φ̄ and Δφ). To plot the dispersion diagram, we must transform
this relation into one that relates the frequencies and wavenum-
bers (ω and k). This may be conveniently done using a set of
parametric equations.

We start with the subluminal case. First, we write the Bloch–
Floquet phase in terms of the frequency and wavenumber, i.e.,

ΦB ¼ Φ 0
B ¼ k 0l 0

B ¼ γ2
�
k − vm

c2
ω

�
lB; (84)

where the last equation used the Lorentz wavenumber transfor-
mation Eq. (10) and length contraction Eq. (37). The frequency
and wavenumber in Eq. (84) are related to the conserved fre-
quency parameter ωe through

ωe ¼ ω − vmk; (85)

from the fact that ω 0
e ¼ ω 0, similarly to Eq. (26). Combining

Eqs. (84) and (85) and factoring out ω and k finally yields
the parametric equations

ωðωeÞ ¼
vmΦBðωeÞ

lB

þ γ2ωe; (86a)

kðωeÞ ¼
ΦBðωeÞ
lB

þ γ2
v2m
c2

ωe: (86b)

To plot the dispersion relations, we first calculate the Bloch–
Floquet phase ΦBðωeÞ using Eq. (83), with φ̄i;jðωeÞ and
Δφi;jðωeÞ given in Table 3. We then compute ωðωeÞ and
kðωeÞ in Eq. (86) independently, for a range of frequencies
ωe, and plot them to obtain the dispersion diagram of Fig. 12(a).

In the superluminal case, the Bloch–Floquet phase is

ΦB ¼ Φ 0
B ¼ ω 0d 0

B ¼ γ2
�
ω − c2

vm
k

�
dB; (87)

where the second equality was again found from the Lorentz
frequency transformation Eq. (10) and the time contraction
Eq. (40). The frequency and wavenumber in Eq. (87) are related
to the conserved spatial frequency ke through

ke ¼ k − ω∕vm; (88)

from the fact that k 0
e ¼ k 0 as in Eq. (28). Combining Eq. (87)

with Eq. (88) leads to the parametric equations

ωðkeÞ ¼
ΦBðkeÞ
dB

þ γ2
c2

vm
ke; (89a)

and

kðkeÞ ¼
ΦBðkeÞ
vmdB

þ γ2ke: (89b)

The dispersion diagram corresponding to the parametric equa-
tions [Eqs. (89)] is plotted in Fig. 12(b) following the same pro-
cedure as for the subluminal case, i.e., calculating ΦBðkeÞ from
Eq. (83), with φ̄ðkeÞ andΔφðkeÞ given in Table 3, and then com-
puting the parametric equations [Eqs. (89)] for ωðkeÞ and kðkeÞ.
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Figure 12 plots not only the exact dispersion diagram but also
the linear approximation derived in Sec. 5.1. It may be seen that
latter coincides with the former as expected.

5.6 Equal-Phase Crystals

The formulas of the previous sections are completely general and
readily amenable to computation. For presentation simplicity, the
rest of the paper studies the particular design of an equal-phase
crystal, which is a generalization of the conventional quarter-
stack structure. In this section, we find the closed-form expres-
sions of the average and difference phase of equal-phase crystals.

We define a bilayer equal-phase crystal as a crystal whose
two layers constituting the unit cell induce the same round-trip
phase shift, i.e.,

φ̄ ¼ φ̄j ¼ φ̄k: (90)

For stationary crystals, this corresponds to the condition
nili ¼ njlj, which is called the quarter-wave stack condition
when nili ¼ njlj ¼ λ0∕4.62

In the subluminal case, the expression of the average phase is
written in terms of the lengths, the modulation velocity, and the
wave velocities by inserting Eq. (38b) into Eq. (90), yielding

φ̄ ¼ ωe

ljvj
v2j − v2m

¼ ωe

lkvk
v2k − v2m

¼ ωede∕2; (91)

where the quantity de corresponds to the time a wave takes to
accomplish a round trip in a layer, as can be found geometrically
from the plot of de in Fig. 9(a). Therefore, if two layers have
the same round-trip duration de, we will call them equal-phase.
For later use, we express this round-trip duration in terms of
the physical length of the unit cell, lB, as

de ¼
2vjvk

ðvj þ vkÞðvjvk − v2mÞ
lB; (92)

which may also be found geometrically from Fig. 9(a).
The total phase difference Δφ between forward and back-

ward waves in the entire unit-cell is

Δφ ¼ Δφj þ Δφk ¼ vmγ2
ðvj þ vkÞð1 − vjvk∕c2Þ

vjvk
ωede

¼ 2vmγ2
1 − vjvk∕c2

vjvk − v2m
ωelB: (93)

where Eqs. (38c) and (92) have been used in the second and
third equalities.

In the superluminal case, the equal-phase condition is written
in terms of the durations of the layers, the modulation velocity
and the wave velocities by inserting Eq. (41b) into Eq. (90),
yielding

φ̄ ¼ ke
djv2mvj
v2m − v2j

¼ ke
dkv2mvk
v2m − v2k

¼ kele∕2; (94)

where le corresponds to the total travel length of the forward
and backward waves in a slab, as can be found from Fig. 9(b),
and is related to the duration dB through

le ¼
2v2mvjvk

ðvj þ vkÞðv2m − vjvkÞ
dB: (95)

The total phase difference, Δφ, is

Δφ ¼ Δφj þ Δφk ¼ γ2
c2

v2m

ðvj þ vkÞð1 − vjvk∕c2Þ
vjvk

kele

¼ vmc2γ2
1 − vjvk∕c2

vjvk − v2m
kedB; (96)

where Eq. (41c) and Eq. (95) have been used in the second and
third equalities.

5.7 Description of the Dispersion Diagram

5.7.1 Brillouin zone

The dispersion diagrams corresponding to the exact solutions
Eq. (86) and Eq. (89) are plotted only for first Brillouin zones

(a)

(b)

Fig. 12 Dispersion diagram of bilayer crystals with n2∕n1 ¼ 1.5
and equal phases (φj ¼ φk ). The solid curves correspond to the
exact solution [Eqs. (86) and (89)], with the black and blue parts,
respectively, corresponding to the real and imaginary parts, and
the dashed curves to the linear approximation [Eq. (63)]. (a) Sub-
luminal case, with υ ¼ ð1∕3Þc. (b) Superluminal case, with υ ¼ 3c.
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in Fig. 12 since the rest of the diagrams follows by periodicity.
To find the limits of the Brillouin zones, we study Eq. (83), and
see that this function is periodic in ΦB − Δφ ¼ 2πn. We there-
fore define the Brillouin zones as delimited by

ΦB − Δφ ¼ �π: (97)

In the subluminal case, this can be expressed in terms of the
frequency and wavenumber by substituting Eqs. (84) and (93)
with Eq. (85) into Eq. (97), yielding

k ¼ vm
vjvk

ω� πðvjvk − v2mÞ
vjvklB

: (98)

This is the expression for the two oblique lines delimiting
the Brillouin zone. Their slope is vjvk∕vm, and the k-intercepts
are �πðvjvk − v2mÞ∕ðvjvklBÞ, reducing, as expected, to �π∕lB

in the stationary case. Note that the limits of the Brillouin zone
are not parallel to the ω 0 axis, as they would be for the case of
a moving medium. In the case of a moving isotropic medium,
the crystal would appear stationary in the moving frame and
so the Brillouin zone would be parallel to the ω 0 axis.

In the superluminal case, substituting Eqs. (87) and (96) with
Eq. (88) into Eq. (97) yields

ω ¼ vjvk
vm

k� πðv2m − vjvkÞ
v2mdB

; (99)

with the slope being again vjvk∕vm.

5.7.2 Complex nature of the bandgaps

The bandgaps correspond to the imaginary part of the solution
in Fig. 12, with the imaginary frequencies alternating along the
k axis and the imaginary wavenumbers alternating along the
ω axis. We see that the frequencies and the wavenumbers are
simultaneously complex, for both the subluminal and super-
luminal regimes. This is a feature that seems to have been
previously overlooked in the literature, although it is a straight-
forward consequence of the Lorentz transformations.

In the subluminal case, the moving-frame solution has the
complex wavenumbers k 0 ¼ k 0

r þ ik 0
i , with k 0

r , k 0
i the real and

imaginary parts, and purely real frequencies so that ω 0
i ¼ 0.

Applying the frequency Lorentz transformation [Eq. (10)] to
the imaginary frequency yields ωi − vmki ¼ 0, or ωi ¼ vmki,
which shows that the complexity of ki indeed implies the com-
plexity of ωi, with ωi non-negligible for relativistic velocities.

In the superluminal case, the moving-frame solution has
the complex wavenumbers ω 0 ¼ ω 0

r þ iω 0
i , with ω 0

r , ω 0
i the real

and imaginary parts, and purely real wavenumbers so that
k 0
i ¼ 0. Applying the wavenumber Lorentz transformation
[Eq. (10)] to the imaginary wavenumber, with vf ¼ c2∕vm,
yields ki − ð1∕vmÞωi ¼ 0, or ki ¼ ωi∕vm so that the complexity
of ωi implies the complexity of ki, with ki decreasing as the
modulation velocity increases.

5.7.3 Bandgap edges

We now calculate the edges of the bandgaps, indicated as BG�
p;q

in Fig. 12, where the subscripts indicate the two modes in-
volved, and the superscript� refers to the top and bottom edges.
Theses edges are found by analyzing the exact solution Eq. (83),
which reduces to

cosðΦB − ΔφÞ ¼ cos2 φ̄ − 1

2

�
η1
η2

þ η2
η1

�
sin2 φ̄; (100)

in the equal-phase case, φ̄1 ¼ φ̄2 ¼ φ̄ (Sec. 5.6).
The bandgaps correspond to complex Bloch–Floquet phases,

and therefore to the right-hand side of Eq. (100) being less than
−1. Thus, the bandgap edges occur at the limit

cos2 φ̄ − 1

2

�
η1
η2

þ η2
η1

�
sin2 φ̄ ¼ −1: (101)

Applying the trigonometric relation sin2ðφ̄Þ ¼ 1 − cos2ðφ̄Þ
and grouping the cosine terms, we find that the bandgap edge
condition reduces to

φ̄ ¼ arccos

�
� η2 − η1
η1 þ η2

�
¼ arccosð�υÞ ≈υ≪1 π

2
� υ: (102)

This condition delimits two curves on which the bandgap edges
lie. In addition, the bandgap edges lie on the Brillouin zone lim-
its, as can be seen in Fig. 12. This is found by noting that the
inverse cosine of a quantity less than −1 has the form π þ ix and
at the limit is �π. Setting the inverse cosine of the right-hand
side of Eq. (100) equal to �π retrieves Eq. (97).

In the subluminal case, the condition for the bandgap edge
may be written in terms of frequency and wavenumber by
inserting Eq. (91) with Eq. (85) into Eq. (102) as

ω ¼ vmkþ
1

de
arccosð�υÞ; (103)

which represent the equations of the parallel straight curves,
with slope vm and ω-intercept 1∕de arccosð�υÞ, that delimit
the bandgap. The Brillouin zone limits are written in terms of
frequencies and wavenumbers in Eq. (98). Solving this system
of equations provides the bandgap edge positions BG0;−1 as

ω�
0;−1 ¼

1

lB

½vmπ þ ðvj þ vkÞ arccosð�υÞ�; (104a)

k�0;−1 ¼
1

lB

�
π þ vmðvj þ vkÞ

vjvk
arccosð�υÞ

�
: (104b)

From these results, we may express the bandgap width
Δω0;−1 ¼ ωþ

0;−1 − ω−
0;−1 as

Δω0;−1 ¼
vj þ vk
lB

½arccos υ − arccosð−υÞ� ≈υ≪1
2
vjþ vk
lB

jυj;
(105)

and the corresponding wavenumber width Δk0;−1 ¼ kþ0;−1−
k−0;−1, simply found as Δk0;−1 ¼ Δω0;−1vm∕ðvjvkÞ from the
geometrical construction in Fig. 12(a).

Note that the bandgap widths are the same for all the band-
gaps in the case of equal-phase crystals so that the edges of all
the bandgaps may be found from the bandgap width expressions
and the center positions provided in Eq. (65).

In the superluminal case, the bandgap edges lie at the inter-
section of the straight line given by Eq. (102) and the Brillouin
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zone limits, the former of which is rewritten in terms of fre-
quency and wavenumber by inserting Eq. (94) with Eq. (88) into
Eq. (102) as

k ¼ ω

vm
þ 1

le

arccosð�υÞ; (106)

and the latter of which corresponds to Eq. (99). Solving for this
system of equations, we find the positions of the limits of the
gap BG0;−1, denoted by BG�

0;−1 in Fig. 12(b), as

k�0;−1 ¼
1

dB

�
π

vm
þ vj þ vk

vjvk
arccosð�υÞ

�
; (107a)

ω�
0;−1 ¼

1

dB

�
π þ vj þ vk

vm
arccosð�υÞ

�
: (107b)

From these results, we may express the bandgap widthΔk0;−1 ¼
kþ0;−1 − k−0;−1 as

Δk0;−1 ¼
vj þ vk
vjvkdB

½arccos υ − arccosð−υÞ� ≈υ≪1
2
vj þ vk
vjvkdB

jυj;

(108)

and the frequency width Δω0;−1 ¼ ωþ
0;−1 − ω−

0;−1 is then simply
found as Δω0;−1 ¼ Δk0;−1vjvk∕vm, from the geometrical con-
struction in Fig. 12(b).

6 Truncated Crystal

6.1 Types of Truncation

As for conventional crystals, practical spacetime crystals are
necessarily finite and may be truncated along different direc-
tions, including now also the time direction.

Figure 13 describes examples of spacetime crystal trunca-
tion. In the top row [Figs. 13(a)–13(c)], the crystals are trun-
cated on the left and on the right by interfaces sharing the
same velocity. In the bottom row [Figs. 13(d)–13(f)], the crys-
tals are truncated on the left and on the right by interfaces of
different velocities. The truncations of Fig. 13 represent only
a few of an infinite number of possibilities, including for
instance multiple truncations separating the crystal in different
parts, truncations delimiting holes, or spacetime defects, in the
crystal, or periodic truncation leading to a multiscale spacetime
crystal.

Figure 14 shows the scattering phenomenology for truncated
spacetime crystals, with Fig. 14(a) corresponding to the comov-
ing structure of Figs. 13(c) and 14(b) corresponding to the
purely spatially truncated crystal of Fig. 13(a). The top panels
show the frequency transitions in the dispersion diagrams, and
the bottom panels show the different scattered waves in the
spacetime diagrams.

Let us start with the comoving truncated crystal [Fig. 14(a)].
The transition frequencies are obtained through the following
construction. First, we plot the dispersion diagrams of the space-
time crystal (Sec. 5.5) and of the surrounding medium, which is
here a simple pair of straight lines in the present nondispersive
case. Second, we place the point corresponding to the incident
wave, labeled ①, on the dispersion diagram of the incident
medium. Third, we trace an oblique line of slope vm∕c,

corresponding to the moving-frame conserved frequency (see
Sec. 3.3). The intersections of this line with the two dispersion
diagrams provide the scattered frequencies. The corresponding
scattered waves are represented in the spacetime diagram below
the dispersion diagram.

We notice that, although infinitely many frequencies are ex-
cited inside the crystal (solutions labeled ③–⑦), the transmitted
and reflected waves are monochromatic. Indeed, in the moving
frame, the interfaces appear stationary so that a single frequency
exists throughout the structure. Therefore, the reflected and
transmitted solutions in the laboratory frame, found by applying
the frequency Lorentz transformation [Eq. (10)], are also mono-
chromatic. The incident and transmitted waves both transform
in the same way since they both propagate in the same direction,
whereas the reflected wave, propagating in the opposite direc-
tion, acquires a different frequency. In the case of Fig. 14(a), it is
downshifted, as expected from the Doppler effect for a receding
structure.

We now proceed to the analysis of the purely spatially
truncated crystal [Fig. 14(b)]. The transition frequencies are
obtained through the following construction. First, we plot
again the dispersion diagrams of the spacetime crystal and
the surrounding media, along with the incident wave, labeled
①. Second, we enforce frequency conservation at the first inter-
face by tracing horizontal lines, which leads to the reflected
wave labeled ② and the transmitted wave labeled ③. The
frequency conservation in the moving frame involves then
all the harmonic waves along the oblique line of slope vm∕c
(labeled ④–⑦). Due to frequency conservation at the left and

(a) (b) (c)

(d) (e) (f)

Fig. 13 Examples of spacetime crystal truncation by a pair of
spactime interfaces of velocities υL and υR for the left and right
interfaces, respectively. Top row: the two interfaces have the
same velocity, υL ¼ υR. Bottom row: the two interfaces have
different velocities, υL ≠ υR. (a) Purely spatial truncation, υL ¼
υR ¼ 0. (b) Truncation with velocity different from the modulation
velocity, υL ¼ υR ≠ υm. (c) Comoving truncation, υL ¼ υR ¼ υm.
(d) Antiparallel truncation, υL ≠ υR ≠ υm. (e) Spacetime cavity with
piecewise constant velocities. (f) Spacetime cavity with continu-
ously varying velocity.

Deck-Léger et al.: Uniform-velocity spacetime crystals

Advanced Photonics 056002-20 Sep∕Oct 2019 • Vol. 1(5)



right interfaces, each of these harmonics produces a correspond-
ing wave in the surrounding medium so that the scattered waves
contain multiple harmonics.

6.2 Scattering Coefficients

We now apply the transfer matrix technique to solve the problem
of the comoving truncation spacetime crystal [Fig. 14(a)].
The spatially truncated spacetime crystal may be studied using
conventional phase matching and Bloch–Floquet techniques.6,39

The transmission and reflection coefficients of a spacetime
crystal truncated by comoving interfaces of N periods may
be obtained by simply multiplying unit-cell transfer matrix
Eq. (78) N times and then extracting the coefficients. An alter-
native approach to the matrix multiplication is the application of
the Chebyshev identity62

½MB�N ¼ eiNΔϕ½MB0�

¼ eiNΔϕ
�
aUN−1ðxÞ − UN−2ðxÞ ibUN−1ðxÞ

icUN−1ðxÞ a�UN−1ðxÞ − UN−2ðxÞ
�
;

(109)

where UN are the Chebyshev polynomials of the second kind,
defined as

UNðxÞ ¼
sin½ðN þ 1Þcos−1 x�ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − x2
p ; (110)

with the argument

x ¼ aþ a�

2
; (111)

where we recall that a, a�, b, and c are the elements of the unit-
cell matrix MB, given in Eqs. (79).

To extract the total transmission and reflection coefficients,
the scattering matrix is written in terms of transfer-matrix
parameters:

�
ψ−
1

ψ−
N

�
¼

�
Γ11 T1 N

TN1 ΓNN

��
ψþ
1

ψþ
N

�
¼ 1

A�

� −A 1

AA� − BC A

��
ψþ
1

ψþ
N

�
;

(112)

with A; A�; B; C corresponding to the a; a�; b; c elements of the
½MB�N matrix.

The results are plotted in Fig. 15(a). We notice for waves in
the gap, the reflected wave is partly absorbed by the structure
since the reflection coefficient is less than one, and there is no
transmitted wave.

(a) (b)

Fig. 14 Scattering from two canonical truncated spacetime crystals. In both cases, the crystal is
subluminal, and the medium surrounding it is a simple nondispersive dielectric medium of refrac-
tive index n0. Top row: dispersion diagrams with transition frequencies. Bottom row: spacetime
diagrams with scattered waves, with labels corresponding the solutions of the top panels. Note
that the drawn scattered waves correspond to the waves seen in the laboratory frame and would
completely different in the moving frame. (a) Comoving truncation. A moving-frame observer
would see a stationary crystal bounded by stationary interfaces, and hence measure a unique
frequency everywhere, inside and outside the crystal. The arrows indicate the up and down fre-
quency and wavenumber transitions at the two interfaces. (b) Purely spatial truncation. A moving-
frame observer would see a stationary crystal bounded by moving interfaces, and hence measure
an infinity of frequencies.
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For the superluminal crystal, the scattering matrix is the same
as the transfer matrix since waves in the last medium are also
the scattered waves. The coefficients are thus

ZN1 ¼ A; (113a)

ΞN1 ¼ C; (113b)

and are plotted in Fig. 15. We see that in the gap, both the trans-
mitted and the reflected waves are amplified. This is consistent
with the analysis of the interference for a superluminal slab in
Sec. 4: both scattered waves are in constructive interference in
the bandgap.

We note that the bandgap centers in Fig. 15 do not correspond
to the bandgap centers calculated in Eqs. (65) and (67). This is
due to the effect shown in Fig. 14(a): the frequencies horizontally
aligned with the bandgaps will not see the bandgap. Instead, the
frequencies aligned on an oblique line of slope vm and passing
through the bandgap will see the bandgap. The bandgap centers
of Fig. 15 are provided in Appendix E (Sec. 12).

7 Conclusion
We have performed a comprehensive analysis of uniform-
velocity bilayer spacetime crystals. We started with the problem
of spacetime interfaces, then addressed the problem of double-
interfaces, or spacetime slabs, next solved the problem of un-
bounded crystals, and finally studied the problem of truncated
crystals.

Throughout the paper, we have made extensive use of
special relativity concepts, including the graphical tool of space-
time diagrams, which offered remarkable resolution simplicity,
provided deep insight into the physics, and led us to uncover a

number of new results. The new insights include a vivid Bragg-
type description of the bandgap interference phenomenology,
a quick linear approximation of dispersion diagrams, and the
explanation of the effect of the truncation. The new results in-
clude the generalization of the Stokes principle to spacetime in-
terfaces and the description of the simultaneous frequency and
wavenumber complexity in the bandgaps.

This work may be extended to multilayer-cell spacetime
crystals, spacetime crystals made of dispersive media, and
higher dimension crystals.

8 Appendix A: Bianisotropy, Wave
Impedance, and Wave Velocity
in the Moving Frame

We derive here the constitutive relations for homogeneous iso-
tropic media as seen in a moving frame. Figure 16 represents a
modulated spacetime interface, from the viewpoint of the labo-
ratory frame in Fig. 16(a) and from the viewpoint of the moving
frame in Fig. 16(b). In Fig. 16(a), the interface of the spacetime
modulation moves to the right but its constitutive particles have
vertical trajectories, i.e., appear stationary. In Fig. 16(b), the
interface appears stationary, but the particles appear in motion,
moving to the left.

We first write the constitutive relations of the bulk stationary
medium in the laboratory frame

Dxj ¼ ϵjExj; (114a)

Byj ¼ μjHyj: (114b)

Applying the Lorentz transformations [Eq. (13)] to these rela-
tions yields

D 0
xj − vf

c2
H 0

yj ¼ ϵjðE 0
xj − vfB 0

yjÞ; (115a)

and

B 0
yj − vf

c2
E 0
xj ¼ μjðH 0

yj − vfD 0
xjÞ: (115b)
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Fig. 15 Transmission and reflection coefficients for an N ¼ 15-
layer crystal [corresponding to Fig. 13(c) and Fig. 14(a)] with
ϕ1,2 ¼ π∕2. The gap centers ωi, k i are provided in Appendix E
(Sec. 12). (a) Subluminal case, with υ ¼ 1∕3c and n2∕n1 ¼ 2,
with attenuation in the bandgaps. (b) Superluminal case, with
υ ¼ 3c and n2∕n1 ¼ 1.2 with amplification in the bandgaps.

(a) (b)

Fig. 16 Spacetime interface represented in two inertial frames.
The arrows represent the trajectories of themedia particles. In both
(a) and (b), the interfaces of the spacetime variation are parallel to
the ct 0 axis and the media trajectories are parallel to the ct axis.
(a) Laboratory frame viewpoint. Media appear at rest. Wave veloc-
ity is independent of direction: υþj ¼ υ−j (b) Moving frame viewpoint.
Media appear to be moving in −z direction. Wave velocities are
direction dependent: υþj ≠ υ−j , with jυ−j j > jυþj j.
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Solving Eqs. (115a) and (115b) for D 0
y and B 0

x, we obtain the
constitutive relations

D 0
xj ¼ ϵj

1 − v2f ∕c2

1 − v2f ∕v2j
E 0
xj þ

vf
c2

1 − c2∕v2j
1 − v2f ∕v2j

H 0
yj ¼ ϵ 0jE

0
xj þ χ 0

jH
0
yj;

(116a)

and

B 0
yj ¼ μj

1 − v2f ∕c2

1 − v2f ∕v2j
H 0

yj þ
vf
c2

1 − c2∕v2j
1 − v2f ∕v2j

E 0
xj ¼ μ 0

jH
0
yj þ χ 0

jE
0
xj;

(116b)

where vj is the velocity of light in the medium in the laboratory
frame, vj ¼ 1∕ ffiffiffiffiffiffiffiffi

ϵjμj
p . These equations reveal that the medium

is biisotropic in the moving frame, since the magnetoelectric
coupling terms are scalar, and, more specifically, a Tellegen
medium, since the there is a unique variable χj for both the
electromagnetic and the magnetoelectric coupling terms. More
generally, moving volumes appear bianisotropic in the moving
frame. Indeed, the media do not transform the same way in
the directions parallel and perpendicular to the motion of the
medium.

We next calculate the wave impedance and the wave velocity
of moving isotropic media. We first write the Maxwell curl
equations for a plane monochromatic wave:

ω 0
jD

0
xj ¼ k 0

jH
0
yj; ω 0

jB
0
yj ¼ k 0

jE
0
xj: (117)

Dividing the left equation of Eq. (117) by the right equation of
Eq. (117), we find

D 0
xj

H 0
yj
¼ B 0

yj

E 0
xj
: (118)

Inserting the constitutive relations [Eq. (116b)] into
Eq. (118), we find the impedance η 0

j, defined as the ratio of
the E and H fields:

η 0
j ¼

E 0
xj

H 0
yj
¼

ffiffiffiffiffi
μ 0
j

ϵ 0j

s
¼

ffiffiffiffiffi
μj
ϵj

r
¼ ηj; (119)

where the third equality comes from the definitions of μ 0, ϵ 0 in
Eqs. (116). We thus conclude from Eq. (119) that the impedance
is invariant under a change of frames.

The wave velocity, defined as v�0
j ¼ ω 0

j∕k 0
j, is found from

Eq. (117) as

v�0
j ¼ ω 0

j

k 0
j
¼ H 0

yj

D 0
xj
¼ E 0

xj

B 0
yj
; (120)

inserting Eqs. (119) and (116) into Eq. (120) yields

v�0
j ¼ H 0

yj

D 0
xj
¼ 1

ϵ 0jη
0
j þ χ 0

j
¼ v�j þ vf

1þ v�j vf∕c2
: (121)

Comparing this result with the addition law of velocities pro-
vided in Eq. (7b), we see a sign difference of vf , due to the fact

that for a positive modulation velocity, vm > 0, the medium
appear to be moving in the −z 0 direction in the moving frame,
as drawn in Fig. 16(b).

9 Appendix B: Alternative Derivation
of the Continuity Conditions

We start with 1-D Maxwell equations,

∂Ex

∂z ¼ −∂By

∂t ¼ −∂μðz − vmtÞHy

∂t ; (122a)

∂Hy

∂z ¼ −∂Dx

∂t ¼ −∂ϵðz − vmtÞEx

∂t ; (122b)

and apply the following coordinate transformation:

z 0 ¼ z − vmt; t 0 ¼ t: (123)

This does not correspond to a Lorentz transformation and,
therefore, does not lead to invariance. The partial derivatives
of Eq. (122) are found as

∂
∂z ¼

∂
∂z 0

∂z 0
∂z þ ∂

∂t 0
∂t 0
∂z ¼ ∂

∂z 0 ; (124a)

∂
∂t ¼

∂
∂t 0

∂t 0
∂t þ

∂
∂z 0

∂z 0
∂t ¼ ∂

∂t 0 − vm
∂
∂z 0 : (124b)

Substituting these relations into Eq. (122) yields

∂Ex

∂z 0 ¼ −
� ∂
∂t 0 − vm

∂
∂z 0

�
μðz 0ÞHy; (125a)

∂Hy

∂z 0 ¼ −
� ∂
∂t 0 − vm

∂
∂z 0

�
ϵðz 0ÞEx: (125b)

Rearranging Eq. (125), we find

∂
∂z 0 ½Ex − vmμðz 0ÞHy� ¼ − ∂

∂t 0 μðz
0ÞHy; (126a)

∂
∂z 0 ½Hy − vmϵðz 0ÞEx� ¼ − ∂

∂t 0 ϵðz
0ÞEx: (126b)

Inspecting these equations, we can deduce the continuity
conditions by reasoning ad absurbdum: if the arguments of
the ∂z 0 derivative on the left-hand side in Eq. (126), Exþ
vmμðz 0ÞHy or Hy þ vmϵðz 0ÞEx, vary as a step function, then
the right-hand side would be an impulse function, which is
unphysical. Therefore, quantities Ex þ vmμðz 0ÞHy and Hyþ
vmϵðz 0ÞEx, or Ex þ vmBy and Hy þ vmDx, must be continuous
at the interface. We can see that in the limiting case when
vm ¼ 0, the quantities Ex;Hy are continuous, as expected. In
the limiting case vm ¼ ∞, the quantities Dx; By are continuous,
as reported in Ref. 59.
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10 Appendix C: Travel Length or Duration
Across a Slab

Consider Fig. 17. Each graph involves two triangles, one with
slope nj and the other with slope c∕vm.

In the subluminal case, represented in Fig. 17(a), we have

nj ¼
ctþj
zþj

;
c
vm

¼ ctþj
zþj − lj

: (127)

Isolating zþj in both relations

zþj ¼ ctþj
nj

; zþj ¼ lj þ ctþj
vm
c
; (128)

and equating these results yields

ctþj
nj

¼ lj þ ctþj
vm
c
; tþj ¼ ljnj∕c

1 − vmnj∕c
: (129)

Similarly, in superluminal case, represented in Fig. 17(b),
we have

nj ¼
ctþj
zþj

;
c
vm

¼ ctþj − cdj
zþj

: (130)

Isolating ctþj in both relations

ctþj ¼ zþj nj; ctþj ¼ c
vm

zþj þ cdj; (131)

and equating these results yields

zþj nj ¼
c
vm

zþj þ cdj; zþj ¼ cdj
nj − c∕vm

: (132)

11 Appendix D: Unit-Cell Matrix Symmetry
We deduce the properties of the unit-cell transfer matrix

�
ψþ
out

ψ−
out

�
¼ ½MB�

�
ψþ
in

ψ−
in

�
; (133)

by applying a spacetime symmetry argument, with the help of
Fig. 18. The initial problem of a spacetime slab is represented
in the top left panel of the figure. A time reversal and a space
reversal are successively applied to this problem, resulting in
the bottom right panel, which retrieves the initial problem. We
therefore expect the matrix relating the fields on the left to the
fields on the right of the slab to be the same for the spacetime
reversed problem and for the initial problem. According to the
bottom right panel of Fig. 18

�
ψþ�
in

ψ−�
in

�
¼ ½MB�

�
ψþ�
out

ψ−�
out

�
: (134)

Taking the complex conjugate of this relation and multiplying
the resulting equation by the inverse ofM�

B reveals the following
property:

½M�
B�−1 ¼ MB; (135)

or, in terms of the matrix elements

�
a b
c d

�
¼ 1

det½M�
�

d� −b�
−c� a�

�
: (136)

Since for spacetime slab, det½MB� ¼ eiΔϕ (see Sec. 5.3)

aeiΔϕ ¼ d�; (137)

beiΔϕ ¼ −b�; ceiΔϕ ¼ −c� (138)

which is consistent with the results in Ref. 68 and with Eq. (79)
of Sec. 5.3.

(a) (b)

Fig. 17 Graphical derivation of the travel length or duration
across the unit cell of the crystal. (a) Subluminal regime (length).
(b) Superluminal regime (duration).

Fig. 18 Successive application of time reversal (T ) and space
reversal (P).
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12 Appendix E: Frequency Centers for
Parallel Truncation

Here, we calculate the incident frequencies and wavenumbers
aligned with the bandgaps in the case of a comoving truncation.
Figure 19 provides the graphical construction, with the dis-
persion of the incident medium of refractive index n0 and the
dispersion diagram of the spacetime crystals.

We start with the subluminal case. We first deduce ωeg
, which

is found from Fig. 19(a) to satisfy

ωeg
¼ ωc

0;−1 − vmkc0;−1 ¼ ðvþav − vmÞ
vm þ v−av
vþav þ v−av

kB; (139a)

where the expressions for the bandgap centers of Eq. (65) in
the paper were used. The incident frequencies aligned with the
center of the bandgap, ωig , are expressed as a function of ωeg

as

ωig ¼
vi

vi − vm
ωeg

: (139b)

Similarly, in the superluminal case, keg is found from
Fig. 19(b) as

keg ¼ kc0;−1 −
ωc
0;−1
vm

¼
�

1

vþav
− 1

vm

�
vþav
vm

v−av þ vm
v−av þ vþav

ωB; (140a)

where the bandgap center expressions of Eq. (67) in the paper
were used for the second equality. The incident wavenumbers
aligned with the center of the bandgap, kig , are expressed as
a function of keg as

kig ¼
vm

vm − vi
keg : (140b)
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