26 March 2019 Systematic analysis of bias and variability of morphologic features for lung lesions in computed tomography
Author Affiliations +
Abstract
We propose to characterize the bias and variability of quantitative morphology features of lung lesions across a range of computed tomography (CT) imaging conditions. A total of 15 lung lesions were simulated (five in each of three spiculation classes: low, medium, and high). For each lesion, a series of simulated CT images representing different imaging conditions were synthesized by applying three-dimensional blur and adding correlated noise based on the measured noise and resolution properties of five commercial multislice CT systems, representing three dose levels (CTDIvol of 1.90, 3.75, 7.50 mGy), three slice thicknesses (0.625, 1.25, 2.5 mm), and 33 clinical reconstruction kernels from five clinical scanners. The images were segmented using three segmentation algorithms and each algorithm was evaluated by computing a Sørensen–Dice coefficient between the ground truth and the segmentation. A series of 21 shape-based morphology features were extracted from both “ground truth” (i.e., preblur without noise) and “image rendered” lesions (i.e., postblur and with noise). For each morphology feature, the bias was quantified by comparing the percentage relative error in the morphology metric between the imaged lesions and the ground-truth lesions. The variability was characterized by calculating the average coefficient of variation averaged across repeats and imaging conditions. The active contour segmentation had the highest average Dice coefficient of 0.80 followed by 0.63 for threshold, and 0.39 for fuzzy c-means. The bias of the features was segmentation algorithm and feature-dependent, with sharper kernels being less biased and smoother kernels being more biased in general. The feature variability from simulated images ranged from 0.30% to 10% for repeats of the same condition and from 0.74% to 25.3% for different lesions in the same spiculation class. In conclusion, the bias of morphology features is dependent on the acquisition protocol in combination with the segmentation algorithm used and the variability is primarily dependent on the segmentation algorithm.
© 2019 Society of Photo-Optical Instrumentation Engineers (SPIE) 2329-4302/2019/$25.00 © 2019 SPIE
Jocelyn Hoye, Justin Solomon, Thomas J. Sauer, Marthony Robins, and Ehsan Samei "Systematic analysis of bias and variability of morphologic features for lung lesions in computed tomography," Journal of Medical Imaging 6(1), 013504 (26 March 2019). https://doi.org/10.1117/1.JMI.6.1.013504
Received: 14 August 2018; Accepted: 1 March 2019; Published: 26 March 2019
Lens.org Logo
CITATIONS
Cited by 9 scholarly publications.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Image segmentation

Computed tomography

Lung

Image processing algorithms and systems

Scanners

Computer simulations

Imaging systems

Back to Top