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Abstract. Until recently, Landsat technology has suffered from low signal-to-noise ratio (SNR)
and comparatively poor radiometric resolution, which resulted in limited application for inland
water and land use/cover mapping. The new generation of Landsat, the Landsat Data Continuity
Mission carrying the Operational Land Imager (OLI), has improved SNR and high radiometric
resolution. This study evaluated the utility of orthoimagery from OLI in comparison with the
Advanced Land Imager (ALI) and hyperspectral Hyperion (after preprocessing) with respect to
spectral profiling of classes, land use/cover classification, classification accuracy assessment,
classifier selection, study area selection, and other applications. For each data source, the support
vector machine (SVM) model outperformed the spectral angle mapper (SAM) classifier in terms
of class discrimination accuracy (i.e., water, built-up area, mixed forest, shrub, and bare soil).
Using the SVM classifier, Hyperion hyperspectral orthoimagery achieved higher overall accu-
racy than OLI and ALI. However, OLI outperformed both hyperspectral Hyperion and multi-
spectral ALI using the SAM classifier, and with the SVM classifier outperformed ALI in terms of
overall accuracy and individual classes. The results show that the new generation of Landsat
achieved higher accuracies in mapping compared with the previous Landsat multispectral sat-
ellite series. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the origi-
nal publication, including its DOI. [DOI: 10.1117/1.JRS.10.026004]
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1 Introduction

A new generation of Landsat [Landsat-8 Operational Land Imager (OLI)] was launched in 2013.
Landsat-8 uses reflective windows, namely OLI, and thermal atmospheric windows, i.e., Thermal
Infrared Scanner (TIRS), to explore Earth phenomenology.1 OLI is a push-broom sensor that col-
lects imagery in eight spectral bands with 30 m resolution. It allows for 12-bit quantization of data,
which have high signal-to-noise (SNR) radiometric performance and provide more bits for land
use/cover mapping.2 In OLI, a new coastal/aerosol band is centered at 443 nm, and its enhanced
features should allow for more accurate water and land use/cover mapping compared with the
previous Landsat series.3–5 For example, Landsat-7, which was characterized by 8-bit quantization
and low SNR performance, which made it difficult to separate water from other dark objects.

Aside from the Landsat series, other comparable satellite-based sensors include the Advanced
Land Imager (ALI), Hyperion, and IKONOS. ALI is a push-broom sensor that collects imagery in
nine spectral bands with 30 m resolution. It has higher SNR, radiometric reliability, and spectral
channels than Landsat-7.6 For Hyperion, the bands and resolution of imagery allow for 12-bit
quantization of data; however, limitations in the system design result in low SNR performance
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in very short blue bands and the need for atmospheric correction in preprocessing.7,8 IKONOS
QuickBird imagery has been used for water mapping in shallow waters but is not useful for regular
monitoring purposes9–11 and was not considered in this study.

Hyperspectral remote sensing with narrow spectral bands is appropriate for analyzing inland
waters and land cover mapping/change.12–18 In particular, the Hyperion sensors used for land
use/cover classification can capture 256 spectra, each with 242 narrow electromagnetic bands,
including visible and shortwave-infrared.19–27 However, few studies have examined the use of
previous Landsat multispectral satellite series in land use/cover mapping applications.17,18,28,29

In addition to the different sensors, the classification of remote sensing imagery can employ
both parametric and nonparametric classifiers, for example, the spectral angle mapper (SAM)30,31

and the support vector machine (SVM).32,33 The SAM classifier is noniterative,34 whereas SVM is
an iterative classifier that is independent of the statistical data distribution and study training data
near the class border.35,36

This study compared the enhanced capabilities of the new generation of Landsat (Landsat-8
OLI), with the interpretation, display, and analysis of data from the ALI and Hyperion sensors.
The main purposes of the study were (1) to analyze the application of fast line-of-sight atmos-
pheric analysis of hypercubes (FLAASH) and quick atmospheric correction (QUAC) to OLI,
ALI, and Hyperion orthoimagery following preprocessing and the application of principal com-
ponent analysis (PCA); (2) to evaluate the spectral profiling of all classes from OLI, ALI, and
Hyperion orthoimagery; (3) to evaluate the classification of OLI, ALI, and Hyperion orthoi-
mages using the SVM and SAM classifiers; and (4) to compare the classification accuracies
of OLI, ALI, and hyperspectral Hyperion orthoimages using SVM and SAM techniques.

2 Study Area, Sensors, and Data Characteristics

This study focused on dam water in a region northwest of Islamabad, Pakistan (Fig. 1). The
region of interest included water, built-up-area, mixed forest, shrub, and bare soil. The sensor

Fig. 1 (a) Regional location of the study area, located northwest of Islamabad, Pakistan, and
(b) satellite image of the study area (enclosed in red box).
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altitudes of Landsat-8 OLI, ALI, and Hyperion were the same (Table 1). The Landsat-8 OLI line
of sight was at nadir, while there were slight differences in the line of sight for ALI and Hyperion;
therefore, ALI did not exactly image the Hyperion swath. Landsat-8 contains 11 bands, with
wavelengths ranging from 433 to 12,500 nm, ground resolution of 15 to 100 m, and a
swath width of 185 km (Table 2).37 ALI contains nine bands, with wavelengths ranging
from 480 to 2350 nm, ground resolution of 10 to 30 m, and a swath width of 37 km.38

Hyperion sensors contain 70 bands in the visible-near-infrared (VNIR; 355 to 1057) and

Table 1 Imaging geometry conditions for Landsat-8, ALI, and Hyperion.

Landsat-8 OLI ALI Hyperion

Sensor altitude (km) 705 705 705

Off-nadir/Nadir Nadir 16.216 deg 23.412 deg

Sun azimuth 111.553 deg 155.544 deg 155.039 deg

Sun elevation 68.452 deg 42.866 deg 45.812 deg

Table 2 Characteristics of multispectral Landsat 8, multispectral ALI, and Hyperion hyperspectral
sensors.37–39

Sensors Band name Band number Wavelength (nm) Ground resolution (m) Swath width (km)

Landsat-8 Coastal/Aerosol 1 433 to 453 30 185
Blue 2 450 to 515

Green 3 525 to 600

Red 4 630 to 680

NIR 5 845 to 885

SWIR-1 6 1560 to 1660

SWIR-2 7 2100 to 2300

Pan 8 500 to 680 15

Cirrus 9 1360 to 1390 30

TIR-1 10 10,300 to 11,300 100
TIR-2 11 11,500 to 12,500

ALI Pan 10 480 to 690 10 37
Blue 1 433 to 453 30
Blue1 2 450 to 515

Green 3 525 to 605

Red 4 633 to 690

NIR-1 5 775 to 805

NIR-2 6 845 to 890

SWIR-1 7 1200 to 1300

8 1550 to 1750

9 2080 to 2350

Hyperion VNIR 1 to 70 355 to 1057 30 7.7
SWIR 71 to 242 851 to 2577
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172 bands in the short-wave infrared (SWIR; 851 to 2577), with a ground resolution of 30 m and
a swatch width of 7.7 km.39 OLI panchromatic and cirrus cloud bands, ALI panchromatic bands,
and Hyperion bad bands were not included in this study.

Landsat-8 OLI data level 1T (terrain corrected) LC81500372015167LGN00_L1T (path/row
150/37) of the study area was acquired on June 16, 2015, and had a scene center latitude and
longitude of 33.266 and 72.872, respectively (Fig. 2). For ALI and Hyperion, nearly coincident
orthoimagery was acquired. ALI data level 1T (terrain corrected) 1500362005292_100011_L1T
(path/row 150/36) was acquired on October 19, 2005, with a scene center latitude and longitude
of 33.99 and 72.90, respectively (Fig. 3). Hyperion data level 1T (terrain corrected)
EO11500372005285110KF_L1T (path/row 150/37) was acquired on October 12, 2005, with

Fig. 2 Landsat-8 OLI: (a) orthoimage and (b) study area true color R ¼ 4 ¼ 0.6554 μm,
G ¼ 3 ¼ 0.561 μm, B ¼ 1 ¼ 0.443 μm.

Fig. 3 ALI: (a) orthoimage and (b) study area true color R ¼ 4 ¼ 0.660 μm, G ¼ 3 ¼ 0.567 μm,
B ¼ 1 ¼ 0.441 μm.
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a scene center latitude and longitude of 33.69 and 72.76, respectively, and in the Geo TIFF
format (Fig. 4). In this study, the image map projection was Universal Transverse Mercator
Zone 43N from the World Geodetic System 84 datum. In addition, nearly coincident imagery
from OrbView-3 data 3V060702P0001269551A520000100292M_001609079_1GST was
acquired on July 2, 2006, and was georeferenced (Fig. 5).

Fig. 4 Hyperion hyperspectral: (a) orthoimage and (b) study area true color R ¼ 29 ¼ 0.641 μm,
G ¼ 20 ¼ 0.549 μm, B ¼ 11 ¼ 0.458 μm.

Fig. 5 OrbView-3 orthoimage.
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3 Data Preprocessing

3.1 Digital Number to Radiance Conversion

OLI, ALI, and Hyperion data were converted from digital number (DN) to radiance. Images were
transformed into ENVI format files within the ENVI image-processing environment. These files
contained information on wavelengths, bands, the transformation of DN to radiance/reflectance,
and atmospheric corrections.

Equation (1) was used to convert DN values to spectral radiance using the spectral radiance
scaling factor in the metadata file of OLI.40

EQ-TARGET;temp:intralink-;e001;116;621Lλ ¼ ML �Qcal þ AL; (1)

where Lλ is the radiance (W∕m2 · sr · μm),ML is the multiplicative scaling factor for each band,
Qcal is the pixel value in DN for level 1, and AL is the additive scaling factor for each band.

Hyperion data preprocessing used the Hyperion tool.sav toolkit. EO1-Hyperion images con-
tain hundreds of continuous spectral bands, each pixel of which stores energy as a 16-bit signed
integer DN. Images with DN values were converted into absolute radiance values by dividing
each band of VNIR (1 to 70) and SWIR (71 to 242) by its scale factor (i.e., 40 and 80, respec-
tively).41 The image was subsequently saved in the ENVI standard format and converted to the
bit in line data format.

3.2 Radiance to Reflectance Conversion

The FLAASH model was applied for atmospheric correction of OLI and ALI data in ENVI, and
to convert radiance values into the top of atmospheric correction (TOA). FLAASH provides fast
computational speed with ancillary data information of the scene and is used to improve results
and consistency in further processing steps. A single scale factor value (1000) for all bands was
used to convert the input radiance image [W∕ðm2 · μm · srÞ � 100] into standard FLAASH input
radiance units of μW∕ðcm2 · nm · srÞ. Reflectance values were multiplied by 10,000 in
FLAASH images so that the resulting value was between 0 and 1.

Equation (2) was used to convert DN values directly to TOA reflectance.

EQ-TARGET;temp:intralink-;e002;116;361ρ 0
λ ¼ Mρ �Qcal þ Aρ; (2)

where ρλ is the spectral reflectance (unitless) without correction of solar angle, Mρ is the multi-
plicative scaling factor for each band, Qcal is the pixel value in DN (level 1), and Aρ is the
additive scaling factor for each band.

Equation (3) was used to convert TOA reflectance with solar angle.

EQ-TARGET;temp:intralink-;e003;116;281ρλ ¼ ρ 0
λ · sinðθÞ; (3)

where ρλ is the TOA reflectance (unitless) and θ is the solar elevation angle.
Equation (4) was used on individual bands of the EO1-Hyperion hyperspectral image to

convert radiance into reflectance, which was then stored for further processing steps.42

EQ-TARGET;temp:intralink-;e004;116;213

πLλd2

cos θs · ESUNλ
; (4)

where Lλ is the spectral radiance (at the sensor aperture), d is the distance from the Earth to the
Sun (astronomical units), ESUNλ is the mean solar exo-atmospheric irradiance, and θs is the
solar zenith angle (deg).

3.3 Band Selection of Hyperion Hyperspectral Image

Raw Hyperion orthoimagery contains 242 bands, of which 44 noncalibrated bands with zero
values set during preprocessing of level 1B were removed (i.e., bands 1 to 7, 58 to 76, and
225 to 242). The remaining bands included low signal-to-noise value bands 77 and 78;43
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water absorption bands 120 to 132, 165 to 182, 185 to 187, and 221 to 224;23 and vertical strip-
ping bands 8 to 9, 56 to 57, 79 to 82, 97 to 99, 133 to 134, 152 to 153, 188, 213 to 216, and 219 to
220. After preprocessing, 136 calibrated bands were available for further analysis via QUAC
(Table 3). No further processing was required, as the imagery had a processing level of L1_T.

3.4 Quick Atmospheric Correction Applied to Hyperion Hyperspectral Imagery

A scene-based approach for the atmospheric correction of hyperspectral imagery in VNIR–
SWIR was applied using the QUAC model. QUAC provides comparatively fast computational
speed and has the advantage of using atmospheric compensation factors, without ancillary infor-
mation, directly from the information contained within the image scene. QUAC achieves better
retrievals of reflectance spectra in the absence of proper wavelength/radiometric calibration. For
the atmospheric correction of Hyperion hyperspectral imagery, QUAC was applied in ENVI in
order to improve the results and consistency in further processing steps. To compensate for
atmospheric correction in water bodies, different approaches of QUAC and FLAASH have
been used for multispectral and hyperspectral imagery.44–51 QUAC (for Hyperion) and
FLAASH (for OLI and ALI) approaches were used for atmospheric correction.

4 Results and Discussion

4.1 Principal Component Analysis of Hyperion Orthoimage

PCA was applied to the 136 calibrated bands of the Hyperion orthoimage for the purposes of
dimension reduction and further mapping applications.

The first 15 principal components (PCs; Table 4) accounted for >99.9% of the information
contained in the 136 bands, where the first PC was 94.14%, the second PC was 4.8%, and the
third PC was 0.86%; therefore, the dimensionality of the data was approximately 3.

The PC1 band was highly uncorrelated, containing the maximum amount of data variance.
Band PC2 contained the second-highest data variance, and PC3 contained the third-largest data
variance, but were also uncorrelated. PCs 4 to 15 were noisy and included little data variance.
Being highly uncorrelated, bands PC1, PC2, and PC3 (containing 99.8% of the data variance)
were suitable for producing more colorful composite images than those available via spectral
color-composite (Fig. 6).

4.2 Spectral Profiles of Different Classes in Operational Land Imager, Advanced
Land Imager, and Hyperion Orthoimages

Distinct spectral profiling was possible for all classes (i.e., water, built-up area, mixed forest,
shrub, and bare soil) within the OLI, ALI, and Hyperion orthoimagery (Fig. 7), which was

Table 3 Selected calibrated bands and wavelengths for the hyperspectral Hyperion orthoimage.

Channels Wavelengths (nm) No. of bands

10 to 55 447.2 to 905.1 46

83 to 96 972.9 to 1104.2 14

100 to 119 1144.5 to 1336.2 10

135 to 151 1497.7 to 1659.1 17

154 to 164 1689.3 to 1790.2 11

183 to 184 1981.8 to 1991.2 2

189 to 212 2042.5 to 2274.4 24

217 to 218 2324.9 to 2335.0 2
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beneficial for image classification. Spectral profiling of water (Fig. 7) is unique in IR regions, as
it absorbs all the incident energy and causes a gradual decrease in reflectance with the increase in
wavelength. However, in the visible part of the spectrum, water reflects only a small amount of
radiation and has increased reflectance. Shrub and mixed forest reflectance in the IR region
increases more rapidly than in the visible region. However, in the blue and red parts of the visible

Fig. 6 Image of PC1.

Table 4 Eigenvalues, percentage variability, and cumulative percentage of the first 15 Hyperion
orthoimage PCs.

PC Eigenvalue Percentage variability Cumulative percentage

1 129.3851 94.14 94.14

2 5.1670 4.8 98.94

3 1.1703 0.86 99.80

4 0.0475 0.03 99.83

5 0.0336 0.03 99.86

6 0.0276 0.02 99.88

7 0.0182 0.01 99.89

8 0.0133 0.01 99.90

9 0.0110 0.01 99.91

10 0.0094 0.00 99.91

11 0.0091 0.01 99.92

12 0.0071 0.01 99.93

13 0.0063 0.00 99.93

14 0.0057 0.00 99.93

15 0.0051 0.01 99.94
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spectrum (chlorophyll absorption bands), radiation is absorbed and reflectance is reduced. In the
IR region, mixed forest shows greater reflectance than shrub. Spectral profiling of built-up areas
generally increases with increasing wavelength in the visible and IR bands. Spectral profiling of
soil is unique, as it increases with the increase in wavelength. However, the presence of moisture
decreases its reflectance at a particular region.

4.3 Design of Support Vector Machines

Linear SVM is the simplest approach for separating classes. Training data with n numbers of
samples, represented by xi, and its corresponding classes, can be expressed as yi; i ¼ 1;2; : : : ; n,
where x ∈ RN in an N-dimensional space and y ∈ f−1;þ1g is the class label. The discriminate
function in the two-dimensional space can be expressed as fðXÞ ¼ w · xþ c, where w is a vec-
tor and c is a scalar, w determines the orientation of the discriminating plane, and c determines
the offset of the discriminating plane. If w · xþ c > 0, xi belongs to the first class, and if
w · xþ c < 0, xi belongs to the second class. Assuming all samples in the training sets satisfy
the situation jgðxÞj ≥ 1, classification interval 2∕kwk, kwk, or kwk2 will be the smallest.
Equation (5) shows the optimal function.

EQ-TARGET;temp:intralink-;e005;116;204Minw ¼ 1∕2kwk2 ¼ 1∕2ðw · wÞ: (5)

It should satisfy Eq. (6) to maximize the classification margin and classify all training samples to
be linearly separable. This results in optimal hyperplane S.

EQ-TARGET;temp:intralink-;e006;116;149yiðw · xþ cÞ − 1 ≥ 0; i ¼ 1;2; : : : n: (6)

Training samples in hyperplanes S1 and S2 are the samples that satisfy Eq. (7) and are the sup-
port vectors. Equation (7) was used to define the space by the set of functions

Fig. 7 Spectral profiles of different classes from the orthoimages of (a) Landsat-8 OLI, (b) ALI, and
(c) Hyperion.
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EQ-TARGET;temp:intralink-;e007;116;735fw;b ¼ ignðw · xþ cÞ: (7)

Using positive Lagrangian multipliers αi;i ¼ 1;2; : : : k, the solution to the problem of kwk2
was obtained using two steps: (1) optimization techniques of standard quadratic programming
and (2) transformation to a dual-space representation.

Equation (8) requires that Lðw;c;αÞ be minimized with respect to w and c, and maximized with
respect to αi ≥ 0, while Eq. (9) shows the decision rule for a two-class problem.

EQ-TARGET;temp:intralink-;e008;116;652Lðw;c;αÞ ¼ 1∕2kwk2 −
Xk
i¼1

αiyiðw · xi þ cÞ þ
Xk
i¼1

αi; (8)

EQ-TARGET;temp:intralink-;e009;116;602fðxÞ ¼ sign

"Xk
i¼1

αiyiðx · xiÞ þ c

#
: (9)

To improve classification accuracy and minimize misclassification errors, the relaxation factor
ξi ≥ 0 (i ¼ 1;2; : : : ; n) was introduced, which is controlled by a positive constant C such that
∞ < C < 0. Therefore, for nonseparable data, Eq. (8) becomes

EQ-TARGET;temp:intralink-;e010;116;520Lðw;c;α;μÞ ¼ 1∕2kwk2 þ C
X
i¼1

ξi −
X
i¼1

αi½yiðw · xi þ cÞ − 1þ ξi� −
X
i¼1

μiξi; (10)

where the Lagrange multiplier μi is used to enforce q positive value of ξi. The solution to Eq. (10)
required minimizing w; ξ, and c, and maximizing αi ≥ 0 and μi ≥ 0.

For a nonlinear decision surface, x ∈ RN was mapped via a nonlinear vector function ϕ by
replacing xi and xj with ϕðxiÞ and ϕðxjÞ; thus, Eq. (9) became

EQ-TARGET;temp:intralink-;e011;116;429fðxÞ ¼ sign

"Xk
i¼1

αiyiϕðxÞ · ϕðxiÞ þ c

#
: (11)

Equation (11) requires the computation of scalar products ϕðxÞ and ϕðyÞ, whose computation is
difficult.12,13 Therefore, Eq. (12) was used to define a kernel function to be commutated instead
of ϕðxÞ.

EQ-TARGET;temp:intralink-;e012;116;342Kðxi; xjÞ ¼ ϕðxiÞ · ϕðxjÞ: (12)

Equation (13) represents a nonlinear case for the dual optimization problem.

EQ-TARGET;temp:intralink-;e013;116;297 max Lðw;c;αÞ ¼
Xk
i¼1

αi − 1∕2
Xk
i¼1

Xk
j¼1

αiαjyiyjKðxi · xjÞ; (13)

subject to the constraints

EQ-TARGET;temp:intralink-;e014;116;244

Xk
i¼1

αiyi ¼ 0 and C ≥ αi ≥ 0: (14)

4.4 Operational Land Imager Classification

SVM and SAM pixel-based supervised classifiers were established and executed on OLI orthoi-
magery. In the first step, classes (i.e., water, built-up area, mixed forest, shrub, and bare soil)
were identified and formulated. In the second step, training samples for each class were collected
from the orthoimage (i.e., 5 partitions of 355 samples for water, 2 partitions for 243 samples of
built-up area, 2 partitions for 62 samples of mixed forest, 2 partitions for 47 samples of shrub, 6
partitions for 202 samples of bare soil). The selection of training samples was guided by survey
maps, familiarity with the study area, selected field visits, and interpretation of photographic
imagery, namely panchromatic black-and-white OrbView-3 (1 m resolution), ALI panchromatic
imagery (10 m spatial resolution), and Google Earth software. The training sites were selected at
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locations of consistent and prominent land cover. In the third step, the SVM and SAM classifiers
were established and executed within the ENVI image-processing environment using the train-
ing samples collected in the previous steps.

4.4.1 Support vector machine classification

SVM classification was established and executed for OLI orthoimagery in ENVI using multi-
class classification with the same number and partition of training samples [e.g., Fig. 8(a)]. The
parameter gamma (γ) was calculated as the inverse of the number of spectral bands of the OLI
orthoimage and was assigned a value of 0.143. The penalty parameter was assigned its maximum
value (i.e., 100), which forced all training pixels to be assigned to a certain class. The pyramid
parameter was assigned a zero value so that the OLI orthoimage would be processed at full
resolution. The classification probability threshold was assigned a zero value so that the entire
pixel would be assigned to a specific class, leaving no unclassified pixels in the image. For the
SVM classifier, the radial basis function (RBF) was selected as the kernel in order to achieve
better results than using other kernels (e.g., linear, polynomial, and sigmoid). Equation (15)
shows the RBF inner product function form.

EQ-TARGET;temp:intralink-;e015;116;531Kðx; yÞ ¼ exp

�
−
jx − yj2
2σ2

�
; (15)

where x and y are two samples represented as feature vectors in some input space, and σ is
variance.

4.4.2 Spectral angle mapper classification

The SAM classifier was also established and executed on the OLI orthoimage and implemented
in ENVI with the same number and partition of training samples [e.g., Fig. 8(b)]. The maximum
angle (radians) was set to 0.3.

4.5 Advanced Land Imager Classification

SVM and SAM pixel-based supervised classifiers were established and executed on the ALI
orthoimage. Classification of ALI orthoimagery followed the same steps described in Sec. 4.4.

Fig. 8 Landsat-8 OLI orthoimagery classified by (a) the SVM model and (b) the SAM classifier.
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4.5.1 Support vector machine classification

The SVM classifier was established and executed on ALI orthoimagery and implemented in
ENVI using multiclass classification with the same number and partition of training samples
[e.g., Fig. 9(a)]. The parameter gamma (γ) was calculated as the inverse of the number of spectral
bands of ALI orthoimagery and was assigned a value of 0.111. The same values and kernel as
previously described (Sec. 4.4.1) were used for the penalty parameter, pyramid parameter,
classification probability threshold, and kernel as radial basis function (RBF).

4.5.2 Spectral angle mapper classification

The SAM classifier was also established and executed on ALI orthoimage and implemented in
ENVI with the same number and partition of training samples [e.g., Fig. 9(b)]. The maximum
angle (radians) was assigned a value of 0.5.

4.6 Hyperion Hyperspectral Classification

SVM and SAM pixel-based supervised classifiers were applied to the Hyperion orthoimage.
Classification of Hyperion used the same steps as previously described (Sec. 4.4).

4.6.1 Support vector machine classification

The SVM classifier was established and executed on the Hyperion hyperspectral orthoimage and
implemented in ENVI via multiclass classification with the same number and partition of train-
ing samples [e.g., Fig. 10(a)]. The parameter gamma (γ) was calculated as the inverse of the
number of spectral bands of ALI orthoimagery and was assigned a value of 0.007. The
same values described previously (Sec. 4.4.1) were used for the penalty parameter, pyramid
parameter, classification probability threshold, and kernel as RBF.

4.6.2 Spectral angle mapper classification

The SAM classifier was also established and executed on the Hyperion orthoimage and imple-
mented in ENVI with the same number and partition of training samples [e.g., Fig. 10(b)]. The
maximum angle (radians) was set to 0.5.

Fig. 9 ALI orthoimagery classified by (a) the SVM model and (b) the SAM classifier.
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4.7 Classification Accuracy

Based on the confusion matrix, classification accuracy assessment was developed and
implemented in ENVI using the SVM and SAM classification techniques on the OLI, ALI, and
Hyperion orthoimages, thereby giving an overall accuracy and kappa coefficient. Classification
accuracy was assessed using half of the samples as test points/ground truth and compared with
training data sets for OLI, ALI, and Hyperion orthoimagery (Tables 5–10). Both classifiers
achieved good results for spatial distribution and cover density of each class. Classification accu-
racy was used to select the most appropriate classifier for orthoimagery of the study area and the
best study area orthoimage. The results showed that SVMwas more accurate than SAM, both for
overall accuracy and within individual classes.

For OLI orthoimagery, the overall accuracy and kappa coefficient were 92.52% and 0.8974,
respectively, for SVM (Table 5), and 85.59% and 0.8053 for SAM (Table 6). For ALI orthoi-
magery, the overall accuracy and kappa coefficient were 85.37% and 0.7986, respectively, for
SVM (Table 7), compared with 75.90% and 0.6724 for SAM (Table 8). For Hyperion hyper-
spectral orthoimagery, the overall accuracy was 98.57% and the kappa coefficient was 0.9802
using the SVM classifier (Table 9), compared with 79.32% and 0.7184, respectively, when using
SAM (Table 10).

Table 5 Landsat-8 OLI SVM model ground truth (%).a

Class Water Built-up area Mixed forest Shrub Bare soil

Unclassified 0.00 0.00 0.00 0.00 0.00

Water 90.14 0.82 0.00 0.00 0.00

Built-up area 6.76 89.71 0.00 0.00 0.00

Mixed forest 0.00 0.00 100 0.00 0.00

Shrub 0.28 7.00 0.00 93.62 2.48

Bare soil 2.82 2.47 0.00 6.38 97.52

Total 100.00 100.00 100.00 100.00 100.00

aOverall accuracy ¼ 92.52%, Kappa coefficient ¼ 0.8974.

Fig. 10 Hyperion orthoimagery classified by (a) the SVM model and (b) the SAM classifier.

Pervez et al.: Satellite-based land use mapping: comparative analysis of Landsat-8. . .

Journal of Applied Remote Sensing 026004-13 Apr–Jun 2016 • Vol. 10(2)



Hyperion maps with SVM classification (98.57%) were considered reference maps and the
validation source. On this basis, OLI and ALI both reasonably achieved land use/cover mapping.

SVM classification of OLI achieved higher accuracy (92.52%) than did SVM and SAM
classifiers with the ALI orthoimage. The greater classification accuracy of SVM was attributed
to generalization of the optimal separating hyperplane with the least error among all hyperplanes.

Table 6 Landsat-8 OLI SAM ground truth (%).a

Class Water Built-up area Mixed forest Shrub Bare soil

Unclassified 0.00 0.00 0.00 0.00 0.00

Water 78.59 0.00 0.00 0.00 0.00

Built-up area 19.15 86.42 0.00 4.26 0.50

Mixed forest 0.00 0.41 98.39 0.00 0.00

Shrub 1.41 12.76 1.61 89.36 7.43

Bare soil 0.85 0.41 0.00 6.38 92.08

Total 100.00 100.00 100.00 100.00 100.00

aOverall accuracy ¼ 85.59%, Kappa coefficient ¼ 0.8053.

Table 7 ALI SVM model ground truth (%).a

Class Water Built-up area Mixed forest Shrub Bare soil

Unclassified 0.00 0.00 0.00 0.00 0.00

Water 81.69 0.00 0.00 0.00 0.00

Built-up area 2.25 88.48 0.00 17.02 0.50

Mixed forest 0.00 0.00 100.00 2.13 0.00

Shrub 0.00 3.29 0.00 80.85 0.00

Bare soil 16.06 8.23 0.00 0.00 84.65

Total 100.00 100.00 100.00 100.00 100.00

aOverall accuracy ¼ 85.37%, Kappa coefficient ¼ 0.7986.

Table 8 ALI SAM ground truth (%).a

Class Water Built-up area Mixed forest Shrub Bare soil

Unclassified 0.00 0.00 0.00 0.00 0.00

Water 78.31 0.00 0.00 0.00 0.00

Built-up area 16.34 76.95 0.00 2.13 41.09

Mixed forest 0.00 0.00 96.77 0.00 0.00

Shrub 0.00 13.99 3.23 97.87 0.00

Bare soil 5.35 9.05 0.00 0.00 58.91

Total 100.00 100.00 100.00 100.00 100.00

aOverall accuracy ¼ 75.91%, Kappa coefficient ¼ 0.6724.
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With SAM classification, OLI achieved the highest accuracy (85.59%). When using SAM clas-
sification, OLI orthoimagery was more accurate than ALI and Hyperion orthoimagery. SVM
more effectively discriminated water, built-up area, mixed forest, shrub, and bare soil than
did SAM.

Owing to its spectral band configuration and enhanced radiometric performance, when using
the SVM classifier, OLI orthoimagery discriminated more effectively than did ALI for water
(90.14 versus 81.69%), built-up area (89.71; 88.48%), shrub (93.62; 80.85%), and bare soil
(97.52%; 84.65%).

Owing to its enhanced capabilities, when using the SAM classifier, OLI discriminated more
effectively than did ALI for water (78.59 versus 78.31%), built-up area (86.42; 76.95%), mixed
forest (98.39; 96.77%), and bare soil (92.08; 58.91%). These results show that the new OLI
technology allows for water classification more easily than did ALI and Hyperion orthoimagery.
Similarly, more accurate bare soil mapping was achieved with OLI than with ALI orthoimagery
using both the SVM and SAM classifiers. It was found that with the SAM classifier, some
regions of bare soil were misclassified as shrub, and bare soil was misclassified as built-up
area in OLI, ALI, and Hyperion orthoimagery. It was also found that with the passage of
time, dam water reservoir capacity has fallen considerably owing to deposition and/or silting,
with these changes clearer in OLI than in the ALI and Hyperion maps. Using the SVM classifier,
some regions of built-up area surrounded by shrub were misclassified as shrub.

The results of this study are comparable to those of other remote sensing sensor studies.
Otukei and Blaschke52 used decision trees, SVMs, and maximum likelihood classifiers, and
reported that SVM achieved the highest accuracy. Nemmour and Chibani29 reported that

Table 10 Hyperion SAM ground truth (%).a

Class Water Built-up area Mixed forest Shrub Bare soil

Unclassified 0.00 0.00 0.00 0.00 0.00

Water 78.59 0.00 0.00 0.00 0.00

Built-up area 18.03 79.84 0.00 2.13 28.22

Mixed forest 0.00 0.00 95.16 4.26 0.00

Shrub 0.00 10.70 4.84 93.62 0.00

Bare soil 3.38 9.47 0.00 0.00 71.78

Total 100.00 100.00 100.00 100.00 100.00

aOverall accuracy ¼ 79.32%, Kappa coefficient ¼ 0.7184.

Table 9 Hyperion SVM model ground truth (%).a

Class Water Built-up area Mixed forest Shrub Bare soil

Unclassified 0.00 0.00 0.00 0.00 0.00

Water 98.03 0.00 0.00 0.00 0.00

Built-up area 0.23 99.59 0.00 2.13 0.00

Mixed forest 0.00 0.00 95.16 2.13 0.00

Shrub 0.00 0.41 4.84 95.74 0.00

Bare soil 1.69 0.00 0.00 0.00 100.00

Total 100.00 100.00 100.00 100.00 100.00

aOverall accuracy ¼ 98.57%, Kappa coefficient ¼ 0.9802.

Pervez et al.: Satellite-based land use mapping: comparative analysis of Landsat-8. . .

Journal of Applied Remote Sensing 026004-15 Apr–Jun 2016 • Vol. 10(2)



SVM also outperformed artificial neural networks (ANN) when using Landsat Thematic Mapper
imagery. Dixon and Candede18 found that an SVM classifier required less training time and
fewer parameters than ANN. Pal and Mather36 found that SVM was superior to ANN when
using multispectral Landsat Enhanced Thematic Mapper Plus imagery and the airborne hyper-
spectral sensor, for which SVM had an overall accuracy of more than 91%. Karimi et al.53 found
that SVM achieved 15% better accuracy and 0.114 higher kappa coefficient when using an air-
borne hyperspectral sensing system. Koetz et al.54 reported an overall accuracy of 69.15% and a
kappa coefficient of 0.645 using hyperspectral and Lidar data. Licciardi et al.55 also reported
SVM with higher overall accuracy due to its ability to achieve the ideal separating hyperplane
by developing the least error among all hyperplanes. In these examples, hyperplanes were
defined by kernel functions; however, the literature rarely includes guidance on the selection
of a specific kernel.13,56,57

4.8 Sources of Error

Having the same sensor altitude for Landsat-8 OLI, ALI, and Hyperion had no apparent effect on
viewing geometry and had a negligible effect on the mapping application. Atmospheric correc-
tion of OLI, ALI, and Hyperion improved consistency in the data and improved the accuracy of
the mapping application. Thus, the geometric and radiometric errors that affect accuracy were
minimized and/or removed to achieve more accurate maps.

5 Summary and Conclusions

The results of this study confirmed the potential utility of OLI, ALI, and Hyperion orthoimagery
for analysis of the study area. Distinct spectral profiles were identified for all classes (i.e., water,
built-up area, mixed forest, shrub, and bare soil) for each of the three sensors, which is highly
beneficial for feature identification and classification of images. Accuracy was assessed via
SVM and SAM classification techniques, which effectively selected the most appropriate clas-
sifier for the study area and the best study area orthoimagery.

OLI, ALI, and Hyperion data were preprocessed and atmospherically corrected using
FLAASH and QUAC. The preprocessing of 242 bands of hyperspectral data effectively resulted
in 136 calibrated bands. QUAC was applied to these calibrated bands for atmospheric correction,
and PCA was used for dimensional reduction of the data. PCA revealed that 99.94% of the
hyperspectral data were contained in the first 15 PCs. For Hyperion hyperspectral data, the
first three PCs contained 99.8% of the information, which is highly beneficial for applying
the most common classifiers; thus, the dimensionality of the hyperspectral data was considered
to be three.

The SVM and SAM classifiers were developed and implemented for OLI, ALI, and Hyperion
orthoimages, and all classes (i.e., water, built-up area, mixed forest, shrub, and bare soil) were
effectively discriminated. OLI orthoimagery with SVM outperformed the SAM classifier (over-
all accuracy of 92.52% versus 85.59%). Similarly, ALI orthoimagery with SVM outperformed
the SAM classifier (overall accuracy of 85.36 versus 75.90%). Hyperion orthoimagery was more
accurate with SVM than with the SAM classifier (overall accuracy of 98.57 versus 79.32%).
Thus, SVM produced better results than SAM with OLI, ALI, and Hyperion orthoimagery.
The Hyperion hyperspectral orthoimage with the SVM classifier produced higher overall accu-
racy (98.57%) than the OLI (92.52%) and ALI (85.37%) orthoimages. Using the SVM classifier,
OLI orthoimagery performed better than ALI, both for overall accuracy (92.52 versus 85.37%)
and individual classes. Using the SAM classifier, OLI outperformed both ALI and Hyperion in
terms of overall accuracy (85.59, 79.32, and 75.91%, respectively) and in individual classes.

Using the SVM classifier, OLI orthoimagery discriminated water (90.14 versus 81.69%),
built-up area (89.71 versus 88.48%), shrub (93.62 versus 80.85%), and bare soil (97.52 versus
84.65) more effectively than ALI. Using the SAM classifier, ALI orthoimagery discriminated
water (78.59 versus 78.31%), built-up area (86.42 versus 76.95%), mixed forest (98.39 versus
96.77%), and bare soil (92.08 versus 58.91%) more effectively than ALI.
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The results show the new OLI technology allows for easier and more accurate water clas-
sification than do ALI and Hyperion. When using the SAM classifier, some misclassifications of
bare soil as shrub and bare soil as built-up area were found in OLI, ALI, and Hyperion orthoi-
magery. When using the SVM classifier, some built-up areas surrounded by shrub were mis-
classified as shrub.

Remote sensing is an important means of Earth observation. For example, the OLI data
applied to water mapping clearly showed the reduction in dam water reservoir capacity
owing to silt deposition. The results confirmed that the enhanced capabilities of OLI (e.g.,
enhanced radiometric conformity and spectral band configuration) allow it to outperform
ALI in terms of classification accuracy, while Hyperion maps with SVM classification can
be used as a validation source. In conclusion, the new OLI technology allows for more accurate
mapping of land use/cover in the study area.
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