25 April 2017 Extended census transform histogram for land-use scene classification
Author Affiliations +
With the popular use of high-resolution satellite images, more and more research efforts have been focused on land-use scene classification. In scene classification, effective visual features can significantly boost the final performance. As a typical texture descriptor, the census transform histogram (CENTRIST) has emerged as a very powerful tool due to its effective representation ability. However, the most prominent limitation of CENTRIST is its small spatial support area, which may not necessarily be adept at capturing the key texture characteristics. We propose an extended CENTRIST (eCENTRIST), which is made up of three subschemes in a greater neighborhood scale. The proposed eCENTRIST not only inherits the advantages of CENTRIST but also encodes the more useful information of local structures. Meanwhile, multichannel eCENTRIST, which can capture the interactions from multichannel images, is developed to obtain higher categorization accuracy rates. Experimental results demonstrate that the proposed method can achieve competitive performance when compared to state-of-the-art methods.
© 2017 Society of Photo-Optical Instrumentation Engineers (SPIE)
Baohua Yuan, Baohua Yuan, Shijin Li, Shijin Li, } "Extended census transform histogram for land-use scene classification," Journal of Applied Remote Sensing 11(2), 025003 (25 April 2017). https://doi.org/10.1117/1.JRS.11.025003 . Submission: Received: 9 January 2017; Accepted: 3 April 2017
Received: 9 January 2017; Accepted: 3 April 2017; Published: 25 April 2017


A bag of visual words model based framework for object...
Proceedings of SPIE (November 07 2014)
Region feature extraction and classification
Proceedings of SPIE (October 09 1994)
Combination of SVD and GLCM in forest image recognition
Proceedings of SPIE (December 17 1996)

Back to Top