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Abstract. Natural tropical rainforests in China’s Xishuangbanna region have undergone
dramatic conversion to rubber plantations in recent decades, resulting in altering the region’s
environment and ecological systems. Therefore, it is of great importance for local environmental
and ecological protection agencies to research the distribution and expansion of rubber planta-
tions. The objective of this paper is to monitor dynamic changes of rubber plantations in China’s
Xishuangbanna region based on multitemporal Landsat images (acquired in 1989, 2000, and
2013) using a C5.0-based decision-tree method. A practical and semiautomatic data processing
procedure for mapping rubber plantations was proposed. Especially, haze removal and desha-
dowing were proposed to perform atmospheric and topographic correction and reduce the effects
of haze, shadow, and terrain. Our results showed that the atmospheric and topographic correction
could improve the extraction accuracy of rubber plantations, especially in mountainous areas.
The overall classification accuracies were 84.2%, 83.9%, and 86.5% for the Landsat images
acquired in 1989, 2000, and 2013, respectively. This study also found that the Landsat-8 images
could provide significant improvement in the ability to identify rubber plantations. The extracted
maps showed the selected study area underwent rapid conversion of natural and seminatural
forest to a rubber plantations from 1989 to 2013. The rubber plantation area increased from
2.8% in 1989 to 17.8% in 2013, while the forest/woodland area decreased from 75.6% in
1989 to 44.8% in 2013. The proposed data processing procedure is a promising approach to
mapping the spatial distribution and temporal dynamics of rubber plantations on a regional
scale. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the origi-
nal publication, including its DOI. [DOI: 10.1117/1.JRS.11.026011]
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1 Introduction

As a result of the increasing global demand for natural rubber products, rubber plantations
have become very lucrative and have thus been expanding drastically in many regions
over the last several decades.1,2 Asia, in particular, has become the world center of rubber
production, accounting for 92% of the global natural rubber supply.3 Over the last few decades,
more than one million hectares of land have been converted to rubber plantations in
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nontraditionally rubber growing areas of China, Indonesia, Thailand, Vietnam, Malaysia, and
India.4,5

The conversion of natural and seminatural forests and even croplands to rubber plantations
has become a significant land cover (LC) and land use change process in the past decade.6 On
one hand, this transformation has a positive influence on agricultural systems by providing
increased profits and improving farmers’ financial stability.2,7 On the other hand, however, it
can have significant adverse ecological impacts on water balance, hydrological systems, carbon
budgets, habitats, and biodiversity.4,8–11 Rubber plants are often referred to as small “water
pumps” since they destroy the water-conservation services of natural forests and hasten soil-
erosion processes.8,12 In some reported cases, streams have dried and villages have lost their
water supply.13 Furthermore, the use of fertilizer and pesticide to stimulate rubber plants’ growth
leads to water-body pollution and threatens the survival of many aquatic animals and plants. In
terms of some aims of reducing emissions from deforestation and forest degradation, carbon
sequestration of rubber plantations is limited in comparison to that of natural forests, which
means that expansion of rubber plantations very likely results in significant increase in net emis-
sion of carbon dioxide.14,15 In the case of the Xishuangbanna region, China, the large-scale con-
version of forests to rubber plantations has likely played an important role in changes of local
climate, such as diminishing rainfall, increasing the likelihood of more severe droughts, and
drastically lowering the frequency of fog between the mid-1950s and the mid-1980s.8,12

Therefore, it is of great importance for local environmental and ecological protection agencies
to research the distribution and spread of rubber plantations and to be able to monitor their
dynamic changes.

In view of these developments, the accurate, high-resolution mapping and monitoring of the
expansion of rubber plantations is necessary. A number of studies have been conducted to this
end. Shigematsu et al.16 employed data from rubber wood processing and retailing companies to
estimate the production of rubber wood from 1996 to 2011 in Cambodia. However, such stat-
istical methods do not capture the spatial distribution of rubber plantations. In addition, these
data and statistics in many cases are often insufficient or even unavailable, especially in devel-
oping countries, and can be politically biased. Due to their low cost, wide coverage, short cycle,
and suitability for large area mapping, satellite images have been widely applied for the iden-
tification and delineation of rubber plantations. The current studies, which are related to the
extraction of rubber plantations from remote sensing imagery, can be categorized into three
broad groups. The first group focuses on the use of spectral signatures together with cluster
analysis and traditional classifiers to identify and map rubber plantations. Li et al.17,18 used
six periods of Landsat MSS/TM/ETM+ images acquired between 1976 and 2007, together
with a 1:50 000 digital elevation model (DEM), to analyze how patterns of land use, cover
type change, and transfer rates between cover types were affected by topography in
Xishuangbanna. The relationship between rubber growth and topography was also investigated.
Zhang et al.19 used georeferenced field data and Landsat TM images from May to August of
2008 to conduct a maximum likelihood supervised classification that produced an area of
4.1676 × 105 ha2 for rubber plantations in Hainan Island, China. Chen et al.,20 and
Li et al.21 used HJ-1 satellite data and field sampling data to estimate the distribution of rubber
trees based on a decision-tree (DT) classification in the Xishuangbanna area in 2011. Li and
Fox1,5,22 integrated the Mahalanobis typicality with a multilayer perceptron (MLP) neural net-
work to identify rubber trees in mainland southeast Asia using spectral data from MODIS and
ASTER together with Landsat imagery. Their method greatly reduced the commission errors for
mature and young rubber plantations, and was able to successfully overcome the earlier over-
estimation problem. Chen et al.23 mapped rubber plantations in and outside protected areas and
their net present value for the years 1988, 2002, and 2010 from Landsat and RapidEye data. The
second group of studies relies on the temporal signals of optical images to delineate rubber trees.
Tan et al.24 applied normalized difference vegetation index (NDVI) time-series data from
MODIS and China’s Feng-Yun-3A (FY-3A) satellite to represent the phenological signatures
of rubber plantations, and then used the intra-annual temporal profiles of this class to delineate
plantations in Hainan, China. Liu et al.25 proposed a new method to identify and map rubber
plantations based on phenological characteristics of vegetation cover type. Using this method, an
accuracy of 76.42% was achieved for young rubber forests (<10 years old) and 92.50% for
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mature rubber forests (>10 years old) in Xishuangbanna in 2010. Senf et al.6 tested a new
approach for mapping rubber plantations and natural forests with the random forest classification
algorithm using phenological metrics derived from MODIS enhanced vegetation index (EVI)
and short-wave infrared (SWIR) reflectance time series in the Xishuangbanna area. Fan
et al.26 presented a phenology-based vegetation index differencing method for rapidly mapping
rubber plantations using Landsat operational land imager (OLI) data. Li et al.27 used a simple and
effective phenology-based algorithm for detecting and mapping rubber tree plantations through
vegetation indices by combing a Landsat-derived vegetation map and a DEM mask in
Xishuangbanna. The third group concentrates on accurately mapping the fractional extent of
rubber plantations by combining synthetic aperture radar (SAR)-derived forest maps with phe-
nology derived from optical images. In contrast to optical sensors, SAR can penetrate clouds and
has advantages in mapping tropical forests, particularly at longer wavelengths (e.g., L-band
SAR) that are capable of penetrating tree canopies. Dong et al.28 mapped three forest types,
including rubber plantations, on Hainan Island using advanced land observing interferometric
synthetic aperture radar (ALOS PALSAR), MODIS NDVI, MODIS EVI, and land surface water
index time series. Dong et al.2 provided an insight into the potential of integrating cloud-free
50-m PALSAR and multitemporal Landsat imagery for mapping deciduous rubber plantations in
moist tropical regions. Kou et al.29 presented a simple method for mapping rubber plantation
areas and their stand ages by integration of PALSAR 50-m mosaic images and multitemporal
Landsat TM/ETM+ images. Chen et al.30 explored the potential utility of integrating 25-m
cloud-free phased array type L-band synthetic aperture radar (PALSAR) mosaic product
and multitemporal Landsat images to map forests and rubber plantations in Hainan Island,
China.

A number of challenges with respect to the mapping of rubber plantations using remote sens-
ing techniques are summarized here.1,2,5 First, frequent cloud cover in the focal region of south-
east Asia has a significant effect on rubber plantation delineation, especially for optical imagery.
Second, mature rubber trees have multispectral reflectance characteristics similar to those of
tropical evergreen vegetation; thus, misclassifying second-growth forests as rubber trees
poses a major obstacle to accurate classification and results in overestimates of rubber growth.
Third, young rubber trees are grown in a complex and heterogeneous mix of land-cover types,
including bare or fallow soil and mixed scrub, and/or are intercropped with rapidly growing cash
crops, such as cassava and pineapple. Even after 3 to 4 years of growth, rubber tree canopies
cover only a small fraction of the total planted area in which they are grown. Image pixels iden-
tified as containing young rubber trees are often confused with other, more dominant, LC types.
Finally, high intraclass variability between rubber trees of different ages poses another difficulty
for discriminating rubber trees from other LC types.

At present, various advanced approaches based on the studies described above have been
developed to extract rubber plantations from satellite images and also to quantify them.
These approaches mainly include: (1) maximum likelihood supervised classification;19 (2) sup-
port vector machine (SVM);31 (3) random forests;6 (4) artificial neural networks;1,28

(5) DT;21,29,30 and (6) the object-oriented classification method.25 Although many neural network
models have been developed, the MLP neural network (MLPNN) is the most widely used.1

However, the MLPNN has some limitations,32 including: (1) it is sensitive to the network struc-
ture, (2) it suffers from the local minima problem, and (3) the training process for the MLPNN
algorithm is not consistent. For the SVM, the major difficulties are parameter optimization and
lack of model interpretability.32 In this paper, a robust algorithm, a boosted DT named See5/
C5.0, is used for extracting the expansion of rubber plantations.33 In contrast to other algorithms,
the C5.0 method incorporates new methods in machine learning, such as adaptive boosting, an
ensemble method that has been widely used to enhance classification accuracy and to minimize
sensitivity to noises.34,35

The main objective of this research is to derive the dynamic changes in rubber plantations that
have occurred within the autonomous prefecture of Xishuangbanna, China, over a time span of
more than two decades from Landsat TM imagery using a C5.0 DT classification method.
Although much work on rubber plantation mapping based on satellite imagery has been per-
formed already, this paper includes findings and answers related to some pressing questions
that have not been addressed in previous studies.
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1. How did the distribution of rubber plantations change between the late 1980s and the
present? Li et al.17,18 and Chen et al.23 have already detected changes that occurred in
Xishuangbanna between 1976 and 2010. However, rubber development in southeast
Asia began to intensify only at the end of the 1980s.12 Therefore, the observation period
chosen for this study (1989 to 2013) is the period covering the most intense period of
rubber development in this region. The choice of this period thereby close knowledge
gaps and provides the research community with an up-to-date depiction of the distribu-
tion of rubber plantations within more than 92% of the autonomous prefecture
Xishuangbanna.

2. About 95% of Xishuangbanna is covered by mountains and hills. This has a big effect on
the classification results. Although some studies on the detection of rubber plantations
have included topographic and atmospheric correction of satellite images, haze and
shadow removal has not been conducted.2,18,22,36 In this study, in order to reduce the
effects of haze and the terrain, an atmospheric and topographic correction of the satellite
data, including haze removal and deshadowing, is performed using the Atmospheric/
Topographic Correction for Mountainous Terrain (ATCOR3) software developed by
DLR (German Aerospace Center).37 The ATCOR3 combining with classification
method was widely used to improve classification accuracy of LC, especially in moun-
tainous areas.38–41 This correction is implemented as part of a reasonable, practical, and
semiautomatic data processing procedure for the mapping of the rubber plantation
distribution.

3. A third feature in this paper is to explore the potential of the new Landsat-8 OLI sensor
for the identification and quantification of rubber plantations. Furthermore, the suitabil-
ity of the new Landsat sensor for the mapping of rubber plantations was evaluated by
comparing with TM/ETM+ images.

The rest of this paper is organized as follows. Section 2 describes the study area and the
datasets used, Sec. 3 introduces the methodology, Sec. 4 presents the results and analysis,
Sec. 5 contains the discussion of the results; and Sec. 6 presents the conclusions.

2 Study Area and Datasets

2.1 Study Area

The autonomous prefecture of Xishuangbanna in Yunnan Province, China, is located in the
southwest of the country, covering an area of 19;120 km2 with a population of around 1.13
million in 2010 (Fig. 1). Xishuangbanna is subdivided into three counties (Jinghong, Menghai,
and Mengla), and borders Laos to the south and Myanmar to the southwest. The Mekong River
(named the Lancang River within the territory of China) flows through central Xishuangbanna,
comprising more than 20 important tributaries along this river; consequently, the region contains
many river valleys and small basins. About 95% of the prefecture is a mountainous area with
its elevation ranging from 460 to 2415 m above sea level. Xishuangbanna is the only region in
continental China that has a tropical, monsoon-influenced climate, resulting in a wet season
from May to October and a dry season from November to April.25 The average temperature
ranges from 19.7°C to 22.9°C and the annual precipitation varies between 1036.1 and
2431.5 mm.

Although Xishuangbanna comprises just 0.2% of the nation’s landmass, it contains 25% of
its higher plant species, 36% of its birds, and 22% of its mammals.13 Forests in Xishuangbanna
can be differentiated into four primary forest types: tropical rain forest, tropical seasonal moist
forest, tropical mountain evergreen broad-leaved forest, and tropical monsoon forest. Although
the rubber trees shed their leaves for 2 or 4 weeks during the coldest and driest months (January
to March),8 the climate in this region is suitable for rubber trees and they grow faster here than in
many other regions in southeast Asia. Xishuangbanna is China’s second-largest natural rubber
production base. Rubber was first introduced to Xishuangbanna in the early 1950s.42 In the early
1980s, rubber plantations were established within state farms. After the 1990s and especially in
the past decade, rubber plantations have expanded rapidly in Xishuangbanna along with the
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increased price of rubber. Before the 1990s, rubber replaced large expanses of tropical rain forest
at elevations below 800 m.8 The expansion of rubber plantations, however, soon shifted to
include areas at higher elevations as well. In recent years, the upper limit of rubber plantations
has increased continuously from 1000 to 1400 m.18

2.2 Datasets

The temporal patterns of rubber distribution were derived from two Landsat TM images (January
11, 1989 and January 27, 1989), a Landsat ETM image (March 14, 2000) and a Landsat-8 OLI
image (June 14, 2013). In our study area, most vegetation, including mature rubber plantations,
are evergreen species. Although a young rubber plantation is defoliated in dry seasons, its dis-
tribution in the study area is limited.25 Therefore, the images were selected without considering
the phenology characteristics of rubber plantations. These Landsat images (with path130/row45)
cover more than 92% of the whole autonomous prefecture Xishuangbanna. These standard level-
one Landsat image products were obtained from the United States Geological Survey Earth
Resources Observation and Science Data Center. Two Landsat TM images in 1989 were
used to generate the 1989 rubber distribution, with information from January 11 used to fill
in cloud-covered areas in the January 27 image. These images were rectified to a Universal
Transverse Mercator coordinate system with a pixel size of 30 m. All nonpanchromatic channels
of the ETM and OLI-thermal infrared sensor (TIRS) images and all channels of the TM image
were used in the classification. The Landsat-8 satellite was successfully launched on February 1,
2013, and carried two main loads: the OLI and the TIRS. The OLI instrument images the Earth in
nine spectral bands covering the visible, near-infrared and SWIR portions of the electromagnetic
spectrum. All bands are acquired at 12-bit radiometric resolution; eight bands have a spatial
resolution 30 m while one, the panchromatic band, has a resolution of 15 m.

We conducted field surveys of rubber plantations and other LC types in 2010. Using a hand-
held global position system device, 152 georeferenced field sites in the study area were collected
for training and validation of the classification results. The locations of these ground truth sam-
ples are shown in Fig. 1.

Fig. 1 The study area.
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3 Methodology

Figure 2 shows an overview of the data processing procedure. The flow chart is composed of four
parts, including data preprocessing, C5.0 classifier “ruleset” construction, classification/accu-
racy assessment, and LC change analysis. In LC change analysis step, multitemporal change
analysis was based on a pixel-to-pixel postclassification using ArcGIS software. A detailed
description of the atmospheric and topographic correction, the classification using the C5.0 algo-
rithm, and the accuracy validation is given in the following sections.

3.1 Atmospheric and Topographic Correction

In order to reduce effects due to haze and the terrain, the ATCOR3 software developed by DLR
was performed.37 In addition, Shuttle Radar Topography Mission (SRTM) DEM data with a
spatial resolution of 90 m were used as the ATCOR3 parameter for atmospheric and topographic
correction. Therefore, the DEM was resampled to 30 m to match the pixel size of the Landsat
images. The complete sequence of processing for sensors with water vapor bands and a SWIR
band (1.6- or 2.2-μm region) consists of the following steps:37 (1) masking of haze, cloud, water,
and clear pixels; (2) haze removal or cirrus removal; (3) deshadowing based on the matched filter
approach; (4) masking of reference pixels; (5) calculation of visibility, visibility index, and aero-
sol optical thickness for reference pixels using DEM data; (6) (if required) updating the path
radiance in the blue-to-red spectral region providing a blue spectral band exists; (7) water vapor
retrieval using the previously calculated visibility map based on terrain elevation; (8) reflectance
spectrum retrieval using a pixel-based water vapor and visibility map; and (9) temperature/emis-
sivity retrieval using DEM information if thermal bands exist.

In the specific data processing procedure, the calibration file was first generated based on the
Landsat metadata file. In case of the rugged terrain, some input files including image file, cal-
ibration file, as well as DEM file were specified for ATCOR3. DEM is used to calculate slope/
aspect images, the sky-view factor, and topographic shadow. The pixel size of the DEM data
must be the same as the image pixel size for ATCOR3 software. According to different Landsat
data, different sensors and bands were selected. Since our study area belongs to a tropical atmos-
phere, the aerosol was set to rural. The date of image, the solar zenith, and pixel size were
obtained from satellite header. The parameters of the adjacency range were set to default
value 1 km. According to DEM data, the average ground elevation was set to 1.06 km by
ATCOR3 software. ATCOR3 uses the dark dense vegetation approach to calculate the best vis-
ibility for an image. The parameters of visibility were set to 23 and 46 km corresponding to
Landsat TM/ETM+ and Landsat 8 image, respectively. In image processing, haze and shadow
removal were performed, and the parameters of haze and shadow removal were set to fault
values.

Fig. 2 Flow chart of the classification procedure. The darker gray boxes represent datasets inputs
and products generated in this context; the light gray boxes represent automatic computational
processes; and the dark gray boxes represent manual processes.
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3.2 C5.0 Rulesets Classifier

Training samples were collected based on cross-validating the Landsat images with high res-
olution Google Earth images and the georeferenced field sites in the study area. The target var-
iables consisted of six LC classes: urban, rubber plantations, forest/woodlands, shrubs/other
vegetation, nonvegetated land, and water bodies. A group of polygon regions of interest
(RoIs) for each LC class was manually drawn based on the Landsat images, Google Earth
imagery, and field sites; these polygon RoIs were later divided into training and testing samples
(shown in Table 1). Then, these polygon RoIs were converted to KML files. We further selected
and checked samples’ quality by cross-validating of the samples, Google Earth image, Landsat
images, as well as georeferenced field sites. As Google Earth imagery within the study area was
available for the time period 1999 to 2014 only and the Landsat images (especially for the images
acquired in 1989) were out of data in the study area, the polygon RoIs for 1989 were predomi-
nantly selected by cross-comparison with the 2013 Landsat image. Only areas that had not
changed between 1989 and 2013 were selected by visual interpretation. In addition, the size
of the polygon RoIs for each LC class was also considered and should be approximately
the same during the process of RoI creation. For each class, two-thirds of the polygon RoIs
were randomly selected as training samples and the remainder was used for assessing the accu-
racy of the classifier.

The classification was based on the commercially available DT classifier, C5.0.43,44 This uses
the gain-ratio criterion to determine the best attribute for separating different classes as well as
the best possible threshold for making this separation.43 DT algorithms have many advantages
that make them well-suited for the classification of remote sensing data:35 (1) they are white-box
models that are simple to understand and interpret; (2) by performing univariate splits and exam-
ining the effects of predictors one at a time, DTs are able to handle a variety of types of predictors
and require little data preparation; (3) they are robust and perform well with large datasets in a
short period; and (4) the structure of the tree provides information about which of the input bands
have been used for classification. This helps in understanding which bands are most important
for a particular application.

However, DTs are considered “weak” learners, meaning that they are not the most accurate
classification algorithm. The adaptive boosting algorithm proposed by Freund and Shapire45 is
an ensemble method that has been widely shown to enhance classification accuracy and to min-
imize the sensitivity of the classification algorithm to noise in the predictor variables and to
labeling errors in training data.46 The idea is to generate several classifiers (either DTs or

Table 1 Number of the polygons and pixels selected for each class in the training and testing
samples.

Type

1989 2000 2013

Training
samples

Testing
samples

Training
samples

Testing
samples

Training
samples

Testing
samples

Polygons Pixel Polygon Pixel Polygons Pixels Polygons Pixels Polygons Pixel Polygons Pixels

(1) 46 1020 24 512 64 1912 33 945 67 1842 34 892

(2) 79 2810 38 1298 111 4061 50 1869 93 3388 46 1647

(3) 132 5981 66 2806 113 4640 57 2210 156 6311 60 2290

(4) 52 1872 25 856 87 3238 45 1688 93 3391 46 1658

(5) 143 5127 71 2563 142 4336 63 1791 125 4295 64 2238

(6) 69 1988 34 1023 73 1865 33 896 79 2157 40 1103

Total 521 18,798 258 9058 590 20,052 281 9399 613 21,384 290 9828

Note: (1) urban, (2) rubber plantation, (3) forest/woodlands, (4) shrubs/other vegetation, (5) nonvegetated land,
and (6) water bodies.
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rulesets) rather than just one. When a new case is to be classified, each classifier votes for its
predicted class and the votes are counted to determine the final class. As the first step, a single
decision is constructed from the training data. When the second classifier is constructed, more
attention is then paid to the classes that were wrongly classified by this first classifier in order to
get them right. As a consequence, the second classifier will generally be different from the first. It
also will make errors in some cases, and these then become the focus of attention during con-
struction of the third classifier. This process continues for a predetermined number of iterations
or trials but stops if the most recent classifiers are either extremely accurate or become inaccu-
rate again.

This study applied the See5/C5.0 program as an adaptive, boosted rulesets classifier to imple-
ment the classification. All the nonpanchromatic channels of ETM and the OLI images, and all
the channels of the TM image were used to construct the rulesets classifiers and implement the
classification based on the C5.0 adaptive boosting algorithm. The parameterizations for the prun-
ing rate and boosting were defined according to the recommendations of Evrendilek and
Gulbeyaz,46 who suggested a default pruning rate of 25% and a boosting trail value of 10 to
prune the tree in the case of overfitting. In addition, the value for “rule numbers” was set to 5.

The overall classification result for each Landsat scene was iteratively improved by carrying
out several classification cycles and validation procedures. After each classification step, the
performance was evaluated on the basis of the testing samples, and the training database
was then manually improved for the thematic classes and geographic regions that had high clas-
sification errors.

In the final class maps, however, significant “salt-and-pepper” effects were evident.
Therefore, a class-specific filtering approach was implemented before the accuracy validation
was carried out. Two filtering parameters were defined: the kernel size of the filter (filter win-
dow) and the filter scale. The filter scale represented the number of isolated points in the filter
window. If the number of the center value in the filter window was less than or equal to the filter
scale, this center value was replaced by the value with the maximum number in the filter window.
In this study, the kernel size of the filter was set to 3 × 3; however, different filter scales were set
for different classes. For example, rubber plantations are generally planted within homogenous
and large regions; the filter scale for the rubber class was, therefore, set to 3. Water bodies (espe-
cially in the case of narrow rivers and canals) required a filter scale of 1 in order not to impair the
original structure of the water class during the filtering process.

3.3 Accuracy Assessment

Besides the cross-validation of the classification performance during the training process, the
classification results were also validated using an independent reference dataset collected on the
basis of the Google Earth imagery and the georeferenced field sites. Google Earth has frequently
been used as a reference for LC classification validation in the past because of high geometric
precision and fine spatial resolution of its imagery.2,47,48 The validation sites for each class were
distributed by stratified random sampling based on the proportions of the respective LC
classes.49 In addition, 152 georeferenced field sites derived from field surveys carried out in
2010 were added to the 1249 random validation points (see Fig. 3). In the next step, these ran-
dom validation points were converted into polygons and then exported as KML files. Sample
polygons lying within the extent of the high-resolution Google Earth imagery, acquired between
1999 and 2003 for the 2000 Landsat image and between 2012 and 2014 for the 2013 Landsat
image, were directly evaluated within Google Earth. The remaining sample polygons were
assessed using high-resolution Google Earth imagery in combination with the Landsat data.
The combined use of Landsat and Google Earth imagery was also applied to 100% of the sample
polygons for the 1989 Landsat image. The georeferenced field sites together with random val-
idation points were used to validate the classification map from 2013. In addition, because we
used georeferenced field sites acquired in 2000 to validate classification results (2013), high-
resolution Google Earth images acquired in 2010 were also used to check whether the field sites
changed by comparing Google Earth images acquired in 2012 to 2014. Finally, the accuracy
assessment was conducted using the commonly applied error matrix approach.50 The standard
measures of classification accuracy, i.e., overall accuracy (OA), producer’s accuracy (PA), user’s
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accuracy (UA), and overall kappa coefficient (OK), were derived from the matrix according to
the method described by Foody.51

4 Results and Analysis

4.1 Spectral Signature Analysis

LC types in the study area were grouped into six categories: (1) urban (predominantly built-up
lands, such as urban centers and densely built residential areas), (2) rubber plantations (includ-
ing mature and young rubber plantations), (3) forest/woodlands (predominantly evergreen or
deciduous forest, woodlands, and orchards), (4) shrubs/other vegetation/shrubs (predomi-
nantly grassland, shrubland, thicket-like forest regrowth, herbaceous vegetation, and vegetated
cropland), (5) nonvegetated land (predominantly bare land such as rocks, bare soil, sand, and
nonvegetated cropland), and (6) water bodies (i.e., rivers, ponds, reservoirs, and inundated rice
paddy fields).

The spectral signatures of the six LC types in our study area were calculated using selected
training and testing samples. Figures 4 and 5 show field photographs corresponding to the six LC
types mentioned above, together with the spectral signatures of the six LC types in the Landsat
images. As shown in Figs. 5(a) and 5(b), for bands 1-3 of Landsat TM/ETM imagery, rubber
plantations and forest/woodlands classes have similar spectral signatures. Furthermore,
Figs. 5(a) and 5(b) also show the different spectral signatures between rubber and forest/wood-
lands classes for bands 4 to 7. Therefore, for rubber plantation extraction, it can be seen that it is
difficult to completely separate the rubber plantation class from the forest/woodlands class using
bands 1, 2, and 3 of the Landsat TM/ETM imagery, whereas bands 4 to 7 are the optimum bands
for separating the rubber plantations from the forest/woodlands class. The thermal band (band 6),
in particular, can improve the accuracy of the extraction of rubber plantations from the satellite
imagery. For Landsat 8 images, bands 5, 6, 7, and 9 [as shown in Fig. 5(c)] are the optimum
bands for separating the rubber plantation class from forest/woodlands. In addition, the cirrus

Fig. 3 Footprints of reference data and random validation samples for assessing classification
accuracy of the product derived from Landsat 8 imagery.
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band (band 9), in particular, can improve the accuracy of the rubber plantation extraction because
of different spectral signatures between rubber and forest/woodlands classes.

4.2 Classification Accuracy

In our research, six LC classes corresponding to the urban area, rubber plantations, forest/wood-
lands, shrubs/other vegetation, nonvegetated land, and the water bodies classes were derived
from the Landsat images (acquired in 1989, 2000, and 2013) using the C5.0 DT method.
Based on the accuracy validation method mentioned in Sec. 3.3, confusion matrices with
three statistical indicators (UA, PA, and OA) were calculated by cross-validating the georefer-
enced field sites, Google Earth imagery and Landsat images. Table 2 show the confusion matri-
ces for the classification results as derived from these Landsat images. By comparing the
matrices shown in Table 2, it can be observed that the Landsat 8 imagery [Table 2(c)] generally
provided better classification results than the Landsat TM/ETM+ imagery [Tables 2(a) and 2(b)]
due to Landsat 8’s improved sensor performance [in terms of, e.g., the signal-to-noise ratio
(SNR) and radiometric quantization]. The OA of the Landsat 8 images was 86.5% compared
with 84.2% and 83.9% for the Landsat TM and ETM+ images, respectively. The OK coefficients
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Fig. 4 Six LC types and their spectral signatures in Landsat 8 image. The field photos taken in
2010. For Landsat 8 image, red = band 7; green = band 6; and blue = band 4.

Sun et al.: Extracting distribution and expansion of rubber plantations from Landsat. . .

Journal of Applied Remote Sensing 026011-10 Apr–Jun 2017 • Vol. 11(2)



derived from the three Landsat images were 80.4%, 80.3%, and 83.4% for 1989, 2000, and 2013,
respectively. The urban class with the lowest UA (58.8%, 63.5%, and 81.3% for 1989, 2000, and
2013, respectively) was misclassified as the nonvegetated land class, due to these classes’ similar
reflectance characteristics. This resulted in low classification accuracy for the nonvegetated land
class with PAs of 77.4%, 78%, and 82%, for the 1989, 2000, and 2013 images, respectively. Very
high accuracies were obtained for the water body class with PA of 97.4%, 97.1%, and 93.3% and
UA of 91.1%, 89.3%, and 94%, for 3 years. Due to topographic effects and shadows that could
not be sufficiently reduced by using ATCOR, the water body class was, in some cases,
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Fig. 5 Spectral signatures of six LCs in the Landsat images, acquired on (a) 1989, (b) 2000, and
(c) 2013, respectively.
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Table 2 Confusionmatrices of classification results acquired on 1989, 2000, and 2013 respectively.

Reference data

Type (1) (2) (3) (4) (5) (6)
P

UA (%)

a. 1989

Classified data (1) 50 0 0 0 35 0 85 58.8

(2) 0 152 9 4 0 0 165 92.1

(3) 0 15 250 27 0 0 292 85.6

(4) 0 12 4 130 22 2 170 76.5

(5) 8 5 0 12 195 1 221 88.2

(6) 0 0 8 3 0 113 124 91.1

P
58 184 271 176 252 116 1057

PA (%) 86.2 82.6 92.3 73.9 77.4 97.4

OK (%) 80.4

OA (%) 84.2

b. 2000

Classified data (1) 61 0 0 3 32 0 96 63.5

(2) 0 166 11 12 0 0 189 87.8

(3) 0 4 206 18 0 0 228 90.4

(4) 0 22 23 150 4 1 200 75.0

(5) 4 1 1 6 131 2 145 90.3

(6) 0 2 4 5 1 100 112 89.3

P
65 195 245 194 168 103 970

PA (%) 93.9 85.1 84.1 77.3 78.0 97.1

OK (%) 80.3

OA (%) 83.9

c. 2013

Classified data (1) 100 0 0 1 22 0 123 81.3

(2) 0 238 6 6 0 0 250 95.2

(3) 0 18 256 30 0 1 305 83.9

(4) 1 23 21 206 9 8 268 76.9

(5) 9 2 1 3 155 0 170 91.2

(6) 0 1 1 3 3 125 133 94.0

P
110 282 285 249 189 134 1249

PA (%) 90.9 84.4 89.8 82.7 82.0 93.3

OK (%) 83.4

OA (%) 86.5

Note: UA, user’s accuracy; PA, producer’s accuracy; OK, overall kappa; and OA, overall accuracy; (1) urban;
(2) rubberplantation; (3) forest/woodlands; (4) shrubs/other vegetation; (5) nonvegetated land;and(6)waterbodies.
The bold values represent the correct classification points compared with the true validation points.
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misclassified as shrubs/other vegetation or forest/woodlands. For the rubber plantation class,
the highest UAs were 92.1%, 87.8%, and 95.2%, corresponding to 1989, 2000, and 2013,
respectively. Difficulties arose in this classification, particularly due to spectral confusion
with the forest/woodlands or shrubs/other vegetation class. In addition, the rubber trees in
Xishuangbanna are deciduous trees that shed their leaves during the coldest and driest months
(January to March). As a result, the rubber plantations (especially young rubber plantations)
were frequently misclassified as shrubs/other vegetation (e.g., tea trees) or nonvegetated land
(Table 2). The shrubs/other vegetation class was mapped with PAs of 73.9%-82.7% and
UAs of 75% to 76.9%, and confusion was mainly with forest/woodlands or rubber plantations.

We also compared the classification results obtained when no atmospheric and topographic
correction was performed with the classification results after atmospheric and topographic cor-
rection in the mountainous areas (as shown in Fig. 6). In Fig. 6, parts (I to III) correspond to three
different cases. Figures 6(a) and 6(c) show the original Landsat 8 images and the corresponding
classification results that were obtained without atmospheric and topographic correction;
Figs. 6(b) and 6(d) show the Landsat 8 images and the corresponding classification results
after atmospheric and topographic correction. From Fig. 6, it can be seen that there are lots of
shadows in the original Landsat images in the mountainous areas, which has an effect on the land
use/LC classification. As a result, in Fig. 6(c), there are lots of unclassified classes. After atmos-
pheric and topographic correction using ATCOR3 software, the shadows in the mountainous areas
were either reduced or removed completely. Therefore, the classification results after correction are
superior to the classification results without correction. The results shown in Fig. 6 demonstrate
that atmospheric and topographic correction can improve the LC classification accuracy, especially
for mountainous areas. In addition, in order further quantificationally prove our results, confusion
matrix of classification results acquired in 2013 without atmospheric and topographic correction
was generated (Table 3). Comparing Tables 2(c) and 3, the OA of the classification results after
atmospheric and topographic correction was 86.5% compared with 82.6% for the classification
results without atmospheric and topographic correction. The Landsat 8 image after atmospheric
and topographic correction yielded better results with OK of 83.4% compared with 78.8% for the
Landsat 8 without atmospheric and topographic correction.

4.3 Multitemporal Analysis of Land Cover Change

Figure 7 shows the classification maps and the percentages of different LC types derived from
the Landsat images (acquired in 1989, 2000, and 2013) in the Xishuangbanna region. In 1989,
forest/woodlands clearly dominated the whole area [Fig. 7(a)]. In 2000, although forest/wood-
lands still dominated, the proportion of land covered by this class was decreasing rapidly. Lots of
forests and woodlands were being cut down and converted to LC types corresponding to the
nonvegetated land or shrubs/other vegetation class [Fig. 7(b)]. In addition, the expansion of rub-
ber plantations was clearly evident. In 2013, as can be seen by comparing Figs. 7(a) and 7(b)
with Fig. 7(c), areas classified as nonvegetated land and shrubs/other vegetation in 2000 were
being transformed into rubber plantations, which were expanding dramatically. By contrast, the
area classified as “urban” expanded rapidly throughout the observation period.

Figure 7(d) represents the proportions of the respective LC types in the study area for 3 years.
From this, it is apparent that the area of natural forests/woodlands nearly halved between 1989
and 2013, falling from 75% to 45%. It is noticeable that forests were predominantly lost in the
first 11 years, being converted to shrub lands or other vegetation, which had increased approx-
imately fourfold in area from 9% to 34%. From 2000 onward, the area classified as forest
remained rather stable at 45%. Urban areas increased by a factor of 10 from less than
0.08% of the total area to 0.8%, while rubber plantations increased in area by a factor of almost
7 between 1989 and 2013. In this case, the most intense transformation phase can be identified as
occurring between 2000 and 2013. From 1989 to 2000, rubber plantations increased in area by a
factor of 1.7, from 2.8% to 4.8%, but then expanded even faster by a factor of 3.7, to 17.8%,
by 2013.

Figure 8 represents the changes in the spatial distribution of rubber plantations for the 24-year
observation period, as extracted from the Landsat data. In Fig. 8(a), which shows the changes
that occurred between 1989 and 2013, it can be seen that unchanged rubber plantations
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dominated the whole study area. Other LC types shifted to rubber plantations as well; however,
these were mainly distributed around the original, unchanged rubber plantations. In addition, in
Fig. 8(a), it can be observed that there are some areas where rubber plantations were reduced.
Because the imaging time in 1989 for Landsat TM image was winter, some herbaceous and
shrub lands classes were misclassified as rubber class, which resulted in overestimation of
rubber plantation detection. For Landsat image acquired in the winter, it is very difficult

Fig. 6 Comparison between the classification results without performing atmospheric and topo-
graphic correction and the classification results after atmospheric and topographic correction
applied to Landsat 8 data (2013). The columns I to III denote three case areas; (a) original
Landsat 8 images; (b) Landsat 8 images after atmospheric/topographic correction; (c) classifica-
tion results without atmospheric/topographic correction; and (d) classification results after atmos-
pheric/topographic correction.
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Fig. 7 The classification maps and (d) the percentages of LC type in Xishuangbanna region in
(a) 1989, (b) 2000, and (c) 2013, respectively. In this figure, the unclassified class represents
clouds and shadows.

Table 3 Confusion matrix of classification results acquired in 2013 without atmospheric and topo-
graphic correction.

Reference data

Type (1) (2) (3) (4) (5) (6)
P

UA (%)

Classified data (1) 108 0 3 4 22 1 138 78.3

(2) 0 150 12 7 1 0 170 88.2

(3) 0 17 227 27 2 0 273 83.2

(4) 0 15 6 127 20 1 169 75.1

(5) 14 5 2 13 201 2 237 84.8

(6) 0 3 5 8 5 112 133 84.2

P
122 190 255 186 251 116 1120

PA (%) 88.5 78.9 89.0 68.3 80.1 96.6

OK (%) 78.8

OA (%) 82.6

Note: UA, user’s accuracy; PA, producer’s accuracy; OK, overall kappa; and OA, overall accuracy; (1) urban;
(2) rubber plantation; (3) forest/woodlands; (4) shrubs/other vegetation; (5) nonvegetated land; and (6) water
bodies.
The bold values represent the correct classification points compared with the true validation points.
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to separate the rubber plantations from other classes (e.g., tea tree, shrub land, herbaceous, and
so on). In Fig. 8(b), which shows the changes in rubber plantations from 2000 to 2013, it is
evident that rubber plantations continued to expand around the central, unchanged rubber plan-
tations, and also advanced further into new regions. Therefore, our results show that rubber
plantations have dramatically expanded in the Xishuangbanna region during the last decade,
most likely due to economic interests. In addition, as urbanization increased and driven by
government policy (e.g., reconverting the rubber plantation to cropland), according to the
Google Earth imagery and the field investigations, some rubber plantations receded and
were transformed into urban areas and cropland [as was the case for the area marked by
the red box in Fig. 8(b)].

Fig. 8 Spatial distribution of extracted rubber plantation changes. (a) Rubber plantation change
from 1989 to 2000 and (b) rubber plantation change from 2000 to 2013. The red box area shows
some rubber plantations receded and were transformed into urban areas and cropland as urbani-
zation expanded.
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5 Discussion

In this study, we analyzed the distributions of rubber plantations and their dynamic changes in
the Xishuangbanna region, China, using a series of Landsat images acquired in 1989, 2000, and
2013. Our study also evaluated the potential of imagery from the newly launched Landsat 8 OLI
for the delineation and mapping of rubber plantations in the tropical zone. The haze removal and
deshadowing were applied to minimize the effects of haze, shadow, and the terrain during the
atmospheric and topographic correction of the satellite data. The pixel-based C5.0 classification
method was used to identify pixels, where rubber plantation growth had the highest probability
of occurring. Our research shows that Landsat images have great potential for delineating rubber
plantation distribution. Especially, for the OLI and TIRS instruments on board the newly
launched Landsat-8 satellite, its data quality [in terms of the SNR and radiometric quantization
(12-bit)] is higher than for previous Landsat instruments (for example, TM and ETM+ data are 8-
bit), providing significant improvement in the ability to detect changes on the Earth’s surface.

Comparing the differences between our results and past studies,17,23 our results proved that
combination C5.0 classifier with ATCOR3 atmospheric and topographic correction is an effec-
tive method for the mapping of the rubber plantation distribution. During the classification using
the C5.0 DT method, the rule sets and thresholds were completely and automatically constructed
and generated base on the training samples. Although samples were manually selected and
exported as polygon files, these samples were checked by high resolution Google Earth imagery
and field points. In addition, selected samples were randomly divided into training and testing
samples. In the process of classification, the purpose of several classification cycles is to auto-
matically obtain the best rule sets. In addition, a postclassification filter can be used to reduce the
“salt-and-pepper” noise.

However, there are some limitations to extracting rubber plantation growth from Landsat
imagery. The first factor is the terrain. Mountains and hills dominate in our study area, resulting
in a lot of shadow and it is difficult to extract the rubber plantations or forest/woodlands classes
from Landsat imagery when it is covered by shadows. Although our results show that atmos-
pheric and topographic corrections including haze and shadow removal were applied to the
imagery and could improve extraction accuracy of rubber plantations using the ATCOR3 soft-
ware in this study, the terrain effects could not be completely removed in mountainous areas.
Furthermore, the accuracy of the SRTMDEM, which is used especially in mountainous areas for
topographic correction, also had a great impact on the performance of ATCOR3. Second, many
Landsat images of tropical rainforest areas are covered by clouds; therefore, it was difficult to
find a series of cloud-free optical images. Third, because of the heterogeneity and complexity of
the LC types in the study area, the problem of mixed pixels also has to be recognized as a con-
straint on the extraction of the rubber plantation distribution, even at the relatively high spatial
resolution of 30 m.1,2,5 Fourth, some other LC types have spectral properties similar to those of
rubber plantations: mature rubber plantations often share similar reflectance characteristics with
evergreen forests or tea trees and younger rubber plantations tend to be confused with shrubs/
other vegetation or nonvegetated land in the coldest and driest periods. Fifth, the three images
were selected without considering the phenology characteristics of rubber plantations, which has
negative effects on precisely extracting rubber plantation distribution. Finally, the lack of suffi-
cient ground truth data meant that the assessment of the accuracy of the extraction of rubber
plantations from satellite data was adversely affected. Although ground truth data were collected
during a field campaign in 2010, the number of field sites was not sufficiently high to generate a
training/testing sample base without adding additional points from high resolution Google Earth
imagery.37 This particularly applied to the classification of the historic Landsat images from
1989 to 2000, which had been validated solely on the basis of Google Earth imagery cross-vali-
dated by the Landsat scenes.

Given the limited data availability, images collected in different seasons had to be used,
which may introduce uncertainties in change detection. In order to reduce uncertainties rising
from different phenology phases, we did not apply the same classification model to images at all
time points, but trained and applied individual models to images acquired at each time point. In
this way, inconsistencies of our results related to time-variant spectral properties were mini-
mized. Additionally, vegetation in our study area, including mature rubber plantations, are
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evergreen species. Although a young rubber plantation is defoliated in dry seasons, its distri-
bution in the study area is limited. Therefore, seasonal variation of LCs in this study does not
have dramatic impact on our image classification.

Other data sources will be investigated as our next step of this study. Long-term time series of
daily MODIS data will be used to analyze the phenological characteristics of vegetation cover
types and to define the age of rubber plantations from the time of planting onward. In contrast to
optical sensors, SAR, especially longer-wavelength SAR, can penetrate cloud and possesses
certain advantages for mapping tropical vegetation. Dong et al.2,28,52 have shown that multisensor
data (PALSAR, Landsat, and MODIS data) can be used to address the aforementioned problems
and improve classification in extracting the distribution of rubber plantation growth. However,
the commonly used single- or two-polarization SAR data tend to be less promising because they
contain only limited information. The more advanced Earth observation technology, polarimetric
synthetic aperture radar (PolSAR), is a better alternative because it captures the full polarimetric
properties of the target backscatter. Based on polarimetric information, PolSAR data have been
successfully applied for target detection and for improving image classification.53,54 In addition,
recently launched space-borne SAR systems, such as the C-band Sentinel-1, C-band Gaofen-3
(GF-3), and L-band ALOS, have the enhanced capabilities of higher resolution (1 to 10 m), dual/
quad-polarization, more frequent revisits, and varying beam modes (scene swath and incidence
angle). These enhanced capabilities provide more useful polarimetric information at spatial and
temporal levels for improving classification accuracy. In future work, with the emergence of
advanced optical and SAR systems, their integrated application could be a promising solution
for high-precision mapping of rubber plantation growth.

6 Conclusions

Xishuangbanna is China’s second-largest base of natural rubber production. Along with the
development of the Chinese economy and driven by government policy, there has been a dra-
matic conversion from natural tropical rainforest to rubber plantations in this region in recent
decades. Therefore, it is of great importance for local economic development and ecological
protection agencies to be able to track rubber plantation growth and monitor its dynamic change
using remote sensing technology. In this study, the distribution of rubber plantations was derived
from multitemporal Landsat images using the C5.0 method. Our results show that Landsat
images have great potential for applications related to rubber plantation identification.

Several conclusions are drawn from this study. First, atmospheric and topographic correction
with haze and shadow removal can improve the LC classification accuracy, especially for moun-
tainous areas. The OA and OK of the classification results after atmospheric and topographic
correction were 86.5% and 83.4% compared with 82.6% and 78.8% for the classification results
without correction. Second, due to the improved sensor performance, the Landsat 8 images
yielded better results with an OA of 86.5% compared with 84.2% and 83.9% for the
Landsat TM and ETM+ images, respectively. Third, the C5.0 classification method with boost-
ing techniques successfully classified rubber plantation distributions with high UA values of
88% to 95% and PA of 82% to 85%. Therefore, the C5.0 classifier represents a promising
approach for the mapping of rubber plantation distributions successfully at regional scales.
Fourth, natural tropical rainforests in the Xishuangbanna region have undergone a drastic con-
version to rubber plantations in the last few decades. The total rubber plantation area increased
from 2.8% in 1989 to 17.8% in 2013, while forests and woodlands decreased from 75.6% in
1989 to 44.8% in 2013. The transformation thus took place in two different phases: forests were
initially cut down and converted to shrub lands or other vegetation between 1989 and 2000; this
was followed by an intense phase of rubber planting on these shrubs/other vegetation areas
between 2000 and 2013.
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