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Abstract. This current study explores satellite-based soil moisture downscaling approaches and
applies them to common passive microwave retrievals. Three variations of a second-order poly-
nomial regression were tested based on the surface temperature/greenness index concept and
merged information from higher spatial resolution moderate-resolution imaging spectroradiom-
eter with soil moisture active passive (SMAP) and soil moisture and ocean salinity (SMOS)
products to obtain soil moisture estimates at higher resolutions (1 km). Downscaled products
were evaluated at the Walnut Gulch Experimental Watershed (WGEW) in southeastern Arizona.
Results show slight differences in performance among the three downscaling methods and little
improvement between original low-resolution products and downscaled (1 km) products. Spatial
analysis over WGEW demonstrates downscaled products were able to decipher small-scale
heterogeneities in surface soil moisture, though spatial variability remains low compared to
observations with a difference of only 0.06 m3∕m3 in spatial standard deviation between
observations and the mean between downscaling techniques. Results demonstrate the ability of
both SMOS and SMAP to represent soil moisture accurately on the point scale without applying
downscaling techniques in the region under study. © The Authors. Published by SPIE under a
Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JRS.11.026021]
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1 Introduction

Soil moisture is a critical component of the hydrologic cycle, directly influencing feedbacks
between the land and the atmosphere, contributing to regional dynamics of the atmospheric
boundary layer, and influencing local to global weather and climate patterns.1–4 Traditional
ground-based measurements provide frequent and accurate estimates of soil moisture, but
are incapable of resolving spatial heterogeneities. Alternatively, satellite-based microwave
remote sensing techniques can provide large-scale spatially distributed soil moisture estimates
with routine frequency.5,6 These coarse resolution estimates are sufficient when applied on
a global scale, but are unrepresentative of the surface heterogeneity found at smaller regional/
watershed scales.7

Previous studies have demonstrated the utility of microwave sensors for the acquisition of
surface soil moisture due to their high sensitivity to changes in near-surface soil moisture at
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frequencies <10 GHz, availability under all-sky conditions, and decreased susceptibility to
atmospheric interference.5,6,8,9 However, an increase in vegetation and surface roughness tends
to reduce the sensitivity of microwave observations to soil moisture signals,10,11 with their
effects becoming more pronounced with an increase in microwave frequency.12 Consequently,
frequencies in the L-band (∼1 to 2 GHz) are preferred as they are capable of estimating soil
moisture over larger ranges of vegetation type and amount and penetrate to a depth of roughly
5 cm.13,14 Unfortunately, this greater sensitivity to soil moisture subsequently results in lower
spatial resolution because of the trade-off between spatial and spectral resolution.

The first L-band satellite dedicated to the global measurement of near-surface soil moisture,
the soil moisture and ocean salinity (SMOS) mission,15,16 was launched by the European Space
Agency in November 2009. SMOS provides brightness temperature measurements of the Earth
at different polarization and incident angles, as well as derived soil moisture products (∼43-km
spatial resolution).17,18 The National Aeronautics and Space Administration’s (NASA) soil mois-
ture active passive (SMAP) mission19 was launched in January 2015 and is the only additional
satellite mission dedicated to surface soil moisture observations. SMAP incorporated a radiom-
eter (passive) and radar (active), both operating in the L-band frequency. The spatial resolutions
of the radar and radiometer are ∼1 km × 1 km and ∼39 km × 47 km, respectively. The concept
of the SMAP mission was to combine complementary attributes of passive and active observa-
tions to obtain soil moisture at a 9-km spatial resolution. However, due to problems with the
radar’s high power amplifier, the SMAP’s radar is no longer able to transmit data, allowing only
the passive radiometer data to be available.

The spatial resolutions of SMOS and SMAP are adequate for many global applications, but
are coarse and unrepresentative of the surface heterogeneity found at catchment to regional
scales.7 Merlin et al.20 points out that most hydrological processes are better observed and
modeled at scales at or <1 km; hence, there is a need to downscale coarse resolution micro-
wave-based soil moisture products to resolutions necessary for watershed-scale applications
and regional decision-making. In this context, several downscaling methods have been proposed,
including those based on the use of topography and soil depth,21 as well as those that use
a combination of passive microwave data, fine-scale optical data, and/or surface process
models.22,23 The current study utilizes the triangle/trapezoidal method, which is characterized
by the unique relationship among soil moisture availability, land surface temperature (LST),
and a vegetation index (VI).24,25 Utilizing such an approach has three important advantages:
(1) requires no ground-based ancillary data, (2) requires no site-specific calibration, and
(3) is computationally efficient. As such, the method can be applied in near real time with sat-
ellite-derived remote sensing data as its sole input. Several authors have utilized this approach
by combining coarse resolution (∼25 to 50 km) passive microwave sensor data, such as soil
moisture, with high-resolution (1 km) visible/infrared sensor data, such as LST and VI.12,22,26,27

Additional studies have suggested the addition of albedo or brightness temperature to strengthen
the relationship with soil moisture.22,28 However, prior applications have yet to directly compare
differences in downscaling techniques using SMOS and the recently available SMAP soil
moisture retrievals.

This study utilizes two passive microwave remote sensor satellites (SMAP and SMOS) and
three variations of a second-order polynomial regression formula (based on the triangle method)
to test the ability of each satellite and each downscaling method to capture the spatial and
temporal heterogeneity of soil moisture over a region in southeastern Arizona. The second-
order polynomial regression formula is used to parameterize soil moisture based on the triangle
technique relating LST, VI, and/or albedo or brightness temperature. Downscaled soil moisture
estimates (1 km) were evaluated at point and spatial scales over a densely instrumented
watershed.

2 Study Area

The study area is the Walnut Gulch Experimental Watershed (WGEW) operated by the U.S.
Department of Agriculture’s Agricultural Research Service and located in semiarid southeastern
Arizona (Fig. 1). The WGEW has an area of roughly 148 km2, with the latitude and longitude
ranging from 31.78°N to 31.66°N and from 109.86°W to 110.15°W, respectively. The main land
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cover type is predominantly shrublands and grasslands (97%) with areas of developed open
space (2%).29 Soils are mainly sands and gravel with good drainage.30 The climate is classified
as semiarid, with over half of the total rainfall occurring between July and September during the
North American monsoon (NAM).31 Precipitation during the NAM is characterized by local,
short-duration, high-intensity convective thunderstorms, which heavily influence ecosystem
response and surface soil moisture variability.12,32–35 The region outlined in red [Fig. 1(a)] is
the domain used in the linking model to merge information from coarse resolution and higher
resolution products. A large domain is required to satisfy the constraint of requiring warm and
cold pixels in each scene.

The distributed soil moisture network [Fig. 1(b)] was used for initial validation. This network
has been in operation since 2002 and has been used in the validation of advanced microwave
scanning radiometer-earth observing system products,36 aquarius,37 advanced scatterometer,38

and SMOS products.39 All probes (Stevens Hydra Probes) are installed horizontally at a
depth of 5 cm with an effective sensing range of 3 to 7 cm from the surface and record hourly
instantaneous data. Measurements of soil moisture were averaged between 5:00 a.m. and
7:00 a.m. to match satellite overpass times. The period of study for the current investigation
is from April 1, 2015 to October 4, 2016.

3 Datasets

3.1 Satellite Observations (SMOS, SMAP, and MODIS)

3.1.1 Soil moisture and ocean salinity satellite observations

The SMOS level 3 (L3) soil moisture products were used in this study. Associated brightness
temperature estimates are also included in the L3 product. SMOS L3 soil moisture products were
created through the algorithm for retrieving soil moisture from brightness temperature from the
L2 retrieval algorithm,17,40 the best estimation of soil moisture and dielectric constant based on a
minimization of a data quality index, as well as through temporal and/or spatial resampling or
processing [Centre Aval de Traitement des Donnees SMOS (CATDS)]. This resampling or
processing creates a soil moisture product on a 25-km spatial resolution grid with a target
accuracy similar to the L2 product (0.04 m3∕m3 at spatial resolution <50 km).17 SMOS has
a sun-synchronous orbit with local equatorial crossing times of ∼6∶00 a.m. and 6:00 p.m.
in ascending and descending nodes, respectively.17 Only ascending (6:00 a.m.) SMOS data
were used in this study as it is expected that surface soil conditions will generally be closest
to thermal equilibrium and uniformity at this time.16,19,41 SMOS soil moisture data are discarded
when the probability of radio-frequency interference is high, the quality of retrieval is poor
(DQX > 0.07), the soil moisture value is negative, or the retrieval has failed.

Fig. 1 DEM of the WGEW and 19 of the surface soil moisture sensors. (a) and (b) The red box
outlines the domain used in the linking model to merge information from coarse resolution soil
moisture satellites and higher resolution LST/EVI parameters.
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3.1.2 Soil moisture active passive satellite observations

The SMAP L3 product (L3_SM_P) is used in the current study. Associated brightness temper-
ature estimates are also included in the L3 product. The L3 product is a daily global composite of
the Level 2 surface soil moisture data and is available at 40-km resolution output on a fixed
36-km updated equal-area scalable Earth-2 projection.19 SMAP has a sun-synchronous orbit
with a local time of ascending and descending nodes of 6:00 p.m. and 6:00 a.m., respectively.
Due to an expectation of thermal equilibrium and uniformity of surface soil conditions, as
mentioned for SMOS, only descending (6:00 a.m.) SMAP soil moisture data are used in the
current study.

3.1.3 Moderate-resolution imaging spectroradiometer observations

Utilized MODIS products include the version 5 MODIS aqua 1-km resolution daily nighttime
LST product (MYD11A1), version 5 MODIS terra/aqua 1-km resolution 16-day composite EVI
product (MYD13A2/MOD13A2), and version 5 MODIS terra/aqua 1-km resolution 8-day
composite Albedo product (MCD43B3). Due to the optimization of the enhanced vegetation
index (EVI) in improving the vegetation signal and reducing soil background influence,42

EVI was utilized rather than the normalized difference vegetation index. The phasing of
both terra and aqua EVI products generates a combined 8-day time series of vegetation indices.
All MODIS products are acquired from the NASA Reverb ECHO site in the standard hierar-
chical data format for the time period under investigation.

4 Downscaling Methodology

Several theoretical and experimental studies have demonstrated the unique relationship among
soil moisture availability, LST, and vegetation indices.22,24,26,27 This relationship can be
expressed through a second-order polynomial regression formula, used in conjunction with
high-resolution EVI and LST, to obtain higher resolution soil moisture estimates. The regression
relation, proposed by Carlson et al.,24 can be written as

EQ-TARGET;temp:intralink-;e001;116;379SM ¼
Xi¼n

i¼0

Xj¼n

j¼0

aijEVI�iLST�j; (1)

where n is the order of the model and is typically chosen as two for computational efficiency.28,43

SM is the estimated soil moisture, and EVI� and LST� are the normalized EVI and normalized
observed LST, respectively, defined as

EQ-TARGET;temp:intralink-;e002;116;297EVI� ¼ EVI − EVImin

EVImax − EVImin

; (2)

EQ-TARGET;temp:intralink-;e003;116;254LST� ¼ LST − LSTmin

LSTmax − LSTmin

; (3)

where EVImin and EVImax are the minimum and maximum MODIS-derived EVI values
determined over the study domain, and LSTmin and LSTmax are the minimum and maximum
MODIS-derived LST values determined over the study domain. Regression coefficients (aij)
are determined by replacing SM in Eq. (1) with coarse scale SMOS (25 km) or coarse scale
SMAP (36 km) soil moisture estimates and resampling EVI and LST to match the corresponding
satellite product spatial resolution. Next, the system of linear equations for all the pixels in the
image is solved to obtain the regression coefficients (aij)—which are specific for each day and
scene being analyzed. It is important to note that LST and EVI at low (25 or 36 km) and high
(1 km) spatial resolution are computed so as to have the same mean value within each coarse
scale pixel, ensuring that the downscaled product has the same mean as the 25-km SMOS or
36- km SMAP soil moisture product. Estimated regression coefficients corresponding to
SMOS or SMAP are then utilized to estimate a MODIS-scale (1 km) soil moisture estimate.
This approach [Eq. (1)] is referred to as downscaling method 1 (DS1) in the evaluations.
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A similar approach was proposed by Piles et al.28 and introduces the use of brightness
temperature to the regression formula in an attempt to strengthen the relationship between land
surface parameters and soil moisture. This modified regression formula is written as

EQ-TARGET;temp:intralink-;e004;116;699SM ¼
Xi¼n

i¼0

Xj¼n

j¼0

Xk¼n

k¼0

aijkEVI�iT
�j
s T�k

b ; (4)

with Tb defined as

EQ-TARGET;temp:intralink-;e005;116;640T�
b ¼

Tb − Tbmin

Tbmax
− Tbmin

; (5)

where Tb;min and Tb;max are the minimum and maximum SMOS- or SMAP-observed brightness
temperature values determined over the study domain. This approach is referred to as downscaling
method 2 in the evaluations (DS2). In addition to the aforementioned approaches, Chauhan et al.22

introduce MODIS albedo data (α) into the regression formula and can be written as

EQ-TARGET;temp:intralink-;e006;116;558SM ¼
Xi¼n

i¼0

Xj¼n

j¼0

Xk¼n

k¼0

aijkEVI�iT
�j
s α�k; (6)

with α� defined as

EQ-TARGET;temp:intralink-;e007;116;500α� ¼ α − αmin

αmax − αmin

; (7)

where αmin and αmax are the minimum and maximum MODIS-derived albedo values determined
over the study domain. Equation (6) is noted as downscaling method 3 in the evaluations (DS3).
All three downscaling methods were solved in the same manner for both SMOS and SMAP coarse
scale soil moisture estimates.

It is important to note limitations when using MODIS visible/infrared data for downscaling
both SMOS and SMAP soil moisture data. First, the sensing depths for SMOS and SMAP
L-band (∼1.4 GHz) for bare soil are ∼5 cm. Sensing depth for the MODIS thermal infrared band
is ∼1 mm (skin). The thermal regime in the 0- to 5-cm profile is likely to be very different from
that of 0 to 1 mm, where more rapid fluctuations are likely and increased correlation to ambient
temperatures may lead to misrepresentation of spatial and temporal variability of the underlying
soil layer. The thermal regime in the 0- to 5-cm profile is also likely to differ from ground
observations (∼2.5 to 7.5 cm), with an expected low bias due to rapid drying of the top surface
soil layer. Furthermore, L-band is capable of penetrating moderately vegetated regions, where
thermal infrared is unable to sense through a vegetation layer.

5 Methodology

Analysis performed in the current study involved both a qualitative assessment of surface soil
moisture maps and spatial and temporal statistical evaluation. Statistical evaluation was done
through a comparison between original SMOS and SMAP soil moisture products and each sub-
sequently derived downscaled soil moisture product (DS1, DS2, and DS3). Evaluation of the
spatial domain was included to determine the degree of success of the disaggregation techniques
for SMOS and SMAP as the aim of each technique is to improve the spatial representation.
Standard statistical metrics include correlation (R), coefficient of determination (R2), slope,
and bias. In addition, the standard deviation of the error was included [Eq. (8)],44,45 which
is not compromised by the bias in the mean and amplitude of the time series that affects the
root-mean-square deviation (RMSD).30 This metric will be referred to as unbiased-RMSD or
ubRMSD46 as in Morelo et al.30

EQ-TARGET;temp:intralink-;e008;116;127ubRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ef½ðSMsatellite − EfSMsatellitegÞ − ðSMin situ − EfSMin situgÞ�2g

q
; (8)

where Efg is the expectation operator, and SMsatellite and SMin situ are the satellite and in situ soil
moisture time series, respectively. Spatial statistical analysis consists of computing the statistical
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metric between the satellite and in situ values for each day before deriving the average of each
metric for the whole period. Temporal statistical analysis consists of computing the statistical
metric for each site through the entire time period before taking the average among all sites.

6 Results and Discussion

6.1 Spatial Evaluation

In order to determine the success of each downscaling technique, a statistical analysis on the
in situ soil moisture data over WGEW was conducted first. Temporal and spatial variability of
in situ soil moisture observations were analyzed by evaluating the distribution of spatial standard
deviation (spatial σ), temporal standard deviation (temporal σ), and average soil moisture values
(Fig. 2). Spatial σ [Fig. 2(a)] is the standard deviation of the soil moisture distribution on each
day. Temporal σ [Fig. 2(b)] is the standard deviation of the soil moisture time series of each site.

In situ soil moisture values show a narrow distribution of spatial σ, with a mean value of
∼0.03 m3∕m3 [Fig. 2(a)], indicating little spatial variability throughout the study period at
WGEW. Temporal σ shows a slightly larger mean (∼0.05 m3∕m3), with a similar narrow
distribution centered on 0.04 m3∕m3. Despite the cluster centered on lower temporal σ values,
larger temporal σ values are recorded at ∼10% of the sites. The soil moisture distribution
[Fig. 2(c)] is relatively uniform over the watershed, with values ranging between 0.03 and
0.13 m3∕m3 and no one value accounting for a majority of the samples.

Satellite-derived soil moisture distributions are much narrower for both original (not down-
scaled) low-resolution SMOS and SMAP products (top left and bottom left, respectively, Fig. 3).
This is expected given the spatial extent of each low-resolution pixel over WGEW. SMOS down-
scaled soil moisture products 1, 2, and 3 (DS1, DS2, and DS3) (top row, Fig. 3) show slightly
wider distributions over the watershed, with DS2 showing the most spatial variability.
Conversely, SMAP downscaled soil moisture products 1, 2, and 3 (DS1, DS2, and DS3) (bottom
row, Fig. 3) indicate little improvement in the spatial distribution of soil moisture compared with
the original low-resolution SMAP soil moisture estimates (bottom left, Fig. 3). Mean (solid line)
and median (dashed line) remain consistent with original low-resolution SMOS and SMAP soil
moisture observations, indicating downscaled soil moisture estimates remain similar to low-
resolution estimates despite their derivation from LST, EVI, and/or TB and Alb. Analysis shows
SMOS DS2, which utilizes TB in its downscaling approach, provides the greatest amount of
spatial variability in soil moisture, with DS1 method showing a narrow distribution.

Figures 4 and 5 contain sample output of all three downscaling methods for both SMOS (top
row, Figs. 4 and 5) and SMAP (bottom row, Figs. 4 and 5) on the cloud-free acquisition date of
August 18, 2015 (Fig. 4) and September 18, 2016 (Fig. 5). Also included in Figs. 4 and 5 are the
original low-resolution SMOS (top, left, Figs. 4 and 5) and SMAP (bottom, left, Figs. 4 and 5)

Fig. 2 Distribution of (a) spatial, (b) temporal standard deviations, and (c) soil moisture values for
the in situ observations of WGEW at the SMOS and SMAP overpass times between April 1, 2015,
and October 4, 2016. Themedian of the distributions is depicted in the dashed line and themean in
the solid line.
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soil moisture estimates for the same date. Qualitative assessment of the disaggregated soil mois-
ture through each individual downscaling method indicates that the downscaling methods are
able to capture spatial discrepancies in soil moisture not available in the low-resolution original
products (Figs. 4 and 5). Lower soil moisture estimates are reported in the western region of
the watershed for both SMOS (top row, Fig. 4) and SMAP (bottom row, Fig. 4) downscaled
products on August 18, 2015, while a more uniform distribution of soil moisture is reported
on September 18, 2016. The introduction of brightness temperature for the downscaling of
SMAP (SMAP DS2) allows surface soil moisture estimates to better match those of the original
SMAP pixels on August 18, 2015, while SMAP DS1 and DS3 tend to report values slightly
larger as a whole across WGEW. Regardless of the magnitude, spatial patterns among the
three remain consistent, with SMAP DS2 showing slightly lower surface soil moisture values
over a larger portion of WGEW on both dates. Very little difference in magnitude and spatial
variability is reported among SMOS downscaling methods, with SMOS DS1 reporting the low-
est soil moisture estimates and SMOS DS3 the highest on average over the entire WGEW region
on both dates.

Figure 6 shows observed surface soil moisture estimates made at each site on the same dates,
August 18, 2015, and September 18, 2016, with areas among sites filled using inverse distance
weighting in order to identify the spatial distribution of observed soil moisture. Observed soil
moisture distribution indicates a relatively similar pattern of soil moisture on August 18, 2015,
with mainly lower surface soil moisture values in the western region of the watershed [Fig. 6(a)].
Discrepancies between observed and downscaled soil moisture occur at site 13, where the
observed value is larger than the surrounding surface soil moisture observations. The observed
soil moisture distribution indicates no similarities to downscaled estimates on September 18,
2016. Observed estimates of soil moisture report much lower values in the south central region
of the watershed. This spatial variability is not captured in the downscaled estimates, where
values are homogeneous across the watershed for all downscaling methods. It is important to

Fig. 6 Map of observed soil moisture estimates (m3∕m3) for WGEW on (a) August 18, 2015, and
(b) September 18, 2016. Data between sites were estimated using inverse distance weighting.
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note that while spatial patterns between observed soil moisture and downscaled soil moisture are
relatively similar on August 18, 2015, differences in spatial σ are large, with observed soil
moisture reporting a much larger spatial distribution compared with satellite-derived downscaled
estimates. This follows annual spatial analysis, where a much larger spatial distribution for
observed compared with satellite-derived downscaled products is reported (Figs. 2 and 3).

Table 1 summarizes the comparison of observations with each downscaling method over the
period of study. When comparing the statistics obtained for each downscaled product, it is noted
that there is little difference among disaggregation techniques for all statistical metrics. Slope
estimates range between 0.003 and 0.005 for downscaled SMOS and 0.000 to 0.008 for SMAP,
with R values between 0.259 and 0.282 for downscaled SMOS and 0.265 to 0.280 for down-
scaled SMAP. Unbiased RMSD (ubRMSD) values remain unchanged among the downscaling
techniques, with slightly larger values reported for SMOS. Small differences among variations of
downscaling techniques indicate that the addition of albedo or brightness temperature does little
to improve the downscaled soil moisture estimates in this region. This reflects results reported by
Kim and Hogue,12 where MODIS LST/EVI were shown to have the strongest spatial correlations
to soil moisture in the same region.

Statistical metrics reported here are similar to those in Morelo et al.,30 where low-resolution
SMOS soil moisture estimates were disaggregated over WGEW using a disaggregation algo-
rithm called disaggregation based on physical and theoretical scale change.47–49 Slope, R, bias,
and ubRMSD were reported in the study as 0.110, 0.102, 0.026 m3∕m3, and 0.037 m3∕m3,
respectively. Moreover, the AACES-I campaign,48 which took place in southeastern Australia
and also validated downscaled soil moisture estimates, report negative correlation values for
dates associated with very dry homogeneous soil moisture scenes.48 This coincides with findings
reported here, where minimal spatial variability (i.e., homogeneous surface) and dry conditions
lead to unsatisfactory statistical representation.

Additionally, it is important to take into consideration the differences between the validation
extent and the SMAP and SMOS resolution. WGEW covers only part of the surface of one
SMOS and SMAP pixel. Therefore, the distribution of spatial σ may not be representative of
the surface. Moreover, the soils of WGEWare characteristic of rapid infiltration and exfiltration
(sands and gravels), reducing the apparent soil moisture spatial contrast at satellite overpass
times. These spatial contrasts are a necessary condition for an accurate computation of the
downscaling coefficient.

6.2 Temporal Evaluation

Temporal evaluation was undertaken for the same period and datasets as Sec. 6.1. Temporal
statistics were derived by computing each metric over the time period for each individual site.
Values were then averaged over the region. Table 2 displays temporal statistics for WGEW
between April 1, 2015, and October 4, 2016. In the case of slope, all downscaled soil moisture
measures show degraded values, with slopes decreasing by 0.365 and 0.554 on average between

Table 1 Spatial comparison of soil moisture observations with downscaled products over the
study period. “DS1,” “DS2,” and “DS3” refer to downscaled soil moisture obtained through down-
scaling methods 1, 2, and 3, respectively. All values are expressed in m3∕m3, except forR and R2,
which are unitless.

SMOS SMAP

DS1 DS2 DS3 DS1 DS2 DS3

Slope 0.005 0.003 0.003 0.000 0.008 0.004

R2 0.067 0.079 0.069 0.070 0.078 0.078

R 0.259 0.282 0.262 0.265 0.280 0.280

Bias 0.005 0.010 0.009 0.000 −0.002 −0.003

ubRMSD 0.033 0.033 0.033 0.054 0.054 0.054
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downscaling methods for SMOS and SMAP, respectively. Similar to Morelo et al.,30 downscal-
ing slightly degrades R, with values decreasing more drastically for SMAP (−0.115 on average
between downscaling methods) than SMOS (−0.048 on average between downscaling meth-
ods). Bias and ubRMSD show improvement after disaggregation for SMOS soil moisture esti-
mates, with values remaining similar or slightly worse for downscaled SMAP soil moisture
estimates [Table (2)]. Despite improved or worse statistical metrics between downscaled and
original low-resolution soil moisture values, little difference is reported between individual
downscaling methods for SMOS and SMAP. This coincides with results presented in Sec. 6.1.

Differences between original SMOS and SMAP and corresponding downscaled products can
be more easily interpreted through qualitative inspection of scatter plots (Fig. 7) and time series
(Fig. 8). Distribution of surface soil moisture appears closer and more symmetric around the 1∶1
line for both original SMOS and SMAP estimates when compared with downscaled estimates
(Fig. 7). Regarding both SMOS and SMAP, the scatter plots show no major differences in down-
scaling methods, as described statistically in Table 2. This is further elaborated when comparing
a time series of estimated soil moisture for each downscaling method at each site (Fig. 8).
Although small differences are present, little to no difference is reported among the downscaling

Table 2 Temporal comparison of soil moisture observations with downscaled products over the
study period. “LR” refers to the low-resolution (original) soil moisture product prior to downscaling.
“DS1,” “DS2,” and “DS3” refer to high-resolution soil moisture obtained through downscaling meth-
ods 1, 2, and 3, respectively. All values are expressed in m3∕m3, except for R and R2, which are
unitless.

SMOS SMAP

LR DS1 DS2 DS3 LR DS1 DS2 DS3

Slope 0.958 0.546 0.558 0.675 0.836 0.397 0.406 0.440

R2 0.372 0.314 0.311 0.323 0.523 0.388 0.352 0.368

R 0.610 0.561 0.558 0.568 0.723 0.623 0.593 0.607

Bias 0.019 0.008 0.013 0.012 0.001 0.002 0.000 −0.002

ubRMSD 0.050 0.042 0.043 0.046 0.032 0.036 0.037 0.037

Fig. 7 Scatter plots of original SMOS (top, left), original SMAP (bottom, left), and corresponding
downscaled soil moisture through methods DS1, DS2, and DS3 (left to right, respectively) versus
in situ measurements for all sites within WGEW. The samples here correspond to the period April
1, 2015, to October 4, 2016. Solid line represents the 1∶1 slope.
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methods, with magnitudes and spatial distributions remaining similar throughout, as men-
tioned above.

While interpreting samples during the nonmonsoon periods (not including months June
through September), drier conditions lead to disaggregation values that are slightly closer
to in situ estimates and become more equally distributed around the 1∶1 line (Fig. 9).
Comparison between the two time series shows an increase in slope for both SMOS and
SMAP (þ0.034 and þ0.021 on average, respectively) when excluding the monsoon season.
Correlations remain similar with less than a �0.04 change in correlation between SMOS
and SMAP on average among the downscaling techniques. Versions of the downscaling
techniques presented in the current study do not operate as effectively in wet conditions,

Fig. 9 Scatter plots of original SMOS (top, left), original SMAP (bottom, left), and corresponding
downscaled soil moisture through methods DS1, DS2, and DS3 (left to right, respectively) versus
in situ measurements for all sites within WGEW. The samples here correspond to the nonmon-
soon period (not including months June through September). Solid line represents the 1∶1 slope.

Fig. 10 Bar plots of the statistical metrics such as slope, R, bias, and ubRMSD (top to bottom) for
ORG (original low-resolution SMOS/SMAP compared with basin averaged observed soil moisture
estimates) and corresponding individual sites for both SMOS and SMAP products. Statistical
metrics reported for each individual site are the mean between DS1, DS2, and DS3 due to
the small differences reported among the downscaling techniques.
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where parameters such as MODIS LST are generally disconnected from soil moisture. This
disconnection or decoupling is due to a transition from moisture limited to energy limited
conditions.

Site-specific analysis reveals slight differences between ORG statistical metrics (original
low-resolution SMOS/SMAP compared with basin averaged observed soil moisture estimates)
and corresponding metrics derived at each individual site (average of DS1, DS2, and DS3)
(Fig. 10). In regards to slope, all sites (with the exception of 92 and 100) show a decrease
in value following disaggregation, with SMAP reporting lower slope values than SMOS at
all sites under investigation. R values vary considerably among sites, with the lowest values
observed at sites 37 and 83. In contrast to slope, SMAP shows larger R values among all sites
on average when compared to SMOS (Fig. 10). Bias values also vary among sites, with larger
positive bias values reported at sites 37, 83, and 100 and more negative bias’s reported at sites 13,
69, and 82. Values of ubRMSD show less variability among sites, with no significant improve-
ment over the coarse resolution SMOS and SMAP. Site-specific analysis further proves,
statistically, little improvement or benefit in downscaling original low-resolution SMOS and/or
SMAP in the region under investigation. As such, the importance of qualitative assessment
of surface maps, where differences in spatial heterogeneity of surface soil moisture between
low- and high-resolution products is apparent, cannot be overstated.

7 Conclusions

In this current study, two passive microwave sensor satellites (SMAP and SMOS) and three
variations of a second-order polynomial regression formula were tested to determine the ability
of each satellite and each downscaling method to capture the spatial and temporal hetero-
geneity of soil moisture over WGEW. Variations of the downscaling method were chosen
as they are computationally efficient, require no ground-based ancillary data sources, and
require no site/region-specific calibration, allowing each to be implemented in near-real time.
Each combination of satellite and downscaling method was evaluated over the WGEW and
its high-density network of soil moisture sensors between the dates of April 1, 2015 and
October 4, 2016.

Overall, SMOS- and SMAP-derived soil moisture estimates under each downscaling method
show little variation among methods, indicating the addition of albedo or brightness temperature
does little to improve downscaled surface soil moisture estimates. Spatial and temporal statistics
indicate modest enhancement in downscaling original low-resolution SMOS and/or SMAP in
the region under investigation. Visual assessment of downscaled soil moisture maps for both
SMOS and SMAP show that each disaggregation is capable of revealing spatial discrepancies
and heterogeneity of the surface. However, these spatial discrepancies and heterogeneity of the
surface do not always correspond to observations. Disaggregation techniques applied to SMAP
do little to improve the representation of spatial variability in soil moisture, with soil moisture
values remaining within bounds set by the original low-resolution product. Lack of improved
spatial representation of surface soil moisture following each downscaling procedure is likely
associated with a combination of regional characteristics. For example, soils of WGEW and the
surrounding region are noted to have high infiltration/exfiltration rates, reducing the apparent
soil moisture spatial contrast during satellite overpass times. These spatial contrasts are a nec-
essary condition for accurately downscaling low-resolution soil moisture products. Moreover,
downscaling techniques presented here do not operate as sufficiently in increased wet conditions
due to a decoupling of satellite derived parameters (LST) and surface soil moisture from a tran-
sition from moisture limited to energy-limited conditions.

Key limitations when applying this approach are that the developed downscaled soil moisture
estimates are available only during clear-sky days due to the need for MODIS products for the
downscaling method. However, because SMOS and SMAP report little to no variability among
downscaling methods, it may be possible to supplement original low-resolution SMOS and
SMAP soil moisture estimates in for short periods of time between clear-sky days. This approach
may suffice on the point-scale, but may be less useful when a spatial analysis or interpretation is
required.
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