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Abstract. Separating sea surface and land areas in synthetic aperture radar (SAR) images is
challenging yet of great importance to coastline extraction and subsequent coastal classification.
Results of the previous state-of-art methods often suffer from a number of limitations that arise
from the presence of the speckle effect and the inadequate returned signal around the boundaries.
We propose a graph cut (GC)-based approach to tackle these limitations and achieve accurate
sea–land segmentation results. To be more specific, as the first step, three powerful multipola-
rization features are extracted from the polarimetric SAR data as descriptors to fully characterize
the sea area and land area. Starting from that, seeds of the sea and land are selected automatically
to build the prior model for GC. Based on the prior model, we construct the undirected graph in
GC using the multipolarization descriptors. Finally, we incorporate the ratio of average operator
to eliminate the speckle effect and get finer results for some finer structures. Experiments on
Radarsat-2 quad-polarization images demonstrate significantly improved results of our proposed
algorithms compared with several state-of-the-art methods in terms of both quantitative and vis-
ual performance. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JRS.11.026023]
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1 Introduction

Sea–land segmentation in synthetic aperture radar (SAR) images is an important step for several
important tasks, such as coastline extraction, ship detection, and coastal monitoring.1–5 However,
sea–land segmentation in SAR images is not as a simple work as in photographic images. In the
latter one, thresholding methods, for instance the Otsu's method6 and the local adaptive threshold
method (LATM),7 are frequently used and achieve satisfactory segmentation results. The diffi-
culties brought by SAR images mainly lie in two aspects: one is poor sea–land discrimination,
which may lead to discontinuous boundaries, the other is the presence of the speckle effect.1,2

The first one is that the retuned SAR signal from the rough sea surface may exceed or be equal
to that from the nearby land area. The second one, which is generated by scatters that are
smaller than the SAR resolution elements, makes the segmentation task more complicated.
As a consequence, sea–land segmentation in SAR images is difficult even for experienced
interpreters.

Several methods that aim to solve the problems in SAR images have been proposed in the last
decade.1–3,5,8,9 Among them, in the era of the single SAR images, the commonly used sea–land
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segmentation methods can only exploit the magnitude information and cannot achieve ideal
results. As a comparison, recent algorithms using polarimetric SAR (PolSAR) data are populated
thanks to the successful launch of several PolSAR satellites. PolSAR offers a brand-new view
for sea–land segmentation since it provides more features compared with single PolSAR.6,10

These multipolarization features that can represent different scattering mechanisms are extracted
from scattering decomposition and eigenvalue analyses.11,12 The existing methods that utilize
SAR polarization information mainly focus on simply using the multipolarization features
by several typical image processing methods, such as gray-level thresholding,5,8 machine
learning,9 and multipolarization feature-based segmentation.10,13 As a result, the limitations
caused by ambiguous sea–land separation and the speckle effect are not fully tackled by current
methods.

In addition, with the improvement of the spatial resolution of SAR sensors, more geomorphic
information is presented in SAR images in detail, which makes the segmentation problem
more challenging. For instance, the tidal creeks on the intertidal area may be considered as land
while some elongate structures may be difficult to detect. In this case, correct description of
the boundary details is critical to the segmentation accuracy.3

In this paper, we propose a graph cut (GC)-based approach integrating multipolarization
features and edge information to address the sea–land segmentation problems for SAR images.
GC is an efficient framework that can achieve satisfactory two-value segmentation by two steps:
transferring an image to an undirected graph and finding a cut through the graph with minimal
cumulative cost.3,10 GC can find a globally optimal segmentation for an image and generate a
good balance of local terms at the same time. In GC, the impact of the ambiguous boundaries
can be reduced by the local term, which incorporates neighborhood information and ensures
a continuous shoreline.14 However, traditional GC belongs to the category of semisupervised
segmentation methods that require users to specify foreground and background seeds for
prior modeling.15 In this paper, improvements have been made on the basis of the GC framework
in the view of the PolSAR data to achieve sea–land segmentation accurately with automatic seed
selection. Three powerful multipolarization features are extracted from the quad-PolSAR data,
i.e., the total power span, the polarimetric entropy H, and the mean scatter angle α. For each
pixel in the PolSAR image, a vector is formed by the three features as its multipolarization
descriptor. Automatic seed selection can hence be possible by locating the pixels in the
H − α plane based on the scattering mechanism of the sea and land. The selected seeds enable
us to build the prior models for GC. Problems raised from the speckle effect are addressed by
introducing edge constraint when modeling the boundary item in GC. The edge constraint is
extracted by an edge map that is generated from the four-channel PolSAR image by the ratio
of average (ROA) algorithm, which is significant for improving its speckle noise depressing
ability.16 Our work significantly differs with previous works in three aspects:

1. Reliable and sufficient seeds are selected in a completely automatic way based on the
H − α plane and enable us to build the prior models for GC.

2. A multipolarization descriptor that fuses the total scatter power span, polarimetric
entropy H, and mean scatter angle α is proposed to build the graph model in GC.

3. Edge map that is generated from the PolSAR images by the ROA algorithm is used as
edge constraint for modeling the boundary term in GC. The edge constraint is helpful in
both reducing the speckle effect and avoiding the under-segmentation for some thin and
elongated structures.

2 Methodology

In this section, we propose a sea–land segmentation method for PolSAR images. The proposed
method can be divided into three parts. First, the H − α decomposition11 is applied to extract
multipolarization features. The latter is used both in seed selection and the forming of the multi-
polarization descriptor. Then, the edge map is generated from the four channels of quad-polari-
zation images by the ROA algorithm. Finally, an edge-constrained GC was applied to separate
sea and land. Figure 1 shows the flowchart of our method.
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2.1 Multipolarization Descriptor and Automatic Seed Selection

PolSAR has attracted much attention since it can provide much more detailed information in
comparison with single PolSAR in variant applications. In the sea–land segmentation case, we
extract multipolarization features as descriptors to characterize the properties of the sea and
the land. Based on the multipolarization descriptors, reliable seeds are selected to build the
prior model for GC, and the undirected graph in GC is constructed subsequently.

2.1.1 Synthetic aperture radar polarimetry features

PolSAR data can offer a different view on describing the observed target surface by methods that
exploit the combined information of the backscattering coefficients, among which the most
famous one is the H − α decomposition.11 The definition of the H − α decomposition is
based on the polarimetric coherency T3 matrix

EQ-TARGET;temp:intralink-;e001;116;403T3 ¼
1

L

XL

n¼1

kk�T ¼
X3

i¼1

λiuiu�Ti ; (1)

where L is the number of samples included in averaging and k indicates the Pauli scattering

EQ-TARGET;temp:intralink-;e002;116;341k ¼ 1ffiffiffi
2

p ½ SHH þ SVV SHH − SVV 2SHV �T; (2)

where the elements SHH and SVV produce the power return in copolarized channels, and the
element SHV produces the power return in the cross-polarized channel. H and V represent
the linear horizontal (H) and vertical (V) polarizations separately. The polarimetric entropy
H is derived from the eigenvalues λi given by

EQ-TARGET;temp:intralink-;e003;116;249H ¼ −
X3

i¼1

Pi log Pi; (3)

where Pi is the pseudoprobability as

EQ-TARGET;temp:intralink-;e004;116;189Pi ¼
λiP
3
i¼1 λi

: (4)

The mean scatter angle α is computed from the eigenvectors

EQ-TARGET;temp:intralink-;e005;116;134α ¼
X3

i¼1

Pi cos
−1½juið1Þj�: (5)

The polarimetric entropy is a measure of the randomness of the scattering processes and ranges
from 0 to 1. In a remote-sensing image, the borders between the sea and land can be seen as a unit

Fig. 1 Flowchart of the proposed segmentation method.
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of the edge points, whereas the edge strength per unit area can be measured by the texture
strength. The polarimetric entropy has been proved to be closely related to the polarization-
dependent variation of texture due to it being sensitive to the scattering randomness.
Therefore, the polarimetric entropy is helpful in measuring the differences of scattering random-
ness between the sea and land. The mean scatter angle α takes values between 0 deg and 90 deg.
The increase of α indicates three scattering mechanisms, namely surface scattering, volume
scattering, and double bounce scattering, respectively, which could measure the differences of
surface roughness between the sea and land.12

Another common multipolarization parameter is the span, which is the total power of the
polarimetric channels. Span is a combination of the information of the four channels and
can offer more details than them.11 The definition of span is given as

EQ-TARGET;temp:intralink-;e006;116;427Span ¼ jSHHj2 þ jSHVj2 þ jSVHj2 þ jSVVj2: (6)

In the SAR images, we have found that the sea surfaces are dominated by the Bragg surface
scattering, which can be measured by the mean scattering angle α, and land areas are more
complicated in texture and intensity distribution. To fully characterize the sea and land, these
three powerful multipolarization features are normalized between 0 and 1 and set into a vector for
every pixel in the SAR image as a descriptor. The polarimetric entropy is between 0 and 1 by
definition. The mean scatter angle α is normalized by dividing by 90. The normalization of
the span includes two steps: clipping the span image S to 0.1 � ðSÞ followed by linear normali-
zation to 0,1. Examples of the three multipolarization features are shown in Fig. 2, in which
the polarimetric entropy H is demonstrated in 2(a), the mean scatter angle α is shown in 2(b),
and 2(c) gives the image of the total power span.

2.1.2 Automatic seed selection by H − α plane

We have extracted three powerful multipolarization features from the PolSAR data, i.e., the total
scatter power span, polarimetric entropy H, and mean scatter angle α. Based on polarimetric
entropy and mean scatter angle, Cloude and Pottier13 proposed a two-dimensional H − α
plane that can represent an all random scattering mechanism, given in Fig. 2(d). This plane is
subdivided into eight basic zones to characterize different classes of land covers based on their
scattering mechanisms.

In the sea–land segmentation case, the sea areas usually have both low entropy and scatter
angle values for its smooth surface, whereas the values of the land parts are usually relatively
high for its relative complicated texture distributions. As a consequence, seeds selection for the
sea and the land will be possible by locating the pixels in the H − α plane based on its entropy
and scatter angle. Figure 2(d) shows the locations in the H − α plane of some sample pixels. In
Fig. 2(d), locations of the land area marked as red box in Fig. 2(c) are represented as red points,
and the blue points indicate the locations of the sea area that are marked as blue box in Fig. 2(c).
It is clearly seen that the sea area mainly fall into the category with entropy value less than 0.5
and α value less than 42.5 deg, i.e., zone 8 as marked in Fig. 2(d).11 To this end, the seeds

Fig. 2 Examples of the multipolarization features and the H − α plane. (a) Polarimetric entropy H .
(b) Mean scatter angle α. (c) Total power span. (d) The H − α plane, in which the red points
demonstrate the locations of the land area marked as red box in (c), and the blue points indicate
the location of the sea area marked as blue box in (c).
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selection work for the sea can be simplified by threshold works based on theH − α plane. In this
paper, pixels that have H values lower than 0.3 and α values lower than 30 deg are selected as
seeds of the sea area. The seeds of the land are selected from the pixels with entropy values
higher than 0.4 and with α values higher than 45 deg.

2.2 Ratio of Average-Based Edge Map Generation

The speckle appear in SAR images will lead the inaccuracy in sea–land segmentation work.
Based on the multiplicative noise model, several studies have been developed to smooth the
speckle noise. Among them, the ROA algorithm is often used in the present studies to address
this problem in a variety of applications.

ROA is one of the most efficient edge detectors for SAR images, which belongs to the class
of constant-false-alarm-rate operators and can be used to eliminate the speckle effect in SAR
images by employing the ratio of neighboring pixels.

In ROA, a moving window is segmented to two subwindows P and Q along the assumed edge
direction. Figure 3 shows the mask of ROAwith four typical directions.13,17 For every direction,
the ROA is expressed as

EQ-TARGET;temp:intralink-;e007;116;406Rd ¼ maxðĪdP∕ĪdQ; ĪdQ∕ĪdPÞ; (7)

where the superscript d indicates the direction, and ĪP and ĪQ denote the mean scattering inten-
sities for P and Q, respectively. The final result R can be represented by the maximum ratio in
all the directions in set O

EQ-TARGET;temp:intralink-;e008;116;341R ¼ maxfRd; d ∈ Og: (8)

In this paper, the ROA is applied to the four channels of quad-PolSAR images, i.e., HH, HV, VH,
and VV to extract their edge maps separately. The final edge map Re is given as the sum of the
four edge maps in each pixel i

EQ-TARGET;temp:intralink-;e009;116;275ReðiÞ ¼
X

m;n∈fH;Vg
RmnðiÞ: (9)

In our test, we further normalized Re to [0, 1].
The resulting edge map Re can delineate the boundaries excluding the impact of speckle

noise. Consequently, accurate sea–land segmentation will be possible by introducing the
edge map into the GC framework.

2.3 Edge Constrained Graph Cut

We have proposed multipolarization descriptors to characterize the sea and the land by extracting
features from the PolSAR data. In this end, seeds of the sea and land are selected automatically.
Furthermore, edge map is generated by ROA depressing the speckle effect. Based on these,
we accomplish the final segmentation work with our edge-constrained GC framework.

GC is an efficient two-class segmentation framework that is widely used in image segmen-
tation works due to its compatibility and robustness. In GC, each pixel in an image is represented
as a node in an undirected graph, and the image segmentation work is achieved by cutting

Fig. 3 Mask of ROA: target A and target B in the moving window for four typical directions. The
directions are: (a) 0 deg, (b) 45 deg, (c) 90 deg, and (d) 135 deg.
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through the graph with minimal cumulative cost, which is a typical energy minimization prob-
lem. The energy function for GC can be expressed as

EQ-TARGET;temp:intralink-;e010;116;711EðLÞ ¼
X

i∈I
DiðLiÞ þ λ

X

ði;jÞ∈ξ
VijðLi; LjÞ; (10)

where L is the label map of the image I for segmentation, Dið·Þ is the data constraint, which
corresponds to the likelihood that the node i belongs to class Li. Boundary item Vij measures the
cost of assigning i and j with different labels and can ensure the continuity of the edges between
the background and foreground. The positive constant λ specifies the relative importance of the
data constraint and the boundary item, which is set at 10 in our experiments. Set ξ indicate the
edges of all pairs of neighboring pixels.3 Based on the image I and the edge set ξ, an undirected
graph G ¼ hI; ξi can be built. InG, each node is connected to its neighboring pixels by so-called
n-links and to the two terminal nodes by t-links. The t-links correspond to the global term and
the n-links correspond to the boundary term in the energy function EðLÞ.

The most crucial step of constructing the graph is the assignment of link weights. In this
step, we form a multipolarization feature space by the three features in the multipolarization
descriptor, i.e., the total power span, the polarimetric entropy H, and the mean scatter angle α.
Prior models of the sea and land are built by the Gauss mixture models (GMMs) in the multi-
polarization feature space. In our experiments, the numbers of the components of the GMMs are
3 and 4 for the sea and land, respectively, because the land area usually has a relatively com-
plicated distribution of texture. As a matter of fact, we find that the numbers of the components
have little influence on the final segmentation results once they are selected in a reasonable range
from 3 to 5.

Based on the GMMs, the t-links of our graph model are defined as

EQ-TARGET;temp:intralink-;e011;116;439DiðLiÞ ¼ − log½pð~xijLiÞ�; (11)

where pð·Þ is one of the two GMM models that are determined by label Li, and ~xi indicates
the three-channel multipolarization descriptor of the i’th pixel.

When calculating the n-links, we use the spatial distance between two multipolarization
feature vectors and combine it with the edge maps that are generated from ROA, given by

EQ-TARGET;temp:intralink-;e012;116;359VijðLi; LjÞ ¼ exp½−σij:Rij:ð~xi − ~xjÞ2� · jLi − Ljj; (12)

where Rij indicates the edge information between the i’th pixel and the j’th pixel, and the vectors
~xi and ~xj indicate the three-channel multipolarization descriptor of the i’th pixel and j’th
pixel separately. The calculation of Rij is defined by the sum of the values of these pixels
in edge map Re

EQ-TARGET;temp:intralink-;e013;116;276Rij ¼ ReðiÞ þ ReðjÞ: (13)

The coefficient σ is calculated by

EQ-TARGET;temp:intralink-;e014;116;232σij ¼
1

2hj~xi − ~xjj2i
; (14)

where h·i indicates the integral average value.
Term Rij is important in two aspects: one is smoothing the speckle noise around the boun-

daries and the other is detecting some thin and elongated structures.

3 Experiments

In the experiment, the proposed method was evaluated and validated on the Radarsat-2 C-band
SAR data. The processed images are selected from Radarsat-2 quad-polarimetric fine-resolution
SAR images over Shanghai and San Francisco as described in Fig. 4. In Fig. 4, (a) is selected
from data over Shanghai with size 2000 × 2000 and others are selected from data over San
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Francisco with size 2000 × 2000, 1000 × 1000, and 1000 × 1000, respectively. The ground truth
images are labeled by our interpreters carefully to evaluate the experimental results. Comparative
experiments are carried out based on subimages that are selected from the processed images
including scenes of complex distribution of texture and complicated structures.

3.1 Experimental Results

Figure 5 shows the intermediate processing and segmentation results of the four selected images
in Fig. 4. Figure 5(a) shows the span images the same as those in Fig. 4. Figure 5(b) shows the
selected seeds for the land and sea that are displayed in red and blue, respectively. The seeds
selection results can efficiently mark the sea and land. Edge maps that are generated from the
ROA algorithm are shown in Fig. 5(c), in which the edges are delineated clearly. Figure 5(d)

Fig. 4 Span images of the selected sea–land scenes: (a) intertidal area of Chongming Island,
Shanghai, (b)–(d) different parts of San Francisco.

Fig. 5 Visual illustration of the multipolarization features, seed selection results, and edge maps of
the four scenes in Fig. 3: (a) the span image, (b) selected seeds in which the seeds of the sea and
land are displayed in blue and red respective while the black ones are unlabeled, (c) edge maps
that generated by ROA, (d) segmentation results, and (e) ground truth that manually outlined.
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shows the final segmentation results, which can ensure continuous shorelines. In Fig. 5, the tidal
creeks are detected accurately as described in the first row, and some slender structures are clas-
sified correctly as described in the third row. Figure 5 shows that the final results of our method
can offer good visual matches compared with the ground truth that are given in Fig. 5(e).

3.2 Quantitative and Visual Comparison

We have demonstrated the effectiveness of the proposed method as applied to the Radarsat-2
PolSAR data. To be more complete, comparative experiments are carried out based on three
baselines, i.e., GC15 without edge constraint and multipolarization descriptor, Hansch’s algo-
rithm,10 and LATM.7 Among these three methods, GC is the basic framework of the proposed
method, Hansch’s algorithm is an extension of the GC framework for PolSAR data, and LATM
is a typical thresholding method. In the comparative experiments, the traditional GC and
Hansch’s method use the same seeds used by our method to do the segmentation work. The
building of an undirected graph is similar to the proposed method while the differences are
that the multipolarization feature vector is replaced by the simple span image in building
the GC model and the n-link weights are calculated without the edge constraints. For the
LATM, the inputs are the span images. In the experiments of the Hansch’s method, we use
the same multipolarization feature vector as our method to build the t-links and use the complex
Wishart distribution to build the n-links. In the experiments of traditional GC and Hansch’s
method, the λ is set to 10 and the number of the components in the GMMs is set to 3 and
4 indicates the sea and land separately. We select subimages from the four testing images
with complex shorelines and complicated structures. Visual illustrations of the segmentation
results of different methods are presented in Fig. 6.

Fig. 6 Visual comparison of segmentation results of different methods. (a) Span image, (b) ground
truth, (c) ours, (d) GC, (e) method by Hansch, and (f) LATM.
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The results of the comparative experiment demonstrate that the results of our method are
spatially consistent with few errors compared to the ground truth owing to the reliable seeds
and speckle-reduced edge constraints. Specially, our method outperforms the comparative meth-
ods for the scenes that have thin and elongate structures, as presented in the first and third row in
Fig. 6. Images in the second and fourth row in Fig. 6 demonstrate that our method performs well
in the complex coastline case. The last row of Fig. 6 shows that detailed information can be
extracted by our method accurately.

Quantitative analysis work is carried out by four measurement methods, i.e., recall of the land
(ROL), precision of the land (POL), recall of the sea (ROS), and the precision of the sea (POS).3

We compute these measurements on the pixel level for the testing images in Fig. 6. In addition,
we calculate the standard deviations (STD) of the four measurements for the testing images.

Table 1 presents the average ROL, POL, ROS, and POS that are calculated by the average of
each image, and our method performs best on all the four measurements. Furthermore, the STDs,
i.e., the STD of the testing images indicate that our method is the most stable one. Among the four
measurements, the three comparative methods achieve relatively small ROL values owing to the
ambiguous nature for sea–land separation in SAR images.1,2 In addition, POS values are small
owing to the wind-roughed and speckled sea surface in SAR images, which may cause misclas-
sification. All of these posed difficulties are caused by the presence of speckle and
the returned signal from the roughed sea surface. By employing the ROA algorithm and multi-
polarization descriptor, our method addresses all these difficulties and achieves the best results.

3.3 Effects of Introducing Edge Constraints

The incorporation of the ROA-based edge map in our GC framework is aimed at reducing the
speckle noise and avoiding under segmentation for some slender structures. To further validate
the effectiveness, we conduct comparative experiments with the canny edge directed GC that is
proposed in Dongcai Cheng’s paper.3 In Cheng’s work, the edge constraint in GC is the edge
map that is generated by canny detector rather than ROA. The comparative results are shown in
Fig. 7, in which (a) indicates the span images, (b) represents the canny edges, (c) shows the

Table 1 Average ROL, POL, ROS, and POS and their STD obtained with different methods. The
STD indicates the standard deviation and the bold values indicate the best.

Method ROL� STD (%) POL� STD (%) ROS� STD (%) POS� STD (%)

LATM 32.58� 2.91 67.64� 6.63 79.24� 14.14 51.18� 15.92

Method by Hansch 82.88� 18.49 98.15� 1.27 98.02� 1.24 86.23� 13.81

GC 71.49� 28.73 98.34� 1.85 97.94� 2.25 82.35� 13.54

Ours 98.31� 1.30 98.35� 1.46 98.10� 1.69 98.28� 1.50

Fig. 7 Comparative experiments with canny edges constrained GC: (a) span images, (b) canny
edges, (c) segmentation results of GC with canny edge constraints, (d) our ROA-based edge
maps (e) segmentation results of ours, and (f) ground truths.
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results of canny edge directed GC, and the next two figures demonstrate the edge maps and
segmentation results of the proposed method. Figure 7(f) shows the ground truths.

Experimental results show that our method is effective in some cases such as the thin struc-
tures, which may be easily corrupted by the speckle noise in SAR images, as presented in the
first row of Fig. 7. The second row of Fig. 7 shows the results of a subimage with complicated
distribution of texture and inadequate boundaries. The latter case may be caused by the signal
returned from the water area that shares similar intensity compared with the nearby land as well
as the speckle effect. In this case, our method outperforms the canny edge directed GC and
achieves satisfactory results.

3.4 Influence of Parameters

3.4.1 Selection of λ in graph cut

The parameter λ balances the relative importance of the n-links and t-links in GC. When λ is
small, the segmentation results are dominated by the t-link weights, i.e., the global information
and may lead to discontinuous boundaries. However, when the value of λ is too large, the image
will be over-smoothed and cause under-segmentation around the boundaries. In both cases,
the accuracy of the sea–land segmentation will be decreased.

To validate the influence of the value of λ, this paper sets different values of λ and compute
the average ROL, ROS, POL, and POS on the testing images. Specially, the F1-measure is used
as the balanced performance measurement,18 given by

EQ-TARGET;temp:intralink-;e015;116;290FOL ¼ 2ROL · POL
ROLþ POL

; (15)

EQ-TARGET;temp:intralink-;e016;116;244FOS ¼ 2ROS · POS
ROSþ POS

; (16)

where FOL is the F1-measure of the land and FOS is the F1-measure of the sea. The experiments
are divided into two parts: first, the value of λ is set to a wide range from 0.01 to 1000, and
the results are shown in the left figure of Fig. 8; second, the value of λ is chosen in a finer range
from 10 to 90 as represented in the right figure of Fig. 8. The combination of both figures in
Fig. 8 validates that the accuracy reach the best when the value of λ is set to 10.

3.4.2 Influence of the number of components in the Gauss mixture models

In our method, the GMMs are used to fit the distribution of the selected seeds of the sea and land.
To study the influence of the number of components in the GMMs, we set different pairs of
(sea, land) components in a range from 2 to 5 and compute the average ROL, ROS, POL,
and POS on the testing images. As the land area usually has a relatively complicated distribution

Fig. 8 Influence of value of λ.
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of intensity, we set a larger number of the components in the GMMs for the land area. The results
are represented in Table 2, from which it can be seen the numbers of the components have
little influence on the final segmentation results once they are selected in a reasonable range
from 3 to 5.

4 Conclusion

A GC-based approach is proposed in this paper to address the sea–land segmentation problems
for PolSAR images. In our work, the ambiguous sea–land separation problem is addressed by
exploiting the neighborhood information in GC. Specially, we employ the multipolarization
features to select seeds for the sea and land automatically and build a graph model for GC.
The accurate segmentation result is achieved by utilizing the ROA-based edge constraints,
which can address problems associated with the speckle effect around the boundaries as well
as the under-segmentation for some finer structures. We conduct experiments on two sets of
Radarsat-2 PolSAR data gathered over Shanghai and San Francisco and show our algorithm
outperforms three traditional methods with nontrivial margins, which demonstrates the effective-
ness of our method.

Further improvements in accuracy for the purpose of geographic mapping and land use clas-
sification would require more powerful multipolarization feature and additional modifications
in the GC framework.
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