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Abstract. We apply a neural network (NN) technique to detect/track Karenia brevis harmful
algal blooms (KB HABs) plaguing West Florida shelf (WFS) coasts from Visible-Infrared
Imaging Radiometer Suite (VIIRS) satellite observations. Previously KB HABs detection pri-
marily relied on the Moderate Resolution Imaging Spectroradiometer Aqua (MODIS-A) satel-
lite, depending on its remote sensing reflectance signal at the 678-nm chlorophyll fluorescence
band (Rrs678) needed for normalized fluorescence height and related red band difference
retrieval algorithms. VIIRS, MODIS-A’s successor, does not have a 678-nm channel. Instead,
our NN uses Rrs at 486-, 551-, and 671-nm VIIRS channels to retrieve phytoplankton absorption
at 443 nm (aph443). The retrieved aph443 images are next filtered by applying limits, defined
by (i) low Rrs551-nm backscatter and (ii) a minimum aph443 value associated with KB HABs.
The filtered residual images are then converted to show chlorophyll-a concentrations [Chla] and
KB cell counts. VIIRS retrievals using our NN and five other retrieval algorithms were compared
and evaluated against numerous in situ measurements made over the four-year 2012 to 2016
period, for which VIIRS data are available. These comparisons confirm the viability and higher
retrieval accuracies of the NN technique, when combined with the filtering constraints, for effec-
tive detection of KB HABs. Analysis of these results as well as sequential satellite observations
and recent field measurements underline the importance of short-term temporal variabilities on
retrieval accuracies. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JRS.11.032408]

Keywords: neural networks; harmful algal blooms; ocean color remote sensing reflectance;
Karenia brevis; retrieved chlorophyll-a; normalized fluorescence height; West Florida shelf.

Paper 16918SS received Nov. 30, 2016; accepted for publication Apr. 11, 2017; published online
May 11, 2017.

1 Introduction

We have previously described preliminary results with a neural network (NN) approach for the
detection1 and tracking of Karenia brevis harmful algal blooms (KB HABs) that frequently
plague the coasts and beaches of the West Florida shelf (WFS) using visible-infrared imaging
radiometer suite (VIIRS) satellite data. Such a monitoring capability for KB HABs is important
because of their negative impacts on ecology and health. More specifically, high KBHABs levels
pose a threat to fisheries and human health and directly affect tourism and local economies.2

Effective KB HABs detection and tracking approaches are needed for use with VIIRS so that
NOAA can extend its HABs monitoring capabilities. These previously relied on MODIS-A
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imagery3–12 and specifically on the remote sensing reflectance signal at 678 nm, (Rrs678) at the
chlorophyll fluorescence wavelength. This was used in MODIS-A with the normalized fluores-
cence height (nFLH) and related red band difference (RBD) techniques to effectively help in
KB HABs retrievals. However, the current VIIRS satellite, unlike its predecessor MODIS-A,
does not have a 678-nm channel to detect chlorophyll fluorescence. To overcome the lack
of a fluorescence channel on VIIRS, the NN approach bypasses the need for measurements
of chlorophyll fluorescence, allowing us to extend KB HABs satellite monitoring capabilities
in the WFS to VIIRS.

The essence of the approach is the application of a standard multiband NN inversion algo-
rithm, previously developed and reported by us.13–16 This approach takes VIIRS Rrs measure-
ments at the 486-, 551-, and 671-nm bands (or 488, 555, and 667 nm for MODIS-A) as NN
inputs and produces the related inherent optical properties (IOPs) at 443 nm as outputs: namely,
the absorption coefficients of phytoplankton (aph443), dissolved organic matter (ag), and nonalgal
particles (adm) as well as the particulate backscatter coefficient, (bbp). In this work, it is only the
NN output of aph443 with which we are concerned. This is used to generate an aph443 image,
which is then converted into an equivalent [Chla] image, using empirical relationships for spe-
cific chlorophyll absorption values in the WFS, which have been determined from in situ
measurements.17 Next, to obtain KB values from the VIIRS NN retrieved aph443 image, we
apply two filter processes, based on constraints known to be associated with KB HABS in
the WFS. These constraints are: (i) low backscatter at 551 nm, manifested as a maximum per-
missible value of Rrs551 ≤ Rrs551max and (ii) a minimum permissible [Chla]min threshold
value9,18,19 and hence an equivalent minimum permissible value: aph443 ≤ aph443min.
Following application of these two filter processes, the residual image will now show only
aph443 values that are compatible with both criteria for KB HABs and are, therefore, represen-
tative of KB HABs.

VIIRS retrievals of KB in the WFS, using our NN and five other retrieval algorithms, are then
compared and evaluated for their efficacy against datasets of in situ measurements. To have
enough data for meaningful analysis, in situ data sets that cover the available data from the
start of the VIIRS mission in January 2012 to October 2016 were created for these comparisons.
The comparisons confirmed the viability and potential of the NN technique, when combined
with the filtering constraints devised, for effective detection of KB HABs in the WFS.
Analysis of results as well as sequential satellite observations and field measurements in the
WFS also show the importance of short-term temporal variabilities and underline their impact
on retrieval accuracies.

2 Materials and Methods Background

2.1 Neural Network Algorithm Background

For the development of our NN algorithm,1,13,14–16 a synthetic data set of 20,000 IOPs was
produced based on the NASA bio-optical marine algorithm data set.20 These IOPs whose
range and variability is well represented in the literature21–34 were then used as inputs to a
four component bio-optical model,15,24,34 which, in conjunction with a HydroLight-based,35

parameterized forward model, described in Ref. 32, Lee produced 20,000 sets of Rrs values
at 486, 551, and 671 nm (for VIIRS) and 488, 555, and 667 nm for MODIS-A. The NN was
trained on 10,000 of these values and tested on a 10,000 synthetic subset as well as on field
data to solve the inverse problem36,37 of retrieving physical variables, including aph443, from
Rrs values at 486, 551, and 671 nm, and at 488, 555, and 667 nm. The algorithm is a standard
multiband NN inversion algorithm that takes VIIRS Rrs measurements at the 486-, 551-, and
671-nm bands and MODIS-A measurements at 488-, 555-, and 667-nm bands in the WFS as
inputs, and produces as outputs the related IOPs, namely: aph443, ag, and adm as well as bbp, all
at 443 nm. (As mentioned in the Sec. 1, it is only the aph443 output of NN that we are concerned
with here). Detailed descriptions of the NN are given in Refs. 13–16, and Ref. 1 shows
the necessary parameters for implementation of the NN with a MATLAB tool for obtaining
satellite retrievals.
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2.2 Development of Criteria for Filters to be Used in Processing VIIRS
(and MODIS-A) Retrievals of Rrs551 and [Chla] in the WFS to
Obtain Residual Images Depicting KB HABs Concentrations

A brief description is given below of the approach used for devising filtering criteria to apply to
VIIRS (and MODIS-A) retrieved images of Rrs551 and aph443 (or [Chla]) in the WFS, to evolve
residual images depicting KB HABs concentrations. This approach, which is described in detail
in Ref. 1, is summarized and updated here. Satellite data are obtained from VIIRS and MODIS-
A-sensors as level two data products from NASA’s processing stream, available from Ref. 38.
Pixels are excluded from processing if they have been flagged for land, cloud, failure in atmos-
pheric correction, stray light, bad navigation quality, both high and moderate glint, negative
Rayleigh corrected radiance, and solar zenith larger than 70.

2.2.1 VIIRS retrievals of Rrs551 and aph443 and determination
of limiting values of Rrs551max and aph443 min compatible
with KB HABs in the WFS

This section updates and revises an earlier analysis carried out in Ref. 1 to determine limiting
values of Rrs551max and aph443 min compatible with KB HABs in the WFS. By searching more
thoroughly through available data bases, we are able to constrain comparison of VIIRS satellite
retrievals on 10/9/12 to in situ measurements carried out all on the same day. This constraint
provides a much more convincing comparison of satellite retrievals to in situ values from which
to select our limiting values than was done in Ref. 1. In the latter, available retrievals from VIIRS
on one clear day (9/2/14) were compared with in situ measurements, not carried out on the same
day, but rather over an overlapping 22-day period (8/27/2014 to 9/17/2014) during which con-
ditions could clearly have changed much more substantially.

Figure 1 shows in situ measured KB cell counts associated with a prominent KB HAB bloom
in the WFS with its peak occurring on 10/09/2012, from the NOAA HABSOS.39 This shows the
bloom area with indicators (circles of different sizes) for measured KB HABs cell counts for that
date. We next compare NN retrievals from VIIRS observations to these cell counts. Using
Rrs486-, 551-, and 671-nm measurements from VIIRS as inputs to the NN, we retrieve

Fig. 1 NOAA HABSOS data39 with in situ KB concentrations for October 9, 2012.
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aph443 for the same date and area shown in Fig. 1. These retrievals are shown in Fig. 2, which also
shows on the right-hand scale the equivalent [Chla] converted from aph443 using the empirical
relationship of Ref. 17

EQ-TARGET;temp:intralink-;e001;116;485aph443 ¼ 0.051 × ½Chla�0.74; m−1: (1)

The challenge then remains to retrieve from Fig. 2 only the aph443 or equivalent [Chla] that
represents KB HABs by filtering out pixel values incompatible with KB HABs. To do this, it is
necessary to first define and apply the filters, which, as discussed in Sec. 1 and in more detail in
Ref. 1, serve to eliminate pixels that have Rrs551 backscatter and aph443 (or [Chla]) values that
are incompatible with KB HABs. The two filter processes are summarized next.

Considerations of backscatter values coexisting with KB Refs. 12, 18, and 19 show
maximum permissible values of backscatter, compatible with KB HABs, as bbp550 ≤
0.0045 m2 mg−1 at 550 nm. Then, if Rrs551 is taken to serve as a proxy for backscatter,
the equivalent max permissible value is Rrs551 ≤ 7.0 × 10−3 sr−1. However, by inspection
of numerous VIIRS retrievals of Rrs551 against more than 100 simultaneous or near
simultaneous in situ measurements of KB HABs occurrences in the WFS over the 2012
to 2016 period (discussed in Sec. 3), we concluded that a value of approximately Rrs551 ≤
6.0 × 10−3 sr−1 appears more appropriate as the highest permissible Rrs551 limiting value
compatible with the existence of KB HABs. So that would define the limits of the first
processing filter, hereinafter denoted as F1, which when applied to VIIRS retrievals of
Rrs551, would be used to eliminate pixels with higher values, as being incompatible with
the existence of KB HAB blooms. The application of this filter process F1 is described in
the next section.

2.2.2 Backscatter limiting values compatible with KB HABS
and filter process F1

Figure 3(a) shows VIIRS retrievals of Rrs551 for the same KB HABs peak date 10/9/2012 and
location. When filter process F1 is applied to Fig. 3(a), all pixels with Rrs551 ≥ 6.0 × 10−3sr−1

are screened out, leaving the residual pixels in Fig. 3(b) as a mask retaining only pixels com-
patible with KB HABs as far as backscatter is concerned.

We next apply this pixel mask, from Fig. 3(b), to the VIIRS NN retrieved aph443 for the
same October 9, 2012, date and location, and shown in Fig. 2. Eliminating pixels outside
the mask area, results in eliminating all aph443 values in Fig. 2 that do not satisfy the Rrs551 ≤
6.0 × 10−3 sr−1 requirements for compatibility with KB HABs. Residual aph443 values, resulting
from this F1 filter process, and, shown in Fig. 3(c) now satisfy the Rrs551 limit requirements for
compatibility with KB HABs.

Fig. 2 NN retrieved aph443 (LHS) equivalent [Chla] (RHS).
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2.2.3 Filter process F2 to apply limits to NN retrieved aph443

(or equivalent [Chla]) images to obtain residual images with
values compatible with and depicting KB HABs concentrations

We next consider the appropriate F2 filter values for retaining only aph443 values that were in
the F1 filtered image, Fig. 3(c), that are compatible with KB HABs. Refs. 18 and 19 show the
minimum [Chla] concentration compatible with KB HABs in the WFS as ½Chla� ≥ 1.5 μg · L−1.
This is converted into equivalent aph443 using the empirical relationship17which gives aph443 ≥
0.0688 m−3 as the minimum permissible value. However, by inspection of VIIRS NN retrieved
aph443 values against more than 100 in situ measurements of KB HABs cell values in the WFS
over the 2012 to 2016 period (see discussion in Sec. 3) we find that a value of approximately
aph443 ≥ 0.061 m−3 or equivalent [Chla] is more appropriate as the limiting values of aph443
and [Chla] for compatibility with KB HABs.

Fig. 3 (a) VIIRS Rrs551 image; (b) residual Rrs551 image after F1 mask (light gray) is applied
showing residual (Rrs551 ≤ 0.006 sr−1). Note that these images are overlaid with NOAA-
HABSOS KB cell counts, from Fig. 1. (c) Residual image after filter F1 is applied to Fig. 2 retrievals.
White areas represent cloud cover or invalid data.

Fig. 4 (a) VIIRS retrieved NN aph443 (left-hand scale) and equiv. [Chla] (right-hand scale) after filter
process masks F1 and F2 are applied. These residual values are, therefore, compatible with and
show the extent of the KB blooms; (b) MODIS-A NN retrieved aph443 (left-hand scale) and equiv.
[Chla] (right-hand scale) after filter process masks F1 and F2 are applied. Residual values are,
therefore, compatible with and indicate KB blooms. Light gray represents F1 and F2 masks and
white represents cloud cover or invalid data.
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Applying this value as filter F2 to Fig. 3(c), we eliminate pixels that are not compatible
with KB and end up with the residual Fig. 4(a). This shows only residual values with
aph443 ≥ 0.061 m−3 which at the same time satisfy the backscatter F1 filter requirement
Rrs551 < 6.0 × 10−3 sr−1. These are, therefore, residual values satisfying both F1 and F2 filter
requirements and are, therefore, compatible with and representative of KBHABs. Comparison of
the residual aph443 (left-hand scale) and equivalent [Chla] (right-hand scale) in Fig. 4(a),
which represents the retrieved KB HABs values, with the overlaid cell count information
from Fig. 1, shows good qualitative agreement. Figure 4(b) shows the equivalent NN aph443
from MODIS-A for the same date and location, and also filtered for the same Rrs551 backscatter
and aph443 compatibility requirements (but using the equivalent 488-, 555-, and 667-nm bands of
MODIS-A as inputs to the NN instead of the VIIRS bands). Again, we see good qualitative
agreement with the in situ values of Fig. 1.

2.2.4 Rrs spectra associated with KB HAB blooms

We next examine the relationship between VIIRS Rrs multiwavelength spectra and the different
concentrations of in situ KB HABs reflected in the wide variety of [Chla] values of Fig. 4(a) for
the bloom of 10/09/2012. Figure 5(a) shows Rrs reflectance spectra observed for low bloom
concentration locations. It is color-coded to reflect the measured in situ concentrations at
these locations. Figure 5(b) shows the Rrs spectra for medium and high bloom locations. As
can be seen, both the magnitude and shape of these reflectance spectra change with varying
underlying in situ bloom concentrations. Thus, with increasing cell concentration, the increased
absorption is seen to dominate over the low backscatter associated with KB cells, so that mag-
nitudes of Rrs decrease as bloom concentrations increase. Furthermore, for higher bloom con-
centration, this combination of absorption and low backscatter features results in a decrease in

Fig. 5 Matchup of VIIRS Rrs reflectance spectra on 10/09/2012 for: (a) low in situ cell count loca-
tions. (b) Medium cell to high counts locations; (c) very low bloom Rrs (orange), high bloom Rrs
(green) and high bloom Rrs normalized to low bloom Rrs value at 410 nm (dashed green).
(d) Differences between low and normalized high bloom.
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the blue part of the spectrum with respect to the green. The features, shown below, retrieved from
satellite observations, have also been previously observed with in situ measurements of KB
HABS.18

The change in spectral shape is brought out in Fig. 5(c), in which the Rrs spectrum for a high
bloom concentration (green) is normalized to the reflectance spectra (orange) at 410 nm, of very
low KB (i.e., low [Chla] shown dotted in red). The difference between the two spectra (high and
low bloom or [Chla]) is shown in Fig. 5(d), whose shape exhibiting with the decrease in green
reflectance relative to the blue and red helps provide confirmation that we are dealing with KB
HABs of increasing intensity.

3 Evaluation of VIIRS KB HABs Retrievals, Obtained Using NN and
Other Algorithms, against In Situ Measurement for Matchups
Occurring over 2012 to 2016 Period

We next examine VIIRS NN retrievals of KB HABs in the WFS, using the limiting F1 and F2
filter approach described in Sec. 2, against coincident, or near coincident, in situ measurements.
We also compare these VIIRS NN retrievals and in situmatchups against retrievals and matchups
obtained using other direct retrieval algorithms. In doing so, it is not the intention to present an
exhaustive comparison of the many approaches that have been studied for the detection of KB
HABs in the WFS. Some of these are listed in Refs. 3–12. For more details, the reader is referred
to recent excellent surveys and comparisons in Refs. 4–12. Rather, we focus on techniques that
have the potential to retrieve images from VIIRS observations that will show concentration and
distribution of KB HABs at the time of observation. Below, we briefly summarize the main
retrieval techniques that might be used for KB HABs retrievals.

3.1 Existing and Potential KB HABs Algorithms to be Considered for
VIIRS Retrievals

Existing or potential satellite algorithms that are relevant to the detection of KB HABs in the
WFS rely on retrieved chlorophyll-a concentrations [Chla] as part of their processing. They fall
primarily into three categories: (i) using the remote sensing reflectance fluorescence signal at
Rrs678 measured by the MODIS-A satellite; (ii) using blue-green ratio algorithms, obtained
from the NASA OC3/OCI20,40–42 and include the chlorophyll-a anomaly technique and related
approaches;43–53 and (iii) [Chla] retrievals that are obtained from NASA products, including
generalized inherent optical property (GIOP) and quasi-analytical algorithm (QAA) (see below
for definitions), and a more recent WFS region specific empirical algorithm, the red green
chlorophyll-a index (RGCI) which retrieves [Chla] using two visible VIIRS or MODIS-A
bands.54

Those methods using the 678-nm fluorescence signal include: (a) the nFLH, where FLH is a
measure of the solar stimulated chlorophyll-a fluorescence, obtained from water leaving radi-
ance Lw (λ). Normalized nFLH3–12,55–57 is obtained from water leaving radiances normalized to
the down-welling light at the sea surface; nFLH is in turn computed as the difference between the
observed normalized water leaving radiance [nLw(678)] and a linearly interpolated nLw(678)
from the two surrounding bands; (b) the RBD techniques; and (c) the KB bloom index (KBBI).4,5

While these techniques, or a combination of them, have generally exhibited good retrieval sta-
tistics,9,12 they are, unfortunately, not applicable to VIIRS, the successor satellite, which unlike
its predecessor, MODIS-A does not have a 678-nm fluorescence channel. Since, in this paper,
we are concerned only with retrieval techniques applicable to VIIRS, fluorescence techniques
are not included in any further discussions.

In the following sections, we focus on comparing VIIRS [Chla] retrievals against coincident
or near coincident in situ measurements of KB cell counts and their equivalent [Chla]. In prior
work,1 we analyzed satellite retrievals against in situmeasurements, in which NN VIIRS retriev-
als were compared against retrievals using OCI/OC3 (Refs. 42 and 43) and RGCI.54 In this paper,
we have now added comparisons of NN retrievals with those using the GIOP58–60 and QAA61,62

widely used algorithms. This remedies an important omission in our previous publication1 and
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extends NN retrieval comparisons to include comparisons with all available VIIRS direct
retrieval techniques. Thus, algorithms compared with NN now include GIOP and QAA, as
well as OCI/OC3, and RGCI for new overlap time windows (see Secs. 3.2 and 3.3). The salient
features of these different NASA retrieval algorithms are summarized below.

The OCI/OC3 indexes, both NASA products,43 use [Chla] retrieval algorithms that make use
of the ratio of blue/green bands in the MODIS-A and VIIRS satellites20,40–43 and were found to
yield exactly the same retrievals for our WFS conditions.

GIOP model. While there are numerous semianalytical algorithms (SAAs) existing to esti-
mate IOPs, GIOP allows construction, evaluation, and selection of specific modeling assump-
tions from different SAAs at runtime, in order to generate a unified IOP model. This NASA
algorithm58–60 returns spectral marine absorption and backscattering coefficients for water col-
umn constituents [e.g., colored dissolved organic material and algal and nonalgal particles] in
m−1, calculated using the default global configuration of the GIOP model. We use it here to
retrieve [Chla] from VIIRS observations for matchups with in situ measurements.

Quasi-analytical algorithm version 5 (QAA_5)61,62 developed by Lee et al. to derive the
absorption and backscattering coefficients by analytically inverting the spectral remote-sensing
reflectance [RrsðλÞ]. It starts with an empirical estimate of the total absorption coefficient at a
reference wavelength (550, 555, or 560) and then analytically calculates the backscattering coef-
ficient at the same wavelength. The amplitude of these coefficients at other wavelengths is
obtained using an empirical estimate of the particulate backscattering spectral shape and the
measured remote-sensing reflectance. After the total absorption coefficient is known, it can
be further decomposed into the algal and nonalgal components. We use it here to retrieve
[Chla] from VIIRS observations for matchups with in situ measurements.

RGCI is an empirical WFS region specific retrieval algorithm54 that retrieves [Chla] from
observations of MODIS-A and VIIRS bands. For VIIRS, the [Chla] retrievals are given by

EQ-TARGET;temp:intralink-;e002;116;436½Chla�RGCI ¼ 0:1 × exp

�
11:8 ×

Rrs671

Rrs551

�
; μg L−1: (2)

The above algorithms, all applicable with VIIRS, will be used for retrieval comparisons
against in situ measurements and comparisons against VIIRS NN.

3.2 Available Matchups for VIIRS Observations of the WFS Over
the 2012 to 2016 Period

The ultimate test for the viability of KB HABs satellite retrieval techniques is their ability to
match retrieved values with concurrent in situ measurements. However, it is difficult on any
one day to find sufficient matchups between satellite observations and concurrent, or near con-
current, in situ measurements to obtain statistically meaningful results. We, therefore, extended
the study period to look at all available WFS matchups, Fig. 6, between VIIRS measurements
and in situ data at concurrent dates and over the 2012 to 2016 period for which there was
available VIIRS data.

We then looked for matchups where the overlap time windows between satellite observations
and in situ measurements were 15 and 100 min.

It was found that there were 36 matchups of available in situ measurements that satisfy the
matchup conditions for satellite observations within a 15-min overlap time window, including
those pixels that show KB cell concentrations at values below those considered to be officially
labeled as blooms. The additional conditions stipulated for matchup were that pixel centers were:
0.3 miles or less from the in situ measurement location. This represents an empirical approach to
ensure that pixel values could be reasonably assumed to reflect the related in situ measurements
and hence reduce potential impact of patchiness63 within the pixel (∼0.7 km2 for VIIRS and
∼1 km2 for MODIS). Pixels were also excluded from the matchup comparison if they had
been flagged for land, cloud, failure in atmospheric correction, stray light, bad navigation qual-
ity, both high and moderate glint, negative Rayleigh corrected radiance, and solar zenith larger
than 70 deg, and any pixels that had water leaving radiance spectra with negative values in any
one of its wavelengths. Cell count sample measurements also had to be at less than 1 m depth and
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at concentrations ≥104 cells · L−1. It should be noted47 that [Chla] of 1 μg · L−1 is taken as
∼105 cells · L−1. The in situ cell count data were obtained from the Florida Fish and
Wildlife Conservation Commission’s Fish and Wildlife Research Institute (FWC-FWRI).
The search for matchup between VIIRS satellite and in situ observations on the same day
and within a 100-min window of the overpass time showed 93 cases that satisfied the matchup
conditions as specified above. The seasonal distribution of these 93 matchups between satellite
observations and in situmeasurements used in the comparison of retrieval accuracies is shown in
Table 1.

3.3 Comparisons of VIIRS Retrievals Using NN and Other Algorithms
Against KB HABs In Situ Measurements in the WFS Over the 2012 to
2016 Period for 100- and 15-min Windows between the Overpass Time
and In Situ Observations

We next revise the comparisons of NN retrieval accuracies from comparisons with OCI/OC3 and
RGCI in Ref. 1 to (i) reflect different matchup overlap time windows with in situ measurements
and (ii) also extend them to now include comparisons with GIOP and QAA. The change in time
windows is also a significant change from Ref. 1. Thus, the matchup overlap time windows
between retrievals and in situ measurements for the statistical comparison of NN retrievals
with other techniques were changed to 100 and 15 min in this paper, from the previous time
windows of: daily, 60, and 30 min in Ref. 1. The daily matchup was eliminated as being too
inaccurate.

Fig. 6 Showing in situ locations of Karenia brevis cell counts cover the range 0.01 to 9.2 ×
106 cells · L−1 obtained from Florida Fish and Wildlife Conservation Commission (FWC).
Zoomed area illustrates the extent of the underline details of KB values available in VIIRS retriev-
als for the period of 2012 to 2016.

Table 1 Seasonal distribution of matchups used in the comparison of retrieval accuracies.

January 2012 to March 2016 Winter Spring Summer Fall Total

Number of matchups 18 6 1 68 93
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The 100-min time window conforms to the approximate time between consecutive over-
passes of the VIIRS satellite and consecutively retrieved images, which can also provide evi-
dence of the temporal variations observed with KB HAB blooms. These are the subject of
Sec. 3.5. The shorter 15-min time window was selected after an investigation for this paper
found 15 min to be the shortest time window, which at the same time provided enough matchup
points for meaningful statistical analysis. This approach is borne out by the results that show
much better matchups for the 15-min window. This has important implications regarding the
validity of satellite observations of KB HABs.

The relationship between retrieved [Chla] using the NN, OCI/OC3, and RGCI algorithms
and the in situ KB cell count measurements for the 100- and 15-min matchup time windows are
shown in Fig. 7. For NN, OCI/OC3, and RGCI retrievals, it was found that there were 93 valid
observations within the 100-min window between overpass time and the in situ measurements.
In these results, R2 is the coefficient of determination. To determine R2, the orthogonal linear
regression approach (OR) was used where errors are assumed to exist for both variables. The
error (ε) is calculated as the sum of orthogonal distances. OR estimates of X on Y will minimize
the orthogonal distance from the observed data points to the regression line64

EQ-TARGET;temp:intralink-;e003;116;544

X
ðyi − β0 − β1xiÞ2; (3)

where β0 and β1 are intercept and slope and the OR estimate of the slope is

EQ-TARGET;temp:intralink-;e004;116;497

bβ1 ¼ SYY − SXX þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSYY − SXXÞ2 þ 4S2XY

p
2SXY

; (4)

where SXX and SYY are the covariance for X and Y, respectively, and SXY is the correlation for
X and Y.

Fig. 7 In situ comparison for the available matchups points for 100- and 15-min overlap windows
with in situ observations obtained using the different algorithms (NN, OCI/OC3, and RGCI). Color
coding of the dots denotes distance to shore, with red being the closest.
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Fig. 8 Results for 68 in situ observations within 100 min of VIIRS overpass for the six algorithms
showing retrieved [Chla] against KB HABs cell counts for NN, GIOP, OC3, OCI, RGCI, and QAA
retrievals. Color coding of the dots denotes distance to shore, with red being the closest.

Fig. 9 Results for 18 in situ observations within 100 min of VIIRS overpass for the six algorithms
showing retrieved [Chla] against KB HABs cell counts for NN, GIOP, OC3, OCI, RGCI, and QAA
retrievals. Color coding of the dots denotes distance to shore, with red being the closest.
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Figure 7(b) shows that the results for 23 matchups observed when the observations window
between overpass time and in situ measurements are restricted to 15 min, in which the impact of
temporal variations is reduced. As can be seen, correlations and errors greatly improve for the
15-min window, compared to the 100-min window observations. It is also observed that NN
retrievals exhibit the best performance for both time windows, in terms of both correlations
and errors.

When VIIRS retrieval comparisons were extended to using GIOP and QAA algorithms, it
was found that both algorithms exhibited negative values or no retrievals in many instances.
When these negative values were excluded, there remained 68 valid matchups for the 100-min
overpass window. The retrieved [Chla] for these 68 matchups is shown against in situ cell counts
in Fig. 8, for all retrieval techniques.

When the overlap observation window is reduced to 15 min, we have 18 valid matchups
remaining, after excluding negative values associated with GIOP and QAA. Results for
these 18 matchups are shown in Fig. 9. Again, as can be seen, correlations and errors greatly
improve for the 15-min window over those for the 100-min window, Fig. 8.

Table 2 Statistics of comparison for Fig. 7.

y -axis [Chla] (μg L−1) x -axis KB cell counts (cells L−1) R2 ε Slope and intercept N

NN VIIRS 100-min window 0.38 6.79 y ¼ 0.46 x − 1.71 93

OC3 0.24 7.51 y ¼ 0.35 x − 1.03 93

OCI 0.24 7.51 y ¼ 0.35 x − 1.03 93

RGCI 0.23 18.74 y ¼ 1.09 x − 5.04 93

NN VIIRS 15-min window 0.76 0.59 y ¼ 0.48 x − 1.85 23

OC3 0.53 0.94 y ¼ 0.35 x − 1.12 23

OCI 0.53 0.94 y ¼ 0.35 x − 1.12 23

RGCI 0.56 2.40 y ¼ 0.81 x − 3.80 23

Table 3 Statistics of comparison for Figs. 8 and 9.

y -axis [Chla] (μg L−1) x -axis KB cell counts (cells L−1) R2 ε Slope and intercept N

NN VIIRS 100-min window 0.42 5.01 y ¼ 0.52 x − 2.04 68

GIOP 0.37 12.64 y ¼ 1.60 x − 7.28 68

OC3 0.34 5.24 y ¼ 0.43 x − 1.54 68

OCI 0.34 5.24 y ¼ 0.43 x − 1.54 68

RGCI 0.19 15.46 y ¼ 1.14 x − 5.39 68

QAA 0.23 15.13 y ¼ 1.31 x − 6.09 68

NN VIIRS 15-min window 0.79 0.42 y ¼ 0.47 x − 1.83 18

GIOP 0.45 3.57 y ¼ 1.20 x − 5.25 18

OC3 0.55 0.72 y ¼ 0.34 x − 1.13 18

OCI 0.55 0.72 y ¼ 0.34 x − 1.13 18

RGCI 0.50 2.28 y ¼ 0.75 x − 3.55 18

QAA 0.34 3.82 y ¼ 0.90 x − 3.88 18
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The results in Figs. 8 and 9, which illustrate the impact of observation time windows on
retrieval accuracies for all algorithms, are summarized in Tables 2 and 3. These results support
the conclusion that, at least for these preliminary and somewhat limited data sets, the NN retriev-
als exhibit the best performances against the in situ measurements, for both the longer (100 min)
and, more importantly, the shorter (15 min) overlap time windows. This was observed both in
terms of higher correlations and lower errors against the in situ measurements.

3.4 Assessing Validity of Filter Limits on Rrs551 and aph443 ≥ 0.061 m−3

(or [Chla]) in Context of Comparisons Against In Situ Measurements

We also use the above matchups to assess the validity of the F1 and F2 filter limits (discussed in
Sec. 3.1) for Rrs551 ≤ 6.0 × 10−3 sr−1 and aph443 ≥ 0.061 m−3 or [Chla]. Figure 10 shows the
NN retrieved aph443 matchups falling within the 15-min window, which were retrieved (without
any filter constraints being applied for Rrs551 and [Chla]). These show that there are three false
negatives (marked with dark-gray arrows) and two false positives (marked with light-gray
arrows) erroneously included within the Rrs551 and [Chla] limiting values, out of 36 matchup
points. It should be noted that the spatial variability within a pixel on the same day can be quite
large and can include both extremely low and high KB cell concentrations.1 This means that
subpixel variability in the bloom concentration may be a key factor in creating apparent
“false” positives. Planned future statistical analysis of false positives and negatives in retrieval
results against in situ measurements is expected to result in further refinements of these limiting
values and improvements in retrieval accuracies.

3.5 Consecutive Satellite Images to Examine Temporal Changes

From the results in Sec. 3.3, it was seen that reducing the time window between satellite and
in situ observations can generally significantly increase the accuracy between VIIRS retrieved
[Chla] and in situ measured KB cell counts. These changes can be quite rapid.65,66 To explore
the potential for detecting HAB bloom changes over relatively short periods from overlapping
consecutive satellite overpasses, we have also examined changes in three consecutive over-
lapping satellite images in Fig. 11. Two of these are from VIIRS, 96 min apart and an inter-
mediate one is from MODIS-A, 70 min after the first VIIRS image.

We next examine NASA OC3 retrievals of [Chla] for these three consecutive granules.
Figs. 12(a)–12(c) show the retrieved NASA OC3 [Chla] products from these consecutive
VIIRS-MODIS-VIIRS images for the WFS near Sarasota, Florida, on 11/3/2014.

Since environmental factors, including wind direction and currents, are known to affect
temporal changes, including down- and upwelling and transportation of KB blooms in the
WFS,47,65,67–69 we include wind information available for that date. Figure 13 shows data
obtained from the National Data Buoy Center website for the C-MAN stations at Venice,
Florida (Station VENF1). (27°4’21” N 82°27’10” W) showing the variability of the wind on
11/3/14 at the time of the VIIRS overpasses.

Fig. 10 The matchups falling within the 15-min window, with both filter thresholds.
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It should be noted that in shallow waters, the angle between the wind-induced surface water
movement and the wind direction can be as low as 15 deg (or even less depending on the wind
velocity and water depth) rather than up to the 45-deg predicted by idealized spiral Ekman mod-
els for deeper waters.70 We can probably assume that wind-induced current direction will be
about 15-deg with the wind direction in the relatively shallow waters under consideration.
This does not include tidal or other sources of current for which we have no information on
that date. For qualitative comparison purposes, we show approximate wind directions and pos-
sible wind induced current directions (at 15 deg), overlaid in Fig. 12.

Fig. 12 (a)–(c) Changes in bloom for consecutive satellite images of region one.

Fig. 11 The MODIS-A granule and two VIIRS granule within 100 min on November 3, 2014.
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We now examine in more detail region 1, in Fig. 12, and shown in the zoomed images in
Fig. 14. The bloom, as delineated by the [Chla] color contour in the images, appears, qualita-
tively, to increase in concentration and expand in the southwest direction over the 96-min interval
between the consecutive overlapping VIIRS-MODIS-VIIRS images. These changes are
reflected in the associated zoomed pixel images on the right-hand side of Fig. 14 and appear
to provide qualitative visual indications of expansion of the bloom and its increasing [Chla]
concentration in the southwest direction. They also appear broadly consistent with the directions
of wind and likely currents, though there is no specific or quantitative evidence of linkage.
Furthermore, no movements of [Chla] distribution patterns are discerned that would indicate
transport. Nor is there evidence for identifying any specific causes for the changes observed,
e.g., whether these are due to upwelling/downwelling effects or otherwise.

There is, also however, a caveat that might call into questions some of the above observations.
We are aware of artifacts in the VIIRS retrieval imagery that tend to appear near the western edge
of the image granule making it appear that [Chla] concentrations are higher than the same values
detected near the eastern edge. Under those circumstances, these artifacts could be playing a part in
the apparent increase of the bloom in the consecutive VIIRS images in Figs. 12 and 14, which are
from near the eastern and western edges of the consecutive VIIRS granules (Fig. 11). This pos-
sibility may be negated, however, by an examination of consecutive VIIRS retrievals in adjacent
bloom free waters. These retrievals, which are found to be identical, are shown blue on the left-
hand side of Fig. 14, for bloom free waters very closely adjacent to the blooms in region 1, and
therefore, also near the eastern and western ends of the VIIRS image granules for the consecutive
images. Thus, Fig. 14 (left-hand side) shows that, at least for these bloom free waters, VIIRS
retrievals from both near granule edges are identical in the consecutive VIIRS images and are
not affected by edge artifacts. Their validity is further confirmed by an identical MODIS-A
retrieval, also in Fig. 14, whose image is not from a near granule edge. The fact that the two
consecutive VIIRS retrievals are the same in bloom free waters and are unaffected by edge artifacts
in turn supports the interpretation that the changes observed at the bloom/nonbloom boundaries
(dotted rectangle) in consecutive images in Fig. 14(a) and 14(c) are not due to edge artifacts, but do
in fact actually show expansion of the bloom into bloom free waters. This interpretation probably
remains valid, even though near edge artifacts might still significantly impact the accuracies of
changes in the higher bloom concentrations away from the bloom/nonbloom boundaries, such as
those indicated by the color-coded concentrations in the zoomed images from the solid rectangle in
Fig. 14 (and shown in right-hand side). These color-coded concentrations may, therefore, not be
accurate because of near edge artifacts. In further support that it is changes that are being observed,
it should be noted that these artifacts that may apply to retrievals because of western near edge
effects in the VIIRS images would not apply to, or impact, the MODIS-A image, which is not at an
edge, and which also shows similar expansion of the increasing [Chla] bloom Fig. 14, region 1.

Fig. 13 Temporal changes in wind directions during November 3, 2014, obtained from VENF1
station (27°4’21” N 82°27’10” W). Zoomed image shows wind directions for the time period of
the consecutive satellite images. The wind vectors were plotted in the direction toward which
the wind is flowing.
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For comparison with the VIIRS OC3 retrievals, in Figs. 12 and 14, which were discussed
above, we show, in Fig. 15, retrievals using our NN technique for the same consecutive VIIRS
observations. Results are qualitatively very similar to those from OC3, Fig. 14. Again, they also
show bloom expansion to the southwest. NN retrieved [Chla] values can be expected to differ in
details from those of OC3, because of the different (higher) retrieval accuracies demonstrated
by the NN technique (see Sec. 3.3). The zoomed features in Figs 15(a), 15(d), 15(e), and 15(h)
show similarity with the equivalent OC3 retrievals in Fig. 14. Interestingly, we also observe
essentially identical retrievals in the zoomed pixels of Figs. 15(b) and 15(f), which are from
apparently unchanged high [Chla] areas in Figs. 15(c) and 15(g), respectively. This might
imply that the Rrs values at 486, 551, and 671 nm used as inputs into the NN are identical.
Future matchups with in situ measurements may shed more light on these matters.

In the context of the above discussion, it is also worth reiterating that, as was noted previously
in Sec. 2.2, all quality flags were applied for VIIRS and MODIS-AOC3/OCI ocean color level 2
information, as well as the Rrs values at 486, 551, and 671 nm for the NN retrievals, downloaded

Fig. 14 Changes in bloom for consecutive satellite images of region 1 using retrieved OC3/OCI
[Chla].
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from NASA, which already has the appropriate corrections for both atmosphere and observation
angle applied.71 Water-leaving reflectances for our selected consecutive scenes are assumed to be
independent of viewing geometries after BRDF/Albedo and atmospheric corrections are made.
We would also note that the viewing angles for the consecutive VIIRS images are close, <5 deg

(θviirs 1 to θviirs 2. Furthermore, even if no correction was made for the ∼60 deg observation
angles (less than that, for the critical western near edge involved in the above images), potential
errors would be relatively small,72–74 (∼1%) and would have no discernable impact on our quali-
tative interpretations that [Chla] changes are observed in the retrieved images, while at the same
time, not saying anything with regard to absolute magnitudes or accuracies.

In conclusion for this section on consecutive satellite images, it is recognized that additional
studies that include comparisons from consecutive VIIRS retrievals of Rrs values, as well as
comparisons of [Chla] retrievals against simultaneous in situ measurements, would be needed
to clarify the nature and magnitude of the changes being observed. However, given the difficulty
of carrying out comprehensive calibration measurements of this type, we believe that it is rea-
sonable to conclude that while consecutive overlapping satellite images can provide some evi-
dence of temporal changes in KB HABs concentration in the WFS, they are unlikely to provide
accurate or reliably useful information on the absolute magnitudes involved.

It should also be noted that while consecutive overlapping images appear to show temporal
changes, there is insufficient evidence from them to attribute the relative contributions of drift,
patchiness, upwelling/downwelling, or a combination of any of these to the causes of the
changes. Section 3.6 presents the results of recent field measurements of KB HABs in the
WFS, which much more solidly confirm KB HABs temporal variabilities as well as patchiness.
They also support conclusions that the significantly improved retrieval accuracies that are
obtained with shorter overlap time windows between satellite retrievals and in situmeasurements
(Sec. 3.3) reflect the impact of temporal variabilities.

3.6 Field Measurements

The evidence for temporal changes, intrapixel variations, and patchiness associated with blooms
in the WFS is further supported more definitively by recent field measurements made in con-
junction with Mote Marine Laboratories on 1/19/2017 off Lido Key, near Sarasota, Florida.
Figure 16 shows the transect of measurements made. Several of these measurements were
made at stations subpixel distances apart (generally 300 m) on an outward leg and were

Fig. 15 Changes in bloom for consecutive VIIRS images of region 1 using NN retrieved [Chla].
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then repeated for the same stations, matched as closely as possible with a GPS, on a return leg.
Samples were taken at a 0.5-m depth and cell concentrations obtained by analysis at Mote
Marine Laboratories.

The values shown in Fig. 17 give the KB cell counts at the different stations and the times of
measurement. These are color coded, so that the same row color indicates the results for the same
station on both the outward and return leg. It should be noted that, as might be expected with
these high cell counts, the latter showed an excellent match with simultaneous collocated high
performance liquid chromatography (HPLC), [Chla] measurements. From Fig. 17, it can be seen
that the changes in values at the same station generally increase with the time interval (between
outward and return legs). Thus, the greatest change is for Station CV1701/CV1713 from 7.52 ×
106 to 1.552 × 106 cells L−1 over the 120-min time interval between the two measurements.
The second greatest change is that for the next station, CV1702/CV1712, where the change is
from 1.776 × 106 to 1.326 × 106 cells L−1 for the 87-min time interval.

For the shortest time between measurements, CV1706/CV1708 the change is 0.952 to
0.690 × 106 cells L−1 over the 21-min interval between measurements. [It should also be noted
that there is also a slight discrepancy in station positions recorded due to drift from measurement
start (with GPS initial colocation) to completion and recording.]

Fig. 16 Transect of outward and return legs of field measurements.

Station Depth
(m–1)

Lat.
(deg)

Long.
(deg)

Start time
(GMT)

End time
(GMT)

K. brevis
(cells L–1)

Time diff
(min)

CV1701 0.7 27.31836 –82.59587 17:20 17:25 7,280,000 
120 

CV1713 0.7 27.31713 –82.59606 19:21 19:25 1,552,000 
CV1702 0.7 27.31500 –82.59831 17:48 17:52 1,776,000 

87 
CV1712 0.7 27.31480 –82.59846 19:15 19:19 1,326,000 
CV1703 0.7 27.31467 –82.60061 18:00 18:04 1,024,000 

68 
CV1711 0.7 27.31408 –82.60059 19:09 19:12 1,110,000 
CV1704 0.7 27.31296 –82.60277 18:07 18:12 964,000 

54 
CV1710 0.7 27.31289 –82.60298 19:03 19:06 590,000 
CV1705 0.7 27.31077 –82.60677 18:18 18:22 642,000 

37 
CV1709 0.7 27.31085 –82.60664 18:55 18:59 576,000 
CV1706 0.7 27.30681 –82.61356 18:27 18:32 952,000 

21 
CV1708 0.7 27.30686 –82.61364 18:48 18:51 690,000 

Fig. 17 Results of field measurements on 1/19/2017.
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These results illustrate both the intrapixel variations that can typically occur (as well as inter
pixel variations) and also confirm the temporal variations that can be expected. The relative
contributions of drift or upwelling/downwelling to the results are not known.

In general, the consecutive satellite images and the field measurement observations lend sup-
port to our underlying thesis that the significantly increased bloom retrieval accuracy that occurs by
shortening of the overlap time window between observation and in situ measurement matchups
from 100 to 15 min is due to temporal changes in the observed bloom. They also serve to underline
that derived magnitudes from satellite observations may be valid only for brief periods. To deal
with these uncertainties, we are currently examining temporal and spatial averaging possibilities.

4 Summary and Conclusions

In the work reported here, NN algorithms using Rrs values from the 486-, 551-, and 671-nm
VIIRS bands are used to retrieve an image of aph443 values in the WFS. Then, these additional
limiting constraints are applied, in two filter processes, F1 and F2 to eliminate from that image all
aph443 pixels that are not compatible with the existence of KB HABs. The residual image then
shows only retrieved aph443 values and their equivalent [Chla] values that are consistent with the
existence of KB HABs. This procedure was then used to retrieve KB HABs in the WFS. The
efficacy of these NN retrievals was evaluated by comparison of retrieval accuracies obtained
against simultaneous colocated in situ measurements.

For meaningful quantitative comparisons, it is important to have many data points.
Accordingly, we sought all available matchups between VIIRS NN aph443 (and equivalent
[Chla] retrievals) and in situ KB cell count measurements for the period 2012 to 2016 for
which there was available VIIRS data. These comparisons showed that for VIIRS observations,
the NN technique appeared to offer good potential for effective retrievals of KBHABs cell counts
in the WFS. More specifically, these comparisons showed that when the overlap time window
between in situ observations and satellite overpass measurements was reduced from 100 to
15 min, retrieval accuracies greatly improved and showed increased correlations and reduced
errors. The comparisons against in situ matchups were also carried out for VIIRS retrievals
using other algorithms: OCI/OC3, GIOP, QAA, and RGCI.

It was seen that for the available and somewhat limited data sets, the NN retrievals exhibited
the best retrieval accuracies, among the techniques tested, against the in situ measurement data,
for both the longer (100 min) and, more importantly, the shorter (15 min) overlap time windows.
This was observed both in terms of higher correlations and lower errors against the in situ mea-
surements. The results confirm the potential efficacy for detecting and quantifying KB HABs in
the WFS using the NN technique.

Finally, consecutive satellite images qualitatively illustrated the temporal changes that can be
associated with KB HABs in the WFS. The evidence for temporal changes was even more
strongly complemented by recent field measurements off Sarasota, Florida, that quantitatively
confirm the temporal changes and patchiness observed with KB HABs in the WFS.
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