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Abstract. Accurate retrieval of soil moisture is important for understanding regional environ-
mental changes and sustainable development in arid regions. Through numerical simulation and
regression analysis based on advanced integral equation model (AIEM), the study aims to estab-
lish a multiangle soil moisture retrieval model based on RADARSAT-2 image in arid Juyanze. A
combined roughness parameter Rs was established, and then the influences of roughness and soil
moisture on the backscattering simulations were discussed. Finally, the empirical multiangle soil
moisture retrieval model was implemented and validated in Juyanze. Inversion results show that
the model has favorable validity. The coefficient of determination R2 between the inferred and
measured soil moisture is 0.775 with a root-mean-square error (rmse) of 0.626%, implying better
retrieval accuracy. Soil moisture varies from about 0.1% to 25% and is no more than 10% in most
parts of this region, which is in reasonable agreement with the factual circumstances. The model
directly relates the Fresnel reflection coefficient and soil moisture and is independent of ground
roughness measurements. With a wider angular range, it has great potential for soil moisture
evaluation in arid regions. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.11.036029]
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1 Introduction

Soil moisture is a crucial state variable within the fields of hydrology, climatology, ecology, and
agriculture.1–4 In arid and semiarid regions, soil moisture is the most sensitive environmental
factor. Accurate estimation of soil moisture in arid and semiarid regions not only improves
our understanding on the regional hydroclimatic processes but also provides basic data for
solutions to many environmental and ecological problems.

Although traditional ground-based measurements are the most accurate methods for soil
moisture estimation, such techniques are often rather complex, expensive, labor-intensive,
and limited to discrete measurements. The advent of satellite-based remote sensing has greatly
facilitated the acquisition of various land surface parameters at a variety of scales in wide ranges
and with high accuracy without expensive in-situ monitoring networks.5 Advances in remote
sensing technology have shown that soil moisture at the surface layer (i.e., 0 to 5 cm of the
land surface) can be measured to some degree by all regions of the electromagnetic radiation
spectrum.6 Microwave remote sensors can operate day and night in nearly all weather conditions
and thus have been extensively utilized to retrieve soil moisture across a broad range of scales.
As the most common imaging active microwave configuration, synthetic aperture radar (SAR)
uses a self-contained source of microwave radiation to illuminate the surface and measure the
amount of radiation returned to the sensors.7 This allows SAR to monitor soil moisture with
relatively high prediction accuracy.
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Various models, ranging from physically based models to experimental relationships, have
been developed to invert the backscattering coefficient to soil moisture over the past decades.8

The most popular physically based models are the small perturbation model,9 Kirchhoff approx-
imations,10 the small slope approximation (SSA) model,11 and the integral equation model
(IEM),12,13 as well as its amended version, the advanced integral equation model (AIEM).14

Theoretical models can be used in a wide variety of conditions while making few priori assump-
tions about the characteristics of the surface.5 The simulation to backscatter is also relatively
accurate. For bare surface soil, the IEM/AIEM has become the most widely used scattering
model.15 Nevertheless, theoretical models, being more mathematically complicated, were usu-
ally used as a base to develop empirical or semiempirical models. Although many empirical or
semiempirical models have been developed,16–19 it is generally not possible to apply relation-
ships observed over one area for radar backscatter inversion in other areas.

As radar return from bare soil is mainly governed by the soil dielectric properties (which are
strongly dependent on the free water content in the soil) and surface roughness,1 an exact and
complete description of the surface roughness of a soil medium is essential to the accurate analy-
sis and interpretation of backscattering behavior and soil moisture estimation. Although diverse
approaches for the improvement of roughness descriptions have been proposed,20–23 the avail-
ability of a limited number of radar configurations makes it generally impossible to retrieve
the soil moisture with all of the roughness parameters. In this context, a description written in
the form Zs ¼ S2∕l was introduced24 to mix the effects of the root mean square (rms) height S
and the correlation length l on the values of σ. Various revisions and improvements were also
reported.25–27 Before the combined roughness description can be widely applied, however,
additional research over arid regions must be conducted.

In this paper, through numerical simulation and regression analysis based on AIEM, a com-
bined roughness parameter Rs was established to eliminate the effect of surface roughness on
the soil moisture inversion. Influences of roughness and soil moisture on the backscattering
simulations were discussed. A multiangle soil moisture retrieval model, which directly relates
the Fresnel reflection coefficient and soil moisture and is independent of ground roughness mea-
surements, was implemented and validated in Juyanze for the first time. The paper is organized
into six sections. The study area and data are briefly introduced in Sec. 2. Section 3 describes
the methods. Section 4 presents the results and validation. Discussions are given in Sec. 5.
Finally, conclusions are presented in Sec. 6.

2 Study Area and Data

2.1 Study Area

Juyanze is located at the lower reach of the Heihe River in Inner Mongolia, China. A south–
north-striking structure separates Juyanze into the east and west parts (Fig. 1). Juyanze used to be
connected to Gaxun Nur and Sogo Nur and formed mega-paleolakes during historical periods.28

Currently, the Juyanze Basin only contains small shallow water bodies fed by groundwater and
sporadic river discharge. Intensive land use and irrigation in the upper reaches of the Heihe River
(the densely populated “Hexi corridor”) has reduced modern flow to these terminal lakes.29 The
annual mean temperature is 8.3°C. The annual mean precipitation and evaporation are 37 and
3841.81 mm, respectively. Under such an extremely dry climate, the vegetation cover is very low
and sandy lands, Gobi, bare soil, saline-alkali soil, bare rocks, low-coverage grasslands, and
shallow lakes form the regional landscapes.

2.2 Satellite Data and Preprocessing

During field investigations (July 4–12, 2014), a fully polarimetric RADARSAT-2 SAR image
was acquired on July 6, 2014, at C-band frequency (5.405 GHz) with an incidence angle of
20.17 deg and a spatial resolution of 8 m. The nominal coverage was 25 × 25 km. A
Landsat 8 operational land imager (OLI) image acquired on July 8, 2014, and a SRTM
DEM data were also used as ancillary data.
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The SAR image was first calibrated to convert pixels from single-look complex data to a
multilook image using the NEST. A 5 × 5 refined Lee filtering was then applied. By radiometric
calibration, the backscattering coefficient (σ) in decibels (dB) was transformed from the DN of
each pixel. Thereafter, range Doppler terrain correction was performed based on the SRTM 3 s.
The average backscattering coefficients were calculated using NEST.

2.3 Ground Measurements and Analysis

Coincident with SAR overpass, three sampling lines and 50 sampling sites were selected for
the representativeness of land cover and topography, as well as the feasibility for field sampling.
The sampling sites are shown on the Landsat 8 false color composite image (Fig. 2).

The top 5 cm of the surface soil was sampled using aluminum boxes for moisture and texture
characterization analysis. Soil moisture was measured using the Gravimetric method. In the
study area, the volumetric soil moisture (Mv) ranges from 0.31% to 10.33%, and the average

Fig. 2 Landsat 8 OLI color composite image (band 4 = red, band 3 = green, and band 2 = blue)
acquired on July 8, 2014. Red, green, and blue dots indicate the sampling sites at the west part of
east Juyanze and the east and north parts of west Juyanze, respectively.

Fig. 1 The location of Juyanze. The blue rectangle in the insert map shows the location of Juyanze
in inner Mongolia, China. The yellow rectangle indicates the area of the RADARSAT-2 image
acquired on July 6, 2014.
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value is 2.24%. Soil texture characterization was analyzed using a mastersizer 2000 laser particle
size analyzer. The percentages of sand, silt, and clay are 83.87%, 13.77%, and 2.37%, respec-
tively. The soil is sandy soil and is composed of loamy sand.

Surface roughness was measured using a needle profilometer (2-m long and with 1-cm sam-
pling intervals) and a digital camera. At each sampling site, four field photographs were taken;
two were along the row direction, and the rest were across. The photographs were processed by
a GetData Graph Digitizer. The rms height S and correlation length l range from 0.2 to 2.4 cm
and 3 to 33 cm, respectively, in the study area.

3 Methods

Based on the simulation of backscattering characteristics using AIEM, influences of roughness
and soil moisture on the backscattering simulations were discussed. Finally, a multiangle empiri-
cal soil moisture retrieval model was implemented and validated.

3.1 Advanced Integral Equation Model Simulation

Since most natural terrain has a small rms slope, single scattering will dominate over the multiple
scattering in most situations.2 The single backscattering coefficients from AIEM have been well
described,14,30,31 and the equations are not reprinted here.

The AIEM input parameters were determined according to RADARSAT-2 specifications and
the measured data. The soil bulk density is 1.6147 gcm−3. The percentage of sand and clay is
83.87% and 2.37%, respectively, and the temperature is about 30°C when sampling. A power-
law spectrum correlation function was chosen to simulate the scatter characteristics. As shown in
Table 1, a backscattering simulated database, which was used to implement the empirical model,
was set up.

3.2 Analysis of Simulated Backscattering as Functions of Roughness and
Soil Moisture

The backscattering coefficients of a bare soil surface can be presented as a product of two
functions:2,3,32,33

EQ-TARGET;temp:intralink-;e001;116;346σqp ¼ AðRs; θÞ · RðΓ; θÞ. (1)

One is the roughness function A that describes the effect of the surface roughness. The other is
the dielectric function (soil moisture function) R that is commonly related to the Fresnel reflec-
tion coefficients Γ. σqp represents the backscattering coefficient and the subscripts q and p
denote the transmitting and receiving polarization, respectively. Meanwhile, the two functions
are independent of each other. Their relationships with the backscattering coefficients will be
analyzed independently, and the mutual effects will be further discussed.

3.2.1 Influence of roughness on the backscattering simulations

The rms height S and the correlation length l are two popular parameters used to depict the
surface roughness. Previous research demonstrated that higher accuracy in the soil moisture

Table 1 Parameters setting in AIEM.

Parameters Minimum Maximum Interval Unit

Incidence angle θ 15 50 2 Degree

Soil moisture Mv 1 30 2 % by volume

Rms height S 0.2 2.4 0.2 Centimeter

Correlation length l 3 33 3 Centimeter
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estimation could be obtained using the combined roughness parameters, and several roughness
parameters combining the two parameters have been put forward.2,24–27 These results are par-
ticularly useful for the improvement of empirical or semiempirical inversion models used in soil
moisture estimations because in the past these models were often based on the rms height S only,
leading to a high level of noise and a lower accuracy in the soil moisture estimation.24,26 To mix
the effect of rms height S and the correlation length l, a combined roughness parameter Rs was
established in this study.

According to numerical simulations on the relationships between the backscattering coef-
ficients and the rms height S as well as the correlation length l, similar functional relationships
were detected in four polarizations in our study (Table 2). The ratio between the coefficients of S
and l in column 1 of Table 2 is about 3 to 2. By reorganizing the original functions, modified
functions including Rs ¼ S3∕l2, defined as the combined roughness parameter Rs, were taken in
our study.

Figure 3 shows scatter plots of the backscattering coefficient as a function of Rs in four
polarizations. The blue points are from the AIEM simulation, while the black lines are the fitted
curve by logarithm functions. It shows a sharp increase of backscattering with Rs logarithmically
and then saturation. All coefficients of determination R2 could reach 0.936, indicating a strong
correlation between the backscattering coefficients and Rs. Based on this, an approximation form
for σqp as a function of Rs was found and can be written as

EQ-TARGET;temp:intralink-;e002;116;360σqp ¼ A lnðRSÞ þ B; (2)

where A and B are estimated through regression analysis.

3.2.2 Influence of soil moisture on the backscattering simulations

Relationship between the backscattering coefficient and soil moisture is rather complex, while
relationship between the Fresnel reflection coefficient and backscattering coefficient is more
direct. Further analysis between the Fresnel reflection coefficient and dielectric constant
could be used to calculate soil moisture content. Hence, the relationship between the Fresnel
reflection coefficient and backscattering coefficient is analyzed based on AIEM simulated
database under the following conditions: the incidence angle θ is 20.17 deg, the frequency
f is 5.405 GHz, the rms height S is 0.6139 cm, and the correlation length l is 16.8735 cm,
Mv ∈ (0.01, 0.30) at intervals of 1%.

The simulation results in four polarizations are demonstrated in Fig. 4, where the blue points
are from the AIEM simulation and the black lines are the fitted curve by logarithm functions. The
results show that, with the increase of the Fresnel reflection coefficient Γ, the backscattering
coefficient increases logarithmically and a very strong correlation is observed between them
with R2 larger than 0.999. Figure 5 is the fitted curve between Γ and Mv, and the R2 is 0.999,
indicating a very strong correlation between them.

Thus, approximation forms for σqp as a function of Γ and Mv as a function of Γ could be
expressed as

EQ-TARGET;temp:intralink-;e003;116;87σqp ¼ C lnðΓÞ þD; (3)

Table 2 Relationship between the backscattering coefficients and the roughness parameters.

The regression relationship between
backscattering coefficient σ and
roughness parameters S and l Coefficient of determination Modified

σVV ¼ 9.636 lnðSÞ − 6.495 lnðlÞ þ 5.383 R2 ¼ 0.982 σVV ≈ 3.23 ln
�
S3

l2

�
þ 5.383

σHH ¼ 10.930 lnðSÞ − 6.457 lnðlÞ þ 4.953 R2 ¼ 0.986 σHH ≈ 3.44 ln
�
S3

l2

�
þ 4.953

σHV ¼ 12.802 lnðSÞ − 6.495 lnðlÞ þ 6.543 R2 ¼ 0.989 σHV ≈ 3.76 ln
�
S3

l2

�
− 6.543

σVH ¼ 9.636 lnðSÞ − 7.008 lnðlÞ þ 6.315 R2 ¼ 0.991 σVH ≈ 3.81 ln
�
S3

l2

�
− 6.315
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EQ-TARGET;temp:intralink-;e004;116;339MV ¼ EΓ2 þ F Γþ G; (4)

where C;D; E; F, and G can be estimated through regression analysis, Mv represents soil mois-
ture, and Г is the Fresnel reflection coefficient on the normal direction, which can be calculated
by the following equation:18

EQ-TARGET;temp:intralink-;e005;116;277Γ ¼
����
1 −

ffiffiffi
ε

p
1þ ffiffiffi

ε
p

����
2

; (5)

where ε is the dielectric constant and can be estimated through the Dobson model.16

3.3 Implementation of the Empirical Model

Based on above analyses, taking the roughness parameter and the dielectric constant (soil mois-
ture) into account simultaneously, at a specific incidence angle, Eqs. (2) and (3) can be combined
as follows (take VV as an example):

EQ-TARGET;temp:intralink-;e006;116;151σvv ¼ f½A lnðRsÞ þ B� × ½C lnðΓÞ þ D�g. (6)

In other polarizations, similar relationships between the backscattering coefficient and both Rs

and Γ are detected; the equations are not shown here.
In the following steps, Eq. (6) was further spread and combined with Eq. (4). An empirical

model at a specific incidence angle expressed as Eqs. (7) and (8) was established to describe the
backscattering characteristics of bare surface as a function of Rs and Γ.

Fig. 3 Relationship between the backscattering coefficients and combined roughness parameter
in four polarizations, where the blue points are from the AIEM simulation, while the black lines
are the fitted curve by logarithm functions: (a) VV (R2 ¼ 0.937), (b) HH (R2 ¼ 0.936), (c) HV
(R2 ¼ 0.936), and (d) VH (R2 ¼ 0.956).
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EQ-TARGET;temp:intralink-;e007;116;169σqp ¼ α lnðRsÞ þ β lnðΓÞ þ γ lnðRsÞ lnðΓÞ þ δ; (7)

EQ-TARGET;temp:intralink-;e008;116;134MV ¼ ρΓ2 þ τΓþ φ: (8)

In the above equations, α; β; γ; δ; ρ; τ, and φ are coefficients determined by the least-square
regression. When two polarization measurements are available, the influence of Rs can be
eliminated.

Fig. 5 Relationship between the Fresnel reflection coefficient and soil moisture (R2 ¼ 0.999),
where the blue points are from the AIEM simulation, while the black lines are the fitted curve.

Fig. 4 Relationship between the backscattering coefficients and Fresnel reflection coefficient in
four polarizations, where the blue points are from the AIEM simulation, while the black lines are the
fitted curve by logarithm functions: (a) VV (R2 ¼ 1), (b) HH (R2 ¼ 0.999), (c) HV (R2 ¼ 0.999), and
(d) VH (R2 ¼ 1).
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4 Results and Validation

4.1 Reliability Test of the Empirical Model

Forty-eight samples were randomly selected from the simulated database to calculate coefficients
and empirical formulas. Take VV and VH polarizations as examples; at the incidence angle of
20.17 deg, the expressions are as follows:

EQ-TARGET;temp:intralink-;e009;116;656σVV ¼ 2.675 lnðRsÞ þ 4.167 lnðΓÞ þ 0.022 lnðRsÞ lnðΓÞ þ 15.063; (9)

EQ-TARGET;temp:intralink-;e010;116;624σVH ¼ 4.345 lnðRsÞ þ 4.203 lnðΓÞ þ 0.043 lnðRsÞ lnðΓÞ þ 8.329: (10)

Figure 6 shows a comparison of the backscattering coefficient generated from the empirical
model versus those derived from AIEM. In VV and VH polarizations, the coefficients of deter-
mination R2 are 0.972 and 0.982, respectively, and have passed the significance test of 0.05.
The standard errors are 0.608 and 0.741, respectively.

4.2 Implementation of Multiangle Empirical Model

The reliability test above clearly suggests that simulated values from the empirical model and
AIEM compare fairly well at a specific incidence angle. Thus, taking VV and VH as examples,
the empirical model was further extended in the study area at incidence angles ranging between
15 deg and 50 deg with the interval of 5 deg to derive empirical coefficients at different incidence
angles. Tables 3 and 4 are for VVand VH polarizations, respectively, where R2 is the coefficient
of determination.

Through the fitting of coefficients at different incidence angles, empirical coefficients αðθÞ,
βðθÞ, γðθÞ, δðθÞ, ρðθÞ, τðθÞ, and φðθÞ based on the incidence angle can be derived.

Finally, the multiangle empirical model in this study is expressed as

EQ-TARGET;temp:intralink-;e011;116;404σqp ¼ αðθÞ lnðRsÞ þ βðθÞ lnðΓÞ þ γðθÞ lnðRsÞ lnðΓÞ þ δðθÞ; (11)

and

EQ-TARGET;temp:intralink-;e012;116;360MV ¼ ρðθÞΓ2 þ τðθÞΓþ φðθÞ; (12)

where αðθÞ, βðθÞ, γðθÞ, δðθÞ, ρðθÞ, τðθÞ, and φðθÞ are the coefficients, Rs is the roughness
parameter, Γ is the Fresnel reflection coefficient, and Mv is the soil moisture.

Fig. 6 Comparison of the simulated values between the empirical model and the AIEM: (a) VV
(R2 ¼ 0.972) and (b) VH (R2 ¼ 0.982).
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4.3 Validation and Application of the Model

Based on above-mentioned model, the RADARSAT-2 image at an incidence angle of 20.17 deg
was used to validate the model and to retrieve soil moisture in Juyanze. Thirty samples were
randomly selected as training samples, and the remaining 20 samples were used to validate the
model. Substituting the values of 30 training samples into Eqs. (11) and (12), the empirical
model in VV and VH can be written as

EQ-TARGET;temp:intralink-;e013;116;238σVV ¼ 1.788 lnðRsÞ þ 16.400 lnðΓÞ þ 2.090 lnðRsÞ lnðΓÞ; (13)

EQ-TARGET;temp:intralink-;e014;116;195σVH ¼ 4.592 lnðRsÞ þ 32.042 lnðΓÞ þ 4.684 lnðRsÞ lnðΓÞ; (14)

and

EQ-TARGET;temp:intralink-;e015;116;157Mv ¼ 0.488Γ2 − 0.205Γþ 0.022: (15)

Figure 7 shows a comparison of the inferred and measured soil moisture. The absolute errors
are estimated to range from 0.024% to 1.747% in the 20 checkpoints. The R2 is 0.775 with a
root-mean-square error (rmse) of 0.626%, implying a good correlation between the inferred and
measured soil moisture. The model was applied to the RADARSAT-2 image of this region, and
the inferred soil moisture is displayed in Fig. 8.

Table 4 Empirical coefficients at different radar incidence angles in VH polarization.

θ αðθÞ βðθÞ γðθÞ δðθÞ ρðθÞ τðθÞ φðθÞ R2

15 2.490 4.200 −0.005 −2.016 1.374 0.119 −0.014 0.753

20 2.939 4.086 −0.009 −1.133 1.378 0.152 −0.015 0.844

25 3.259 3.935 −0.013 −0.791 1.382 0.198 −0.016 0.900

30 3.495 3.745 −0.018 −0.789 1.383 0.259 −0.017 0.936

35 3.674 3.510 −0.022 −1.024 1.377 0.339 −0.017 0.961

40 3.811 3.224 −0.025 −1.451 1.352 0.445 −0.016 0.976

45 3.922 2.879 −0.027 −2.061 1.276 0.592 −0.014 0.986

50 4.017 2.461 −0.027 −2.891 1.044 0.807 −0.009 0.992

Table 3 Empirical coefficients at different radar incidence angles in VV polarization.

θ αðθÞ βðθÞ γðθÞ δðθÞ ρðθÞ τðθÞ φðθÞ R2

15 1.558 4.200 −0.005 9.643 1.374 0.119 −0.014 0.567

20 2.067 4.086 −0.009 9.697 1.378 0.152 −0.015 0.746

25 2.426 3.935 −0.013 9.354 1.382 0.198 −0.016 0.846

30 2.689 3.745 −0.018 8.791 1.383 0.259 −0.017 0.906

35 2.886 3.510 −0.022 8.087 1.377 0.339 −0.017 0.945

40 3.038 3.224 −0.025 7.275 1.352 0.445 −0.016 0.966

45 3.159 2.880 −0.027 6.353 1.276 0.592 −0.014 0.980

50 3.262 2.461 −0.027 5.278 1.044 0.807 −0.009 0.986
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5 Discussion

Figure 8 suggests that soil moisture is very low in most parts of the region. It ranges from 0.1% to
25% and is slightly higher in the northeastern part, while being a bit lower in the southwestern
part. Statistical analysis indicates that no more than 10% of the total region has soil moisture
higher than 10%. Scarce precipitation and very high daily evaporation may be the main reasons
for the low soil moisture in this region. To the north of two east–west parallel lines is the southern
slope of the Altai Mountains, where the terrain slopes gently. The soil here is mainly composed
of silty loam, which has a higher water-holding capability and, hence, relatively higher soil mois-
ture compared with the southern part of the line features, where loamy sand distributes widely
and the Gobi desert covers a large part. A triangle feature displayed in yellow crosses over the
aforementioned line features is also notable. The soil moisture is very low here, which is con-
sidered reasonable because this area is occupied by shift sand according to Landsat 8 image
interpretation. Meanwhile, the reddish irregular block oriented north and south to the west
of the triangle feature is bare rock and, hence, has the lowest soil moisture. In the multishoreline

Fig. 7 Comparison between the inferred and ground-measured soil moisture in July 2014
(R2 ¼ 0.775).

Fig. 8 The inferred volumetric soil moisture in % derived from RADARSAT-2 image acquired on
July 6, 2014. The area is about 22 × 20 km2.
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areas (as indicated by the red arrow in Fig. 8), soil moisture distributes in a banding appearance,
which is in good agreement with the orientation of the multishoreline. Field investigations dis-
covered that these shorelines (more precisely, paleoshorelines) are formed in historical periods
and are generally composed of loose sediments; therefore, the water-holding capability is poor
and the soil moisture is correspondingly lower. In the western part of Fig. 8, from the multi-
shoreline to the center of the dried-up lake, soil moisture increases first and then decreases
because shift sand covered above the salt crust. A few studies to inverse soil moisture based
on SAR technology have been carried out in the Ejina alluvial fan and the middle reach of
the Heihe river,33,34 these studies also corroborate our results. Above all, soil moisture in this
region is low, and the inversion result is in reasonable agreement with the factual circumstances.

6 Conclusions

Combined with in-situ measured soil moisture, surface roughness, and soil texture, fine
RADARSAT-2 data acquired simultaneously with the field investigations in July 2014 were
used to simulate the backscattering properties based on AIEM. A combined roughness parameter
Rs was established and the influences of roughness and soil moisture on the backscattering sim-
ulations were discussed. A multiangle empirical soil moisture retrieval model was implemented and
validated in Juyanze for the first time. Inversion results show that (1) the empirical model has favor-
able validity when incidence angles vary from 15 deg to 50 deg. The coefficient of determination R2

between the inferred and measured soil moisture is 0.775 with an rmse of 0.626%. Taking the
surface roughness and the dielectric constant into account simultaneously, the model is proved
to have relatively high accuracy and stability. (2) Soil moisture varies from about 0.1% to 25%
and is no more than 10% in most parts of this region. The retrieved soil moisture is in reasonable
agreement with the factual circumstances. (3) The multiangle empirical soil moisture retrieval
model directly relates the Fresnel reflection coefficient and soil moisture and is independent of
ground roughness measurements, giving it great potential for future utilization in similar regions.

Currently, it is an important and challenging task to use polarimetric parameters and discrim-
inators for the estimation of surface roughness and soil moisture. Although fully polarimetric
RADARSAT-2 image was acquired in our study and polarimetric parameters were retrieved, the
potential use of polarimetric parameters for the estimation of soil moisture was not discussed in
this paper as it is the subject of a separate report. In addition, although the validation of the
empirical model with AIEM is reasonable in this case, considering the limited number of
the RADARSAT-2 data, the model will be further validated using multiangular data in sub-
sequent studies. Finally, it would be advisable to conduct additional research over a wider
range of conditions to corroborate these promising results.
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