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Abstract. Amultifeature soft-probability cascading scheme to solve the problem of land use and
land cover (LULC) classification using high-spatial-resolution images to map rural residential
areas in China is proposed. The proposed method is used to build midlevel LULC features. Local
features are frequently considered as low-level feature descriptors in a midlevel feature learning
method. However, spectral and textural features, which are very effective low-level features,
are neglected. The acquisition of the dictionary of sparse coding is unsupervised, and this
phenomenon reduces the discriminative power of the midlevel feature. Thus, we propose to
learn supervised features based on sparse coding, a support vector machine (SVM) classifier,
and a conditional random field (CRF) model to utilize the different effective low-level features
and improve the discriminability of midlevel feature descriptors. First, three kinds of typical low-
level features, namely, dense scale-invariant feature transform, gray-level co-occurrence matrix,
and spectral features, are extracted separately. Second, combined with sparse coding and the
SVM classifier, the probabilities of the different LULC classes are inferred to build supervised
feature descriptors. Finally, the CRF model, which consists of two parts: unary potential and
pairwise potential, is employed to construct an LULC classification map. Experimental results
show that the proposed classification scheme can achieve impressive performance when the total
accuracy reached about 87%. © The Authors. Published by SPIE under a Creative Commons Attribution
3.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JRS.11.045010]
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1 Introduction

Image classification is crucial in the interpretation of remote sensing images with high spatial
resolution (HSR).1 The availability of HSR remote sensing imagery obtained from satellites
(e.g., WorldView-2, IKONOS, QuickBird, ZY-3C, GF-1, and GF-2) increases the possibility
of accurate Earth observations. Such HSR imagery provides highly valuable geometric and
detailed information, which is important for various applications, such as precision agriculture,
security applications, and damage assessment for environmental disasters and land use.2

In these applications, mapping a high-resolution image for land use and land cover (LULC) is
particularly relevant.

In terms of LULC classification using remote sensing images, Landsat series satellite
imagery with medium resolution is important in regional LULC and land use/cover change
studies.3–7 In processing high-resolution remote sensing images, numerous classification algo-
rithms, such as the object-oriented approach,8–10 based on the classification of a support vector
machine (SVM)11–13 and Markov random fields (MRF)14–18 are being developed.

Local features19–23 have been successfully applied to image retrieval, semantic segmentation,
and scene understanding. These features gained popularity in the remote sensing community
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because of their robustness in rotation, scale changes, and occlusion. Sparse coding is one of the
most effective approaches to group local features and performs well in object categorization,
scene-level land use classification, etc.24–36 The sparse coding method combined with max-pool-
ing and spatial pyramid matching (SPM) can be used to learn midlevel features. In this approach,
a class type is represented by the distribution of a set of visual words, which are usually obtained
by unsupervised K-means clustering of a set of low-level feature descriptors. However, visual
words are learned in an unsupervised manner, resulting in less discriminative midlevel features.
This characteristic reduces the accuracy of classification. Several conventional low-level fea-
tures, such as spectral features, are neglected in the building of midlevel features. Some studies
have resolved this drawback and effectively incorporated spectral and local features.33,34

Hu et al.37 developed a method that combines convolutional neural networks (CNN) and sparse
coding to learn discriminative features for scene-level land use classification, and impressive
results were obtained when the total accuracy reached about 96%. However, this method is
limited by the lack of information of the LULC class type, because the parameters of a CNN
model are estimated by the ImageNet dataset.38

In addition to feature learning, the selection of a classifier is particularly important for LULC
classification based on high-resolution remote sensing images. Many classification methods,
such as maximum likelihood, MRF, and SVMmodels, have been developed. The SVM classifier
is widely used for various computer vision tasks and LULC classification, because this model
has shown advantages on high-dimension feature space. MRF39 and conditional random field
(CRF)40 are structured output models that consider interactions of random variables. These
approaches have been successfully developed in remote sensing14–17,41 and computer vision
communities.42–49 Moser et al.14 proposed an LULC classification for high-resolution remote
sensing images based on the MRF model. However, the results of this model always exhibit
an oversmoothed appearance.9,48 Another drawback of the MRF is its difficulty in processing
high-dimension feature space. The CRF model overcomes these drawbacks and shows advan-
tages on image classification and semantic segmentation.

Thus, we establish an LULC classification framework for HSR remote sensing images by
exploiting labeled data based on midlevel feature learning and the SVM classifier to achieve
multifeature soft-probability feature descriptors, and we employ a CRF classification method
to jointly model the unary and pairwise costs.

In this paper, a multifeature soft-probability cascading and CRF (MFSC-CRF) classification
model is designed to learn discriminative midlevel features in a supervised manner. First,
we extracted the spectral, gray-level co-occurrence matrix (GLCM), and dense scale-invariant
feature transform (DSIFT) features as low-level feature descriptors. Three types of midlevel
feature descriptors are achieved by adopting sparse coding, superpixel segmentation, and
max-pooling methods. Then, the probability that some labeled samples belong to LULC classes
can be calculated. The three probability values are cascaded to construct the feature descriptors
for each superpixel. Finally, the CRF model is introduced to generate the LULC classification.

The supervised learned feature descriptors can be obtained using the SVM classifier with
training samples. This classifier has been demonstrated to effectively incorporate low-level
features. Using the CRF classifier, the local spatial relationship between the neighboring super-
pixels is considered by combining the learned feature descriptor. Thus, the proposed method
achieves better classification results than traditional methods.

The rest of this paper is structured as follows. In Sec. 2, the proposed method for midlevel
feature learning and soft-probability cascading and CRF classification is presented. In Sec. 3,
the experiments on the rural residential area dataset of Wuhan are discussed. Conclusions are
drawn in Sec. 4.

2 MFSC-CRF Classification Framework

An HSR remote image classification framework for LULC classification is proposed. This
method is based on midlevel feature learning by integrating sparse coding and the CRF method
to utilize spectral, structural, and spatial contextual information. Three kinds of typical features,
namely, GLCM, DSIFT, and spectral features, are selected to construct the low-level features.
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The whole pipeline of the MFSC-CRF classification framework consists of two main steps,
namely, feature learning and CRF classification (Fig. 1).

Midlevel feature descriptors are achieved during the feature learning step using the three
features by combining sparse coding, SPM, and max-pooling method. The probability can
be calculated by the SVM classifier using the training samples. The resulting probability values
form the new discriminative feature descriptors.

During CRF classification, the CRF model is introduced to classify the superpixels according
to the land cover class types. The probability feature descriptor from the first step is considered in
this step, and an SVM classifier is adopted to construct the unary potentials. The pairwise
potentials can be acquired by calculating the distance between neighboring superpixels.
The graph-cut-based α-expansion algorithm is executed to obtain the classification result of
the CRF models.

2.1 Midlevel Feature Descriptors

As discussed above, three typical features are adopted for the low-level feature descriptors, and
the details are described as follows.

1. Spectral features: Features on the Earth reflect, absorb, transmit, and emit electromag-
netic energy from the sun. A measurement of energy commonly used in remote sensing
of the Earth is reflected energy (e.g., visible light, near-infrared, etc.) coming from land
and water surfaces. The amount of energy reflected from these surfaces is usually
expressed as a percentage of the amount of energy striking the objects. The band values
of remote sensing images are used as the spectral features in this article.

2. GLCM: GLCM is a texture measurement to many image analyses. In this article, GLCM
is extracted by ENVI software. Eight features are achieved, which are called as mean,
variance, homogeneity, contrast, dissimilarity, entropy, etc. They are normalized to
form feature vectors.

3. DSIFT: DSIFT descriptors are computed at points on a regular grid. At each grid point,
the descriptors are computed over four circular support patches with different radii, and,
consequently, each point is represented by four SIFT descriptors. Multiple descriptors
are computed to allow for scale variation between images.50

The low-level feature descriptors are extracted from images, and each feature descriptor has
size T. The visual dictionary D of K visual words obtained by unsupervised K-means clustering
algorithm can be defined as follows:

EQ-TARGET;temp:intralink-;e001;116;84D ¼ ½d1; d2; · · · ; dk� ∈ RT×K; (1)

DSIFT

Spectral feature

GLCM

GLCM soft-probability

DSIFT soft-probability
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GLCM Dictionary
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Mid-level feature

Mid-level feature

Sparse coding
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Sparse coding
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Max-pooling
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SF soft-probability
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Midlevel feature descriptors soft-probability feature descriptors CRF classification

DSIFT Dictionary
1d kd

SF Dictionary
1d kd
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SVM classifier
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Sparse coding
SPM

Max-pooling

Fig. 1 Flowchart of the MFSC-CRF classification framework.
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where each dk is represented as a linear classifier with bias and calculated as follows:

EQ-TARGET;temp:intralink-;e002;116;723dk ¼ ½Dk;1;Dk;2; · · · ;Dk;T �T ∈ RT: (2)

An encoding scheme based on the classification score obtained by each dictionary word is used,
instead of sparse coding to encode each descriptor. This step is suggested in Ref. 23. If v is
a descriptor vector, its coding vector fdkðαilÞ corresponding to dictionary D is given as follows:

EQ-TARGET;temp:intralink-;e003;116;656fdkðαilÞ ¼ ½hα1k:dki; · · · ; hαNk :dki� ∈ RN: (3)

Intuitively, the descriptor α should be similar only to a few words in the dictionary if the visual
words of dictionary D are sufficiently discriminative. Therefore, the vector fdkðαilÞ is expected to
have only a few values that are greater than zero.

Given a dictionary D and a set of segmented superpixel regions L over an image, we
represent the image by spatial max-pooling. For each superpixel region, l ∈ ½1; · · · ; NS� of
image i, where NS represents the number of superpixels extracted from the image, let αlj be
a descriptor vector extracted from region l, where j ∈ ½1; · · · ; Nl� indexes the Nl image pixels
extracted from region l. Thus, given a dictionary D, region l can be encoded using max spatial
pooling, as follows:

EQ-TARGET;temp:intralink-;e004;116;513

xil;D ¼ ½max
j∈Nl

hαlj; d1i; · · · ;max
j∈Nl

hαlj; dKi� ∈ RK;

xDðiÞ ¼ ½xDðl1Þ; · · · ; xDðlNS
Þ� ∈ RK×NS ; (4)

where xil;D represents the midlevel feature descriptor of superpixel l. xDðiÞ represents the
midlevel feature descriptor of image i. If the midlevel features of the pixels in the segmentation
region are more similar to some of the visual words, these features can be used to represent
the characteristics of the region, and the similarity is measured for the whole region.

2.2 Probability Feature Descriptors

Let xD be the midlevel feature vector of an image. This feature represents a vector in a K-dimen-
sional space with a dictionary D. If three different types of features (DSIFT, spectral band, and
GLCM) are used in the sparse coding phase, then an image can be represented by three different
corresponding vectors. That is, each image i can be represented by the following vectors:

EQ-TARGET;temp:intralink-;e005;116;324

xD1
ðiÞ ¼ ½xD1

ðl1Þ; · · · ; xD1
ðlNS

Þ� ∈ RK1×NS ;

xD2
ðiÞ ¼ ½xD2

ðl1Þ; · · · ; xD2
ðlNS

Þ� ∈ RK2×NS ;

xD3
ðiÞ ¼ ½xD3

ðl1Þ; · · · ; xD3
ðlNS

Þ� ∈ RK3×NS ; (5)

where D1, D2, and D3 are the dictionaries extracted from the DSIFT and spectral features,
l represents the superpixels, and K1, K2, and K3 are the dictionary sizes. These two kinds of
midlevel features combined with training samples are used to estimate the SVM classifier
parameters and calculate the probability of vectors belonging to each LULC class, respectively.

The probability vectors of the different midlevel feature descriptors can be represented as
follows:

EQ-TARGET;temp:intralink-;e006;116;185

P1 ¼ ½p1ðl1Þ; · · · ; p1ðlNS
Þ� ∈ RKL×NS ;

P2 ¼ ½p2ðl1Þ; · · · ; p2ðlNS
Þ� ∈ RKL×NS ;

P3 ¼ ½p3ðl1Þ; · · · ; p3ðlNS
Þ� ∈ RKL×NS ; (6)

where KL represents the number of land cover classes. The MFSC feature descriptors for
the final classification are given as follows:

EQ-TARGET;temp:intralink-;e007;116;94P ¼ ½P1; P2; P3� ∈ RKL3×NS ; (7)
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where KL3 represents the size of the feature descriptors, and this value is thrice the number of
LULC classes. The size of MFSC feature descriptors is much smaller than the size of midlevel
feature descriptors as in Eq. (5).

2.3 CRF Classification Model

The CRF model for the final classification of high-resolution remote sensing images is proposed.
The CRF is defined over a set of superpixels ν extracted from the image I. Each superpixel i ∈ ν
is associated with a class label x ∈ L ¼ f1; · · · ; Lg. The labeling of the image is denoted by
the vector x ∈ Ljνj. The interaction among various superpixels of the CRF is captured by
the set of edges ε ∈ ν × ν, where each edge eij ∈ ε corresponds to a pair of superpixels
i; j ∈ ν that share a boundary.

The CRF energy, which consists of unary and pairwise costs, can be formulated as follows:

EQ-TARGET;temp:intralink-;e008;116;579Eðx; IÞ ¼ λU
X

i∈υ
ψU
i ðxi; IÞ þ λP

X

ei;j∈ε
ψP
ijðxi; xj; IÞ; (8)

where λU ≥ 0 and λp ≥ 0 are the relative weights of the unary and pairwise potentials,
respectively.

The unary potential, which is expressed as ψU
i ðxi; IÞ in Eq. (8), models the cost of assigning

a class label xi ∈ L to superpixel i in image I. This potential is defined as the score of a kernel
SVM classifier for class xi applied to an MFSC feature vector of superpixel i described in
Eq. (7). The classifier for class l is trained using the MFSC feature vector extracted from
the superpixels in the training set. This vector is labeled as l. The radial basis function
(RBF)-χ2 kernel is adopted for SVM classification.

The pairwise potential, ψP
ijðxi; xj; IÞ, models the cost of assigning labels xi and xj to the

neighboring superpixels i and j, respectively. When a CRF formulation is used for classification,
the pairwise potentials are usually used to ensure the smoothness of the label assignments.
A contrast sensitive cost is used as follows:

EQ-TARGET;temp:intralink-;e009;116;390ψP
ijðxi; xj; IÞ ¼

Lijδðxi ≠ xjÞ
1þ kĪi − Ījk

; (9)

where Lij is the length of the shared boundary between superpixels i and j, and Īi and Īj are the
gray mean values of superpixels i and j, respectively. The parameters in Eq. (8), λU and λP, are
estimated by the cutting plane method, the details of which are described in Ref. 49.
The classification result of the CRF models could be achieved by solving Eq. (8).

3 Experimental Results

We conduct experiments using the high-resolution aerial images to evaluate the effectiveness of
the proposed MFSC-CRF framework for LULC classification. Based on the study of Jain
et al.’s49 work, comparative experiments are conducted by combining feature descriptors and
classification methods. We compared the different methods using single-object class accuracy
and total accuracy. The low-level feature, midlevel feature, and classifier associated with
SF-SVM, U-SVM, GLCM-SVM, MFSC-SVM, SF-CRF, U-CRF, GLCM-CRF, and MFSC-CRF
are reported in Table 1. The details are described as follows.

1. SF-SVM: This method uses only the unary segmentation cost. Spectral features are con-
sidered low-level features in this technique. After midlevel feature learning, the SVM
method is adapted to achieve classification results. This method is very similar to
the simultaneous orthogonal matching pursuit method proposed by Chen et al.51

2. U-SVM: This method is similar to SF-SVM, but they differ in the selection of low-level
features. As described in Ref. 26, the DSIFT feature is considered as the low-level
feature, and the SVM classifier is used for superpixel level classification.

3. GLCM-SVM: The GLCM feature is considered as the low-level feature in this method,
and the SVM classifier is used for superpixel level classification.
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4. MFSC-SVM: Multifeature soft-probability is used for the feature vector in this method,
and SVM is adopted for LULC classification.

5. SF-CRF: Spectral feature is considered as the low-level feature in this method, which is
combined with sparse coding and CRF to achieve the classification results.

6. U-CRF: Sparse coding and the CRF model are used in this technique, and DSIFT is
considered as the low-level feature, as described in Ref. 48.

7. GLCM-CRF: GLCM is considered as the low-level feature descriptor in this model, in
which CRF is adopted for classification.

8. MFSC-CRF: Probabilities are considered as feature descriptors in this proposed method,
in which CRF is adopted for supervised classification.

The experimental results are evaluated using three kinds of accuracies, namely, the accuracy
of each class, overall accuracy (OA), and kappa coefficient (Kappa). OA is the fraction of
correctly classified pixels, based on all pixels of that ground-truth class. For a fair comparison,
the classification results with the highest OA are selected for all classification algorithms.
The effect of the number of training samples is further investigated in relation to the MFSC-
CRF model.

3.1 Experimental Data Description

3.1.1 Experimental datasets (testing site 1)

The first test image is captured over the rural residential area in Wuhan city, Hubei Province,
China, through unmanned aerial vehicle aerial photography, including red, green, and blue three
spectral bands. The image is of 1024 × 1200 pixels, with spatial resolution of 0.2 m and three
multispectral channels. An overview of this dataset is shown in Fig. 2(a). The corresponding
ground truth is shown in Fig. 2(b). The testing image was segmented to 52,654 superpixels

Table 1 Information of different classification methods.

Method Low-level feature Midlevel feature Classifier

SF-SVM Spectral features Sparse coding and max-pooling [Eq. (4)] SVM

U-SVM DSIFT Sparse coding and max-pooling [Eq. (4)] SVM

GLCM-SVM GLCM Sparse coding and max-pooling [Eq. (4)] SVM

MFSC-SVM Spectral features, DSIFT, and GLCM MFSC [Eq. (7)] SVM

SF-CRF Spectral features Sparse coding and max-pooling [Eq. (4)] CRF

U-CRF DSIFT Sparse coding and max-pooling [Eq. (4)] CRF

GLCM-CRF GLCM Sparse coding and max-pooling [Eq. (4)] CRF

MFSC-CRF Spectral features, DSIFT, and GLCM MFSC [Eq. (7)] CRF

Fig. 2 Wuhan rural residential area dataset (testing site 1): (a) RGB and (b) ground-truth images
(low vegetation, homestead, woodland, farmland, waterbody, and road).
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using the simple linear iterative clustering method. Six classes of interest, namely, low vegeta-
tion, homestead, farmland, waterbody, road, and woodland, are considered and listed in Table 2.
Rural homestead is the main type of rural residential land and is more scattered. This class con-
tains various houses, walls, and other facilities with spatial correlation and semantic structure
characteristics. The other five class types are mainly land cover types. A total of 100 training
samples for each LULC class type is used from the reference ground-truth data, and the remain-
ing samples are used to evaluate the accuracy. The results are shown in Table 2.

3.1.2 Experimental datasets (testing site 2)

This testing image is also captured over the rural residential area in Wuhan city, Hubei Province,
China. The image is of 1113 × 1777 pixels, with spatial resolution of 0.2 m and three multi-
spectral channels. Compared with testing site 1, testing site 2 is larger and has a more complex
scene. More trees are around the homesteads in this rural residential area, and the shadow effect
is more obvious. This image is a challenging task for LULC classification. The ground-truth
image corresponding to the high resolution image (HRI) has been classified manually into
the six most common LULC classes. The classification data (label images) are shown in
Fig. 3(b). The testing image was segmented to 92,441 superpixels. Similar to testing site 1,
six classes of interest are considered and described in Table 3, which also shows the number
of the training and testing samples for each class. The training samples are randomly chosen
from the reference ground-truth data and are shown in Table 3. The dictionary size is set to 500,
and 20,000 pixels are randomly selected for the training dictionary via the K-means clustering
method. A total of 500 training samples per LULC class is randomly selected for classifier
parameters (Table 3).

3.2 Experimental Results and Analysis for Testing Site 1

The experimental results for testing site 1 are reported to validate the effectiveness of the pro-
posed MFSC-CRF for LULC classification. The classification accuracies of the various midlevel

Table 2 Class information of Wuhan rural residential area dataset of testing site 1.

Class name Training samples Testing samples

Low vegetation 100 6055

Homestead 100 6518

Woodland 100 17,710

Farmland 100 13,022

Waterbody 100 2294

Road 100 7055

Fig. 3 Wuhan rural residential area dataset (testing site 2): (a) RGB and (b) ground-truth images.
(low vegetation, homestead, woodland, farmland, waterbody, and road).
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feature learning methods, namely, SF-SVM, GLCM-SVM, U-SVM, MFSC-SVM, GLCM-CRF,
and U-CRF, which are different combinations of low-level feature descriptors and classifier, are
compared. The SVM classifier with RBF kernel has been proven to be successful in supervised
classification of high-dimensional HRI data. Among the SVM-based methods, MFSC-SVM
achieves better classification results than the other three methods [Figs. 4(c)–4(f)]. However,
the SVM algorithm, in which any neighborhood spatial contextual information is not considered,
results in high isolated salt-and-pepper classification noise, because neighborhood interactions
are not considered in the algorithms.

For the MFSC-CRF algorithm, which is proposed to combine different effective features, the
oversmoothing is less serious in Fig. 4(e), as is shown in the red boxes of Figs. 4(e) and 4(h).
Moreover, the boundaries of homestead are better preserved. By contrast, SF-SVM is more
focused on the spectral information. Thus, the classification remarkably depends less on the
structural information, which probably explains the misclassification of U-CRF.

The quantitative performances with the highest classification accuracies obtained by SF-
SVM, U-SVM, GLCM-SVM, MFSC-SVM, SF-CRF, U-CRF, GLCM-CRF, and MFSC-CRF
are reported in Table 4. The best result of each column are in bold. The results show that

Fig. 4 Classification of Wuhan rural residential area datasets (testing site 1): (a) SF-SVM,
(b) U-SVM, (c) GLCM-SVM, (d) MFSC-SVM, (e) SF-CRF, (f) U-CRF, (g) GLCM-CRF, and
(h) MFSC-CRF. [The red rectangles in (e) and (h) are used to indicate the difference in the
classification results].

Table 3 Class information of Wuhan rural residential area dataset of testing site 2.

Class name Training samples Testing samples

Low vegetation 500 8964

Homestead 500 9215

Woodland 500 20,304

Farmland 500 41,528

Waterbody 500 1781

Road 500 10,649
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the algorithms in which spatial contextual information are considered significantly outperformed
the SVM classification in classification accuracy. Moreover, the accuracy of MFSC-CRF is
higher than the three other CRF-based classification methods (i.e., SF-CRF, U-CRF, and
GLCM-CRF), indicating that the MFSC-CRF can adaptively incorporate different low-level
feature descriptors. With GLCM as the low-level feature descriptor, the GLCM-CRF method

Fig. 5 Confusion matrices on Wuhan rural residential area datasets (testing site 1): (a) SF-SVM,
(b) U-SVM, (c) GLCM-SVM, (d) MFSC-SVM, (e) SF-CRF, (f) U-CRF, (g) GLCM-CRF, and
(h) MFSC-CRF.
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achieves much higher accuracy than the SF-SVM, SF-CRF, U-SVM, and U-CRF. This result
shows that GLCM can be very effective for LULC classification. In the dataset of the testing site
1 of Wuhan rural residential area (Table 4), the reported quantitative performance of MFSC-CRF
exhibits the improvement in OA. Additionally, the 21% higher accuracy (from 64.9% to 86.3%)
of MFSC-CRF compared with U-SVM shows that MFSC-CRF focuses more on spatial con-
textual information. Thus, spatial contextual information and other effective feature descriptors
should be considered. Finally, the MFSC-CRF obtains the highest accuracy.

Figure 5 shows the confusion matrices of different classification methods with various
feature descriptors and classifiers. The methods, which used only spectral features as low-level
feature descriptors (SF-SVM and SF-CRF), misclassified homestead to road with 14%. The
reason is that the two LULC types have similar spectral characteristics, and all belong to
the impermeable surface. The GLCM- (GLCM-SVM and GLCM-CRF) and MFSC-based meth-
ods (MFSC-SVM and MFSC-CRF) are less serious than the SF-based methods. The MFSC-
CRF method incorporates different low-level feature descriptors and results in 89% accuracy
for homestead.

3.3 Experimental Results and Analysis for Testing Site 2

The resulting maps for the visual classification for this testing image are shown in Figs. 6(a)–
6(h). The quantitative classification results of the different classification methods are shown in
Table 5 (The best result of each column is in bold) and Figs. 7(a)–7(h). The proposed MFSC-
CRF method achieves the highest OA and Kappa than SF-SVM, U-SVM, GLCM-SVM, MFSC-
SVM, SF-CRF, U-CRF, and GLCM-CRF. Compared with SF-SVM and U-SVM, the MFSC-
SVM method achieves remarkably enhanced OA and homestead accuracy. Compared with
GLCM-SVM, the classification accuracy of the MFSC-SVM method shows ∼3% improvement
for each LULC class. Considering neighborhood spatial contextual information, the quantitative
performance of MFSC-CRF shows 0.1% accuracy improvement (from 87.4% to 87.5%) com-
pared with MFSC-SVM method.

3.4 Parameter Sensitivity Analysis

The performance of the proposed MFSC-CRF method is further evaluated using different
numbers of training samples. Testing image 1 is selected for parameter sensitivity analysis, and

Fig. 6 Classification of Wuhan rural residential area dataset (testing site 2): (a) SF-SVM,
(b) U-SVM, (c) GLCM-SVM, (d) MFSC-SVM, (e) SF-CRF, (f) U-CRF, (g) GLCM-CRF, and
(h) MFSC-CRF.
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the effects of training sample numbers on the MFSC-CRF algorithms are examined. Different
sizes ranging from 100 to 1000 are tested with an interval of 100 for each LULC class.

As shown in Fig. 8, the classification accuracy of MFSC-CRF initially increases for the data-
sets with gradual increase in the number of training samples per class (from 85.6% to 93.2%).

Fig. 7 Confusion matrices on Wuhan rural residential area datasets (testing site 2): (a) SF-SVM,
(b) U-SVM, (c) GLCM-SVM, (d) MFSC-SVM, (e) SF-CRF, (f) U-CRF, (g) GLCM-CRF, and
(h) MFSC-CRF.
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The classification accuracy of MFSC-CRF is slightly higher than GLCM-CRF (from 84.0% to
92.0%) and MFSC-SVM (from 85.0% to 92.8%) classification approaches with Wuhan rural
residential area dataset of testing site 1. The accuracy then remains roughly constant when
the training sample number is set to 900 but slightly decreases. Moreover, the classification
accuracy of the proposed method remains higher than the other seven methods at each training
number. The training samples are randomly selected from the overall ground truth, and the
remaining samples are used to evaluate the classification accuracies. The experiments show
that the classification accuracies of the methods incorporating spatial contextual information
(i.e., SF-CRF, U-CRF, GLCM-CRF, and the proposed MFSC-CRF) are all better than SVM-
based classification methods. Moreover, the MFSC-CRF method is more robust than the other
classification methods with different training samples.

4 Conclusion

A classification method for HSR remote sensing images based on MFSC and CRF models is
proposed. The proposed MFSC-CRF method can effectively incorporate spectral, structural, and
textural features, as well as spatial contextual information. Midlevel feature learning based on
sparse coding is very important in image classification, and the proposed feature combination
method can significantly improve the classification accuracy by effectively combining three
complementary features, namely, DSIFT, spectral bands, and GLCM. Experiments on the
Wuhan residential area datasets also show that the GLCM features can achieve more promising
results than the original spectral features. This method is an open model, very convenient to
cascade different features to improve the accuracy of image classification. Recently, the con-
volution neural network is widely used in image classification and achieved good results.
However, the convolution neural network model requires a large number of training samples to
train the parameters. Therefore, our next step is to use a small amount of training samples to
fine-tune the convolution neural network model so that it can be effectively applied to remote
sensing image classification applications.
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