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Abstract. The Doppler lidar technology is known for its ability to measure accurate winds with
fine time and space resolutions. The derivation of turbulence parameters from lidar wind meas-
urement has been attempted by several authors. All of them relate the turbulence parameters to
long-time series (several tens of minutes) of wind measurements. The method presented here
retrieves estimations of the atmospheric turbulence at much finer time scales. The technique is
based on a wind reconstruction method applied to a five-beam wind Doppler lidar (namely the
WindCube model by Leosphere). The method relies on a particle filter. The suggested recon-
struction algorithm links the lidar observations to numerical particles to obtain turbulence esti-
mations every time new observations are available. The high frequency of the estimations is an
innovation and is detailed and discussed here. Moreover, the presented algorithm enables
reconstruction of the wind in three dimensions in the observed volume. Thus, we locally have
access to the spatial variability of the turbulent atmosphere. The suggested algorithm is applied to a
set of real observations. The results show that the estimation of the turbulent parameters is sig-
nificantly improved. They open the way to the use of lidars for scientific and industrial purposes
such as site studies for wind farms. © The Authors. Published by SPIE under a Creative Commons
Attribution 3.0 Unported License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.11.046001]
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1 Introduction

Turbulent phenomena in the atmospheric boundary layer (ABL) are characterized by small spa-
tial and temporal scales, making their observations and modeling difficult. As Doppler lidars
provide fine and high-frequency observations, they are instruments of predilection to study
wind and turbulence in the ABL. Since the first work by Kunkel et al.,1 numerous works
have investigated the use of Doppler lidars to study the wind in the ABL,2–4 and sometimes
limitations due to the lidar instruments have been pointed out.5 With the development of wind
farms and the constant growth of airport traffic, the need for turbulence estimations is growing.
Extensive research on turbulence measurements using Doppler lidar has been carried out.6–10

Different parameters have been studied to estimate turbulence (see the work of Sathe and
Mann11 for a very complete review).

In this paper, the originality is not about the turbulent parameters themselves. Instead of
working on these parameters, we suggest here a way to reconstruct the three-dimensional
(3-D) wind field from the observations. The reconstruction method described here has been
patented. Its algorithm is a nonlinear Bayesian estimation method based on wind observations.
Using the algorithm, the 3-D wind is reconstructed and atmospheric turbulent parameters are
estimated in a conic volume. The estimation method is based on a particle approximation of the
fluid probability distribution. The wind observations are associated with particle systems driven
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by a local Lagrangian turbulence model. The particles bear both fluid and stochastic properties.
Here is the innovation of our method: spatial averages and covariances may be deduced from the
particles themselves. The core of the atmosphere reconstruction is based on a particle filter (PF)
and may be compared with particle image velocimetry (PIV) technics.12,13 These are two differ-
ent methods for flow visualization: the PIV is an optical method while the reconstruction algo-
rithm is a numerical one.

In the field of measurement technology, the use of PFs is a technology transfer from sto-
chastic engineering. The theoretical framework for medium estimations has been defined by
Baehr.14 For turbulence estimation, the medium is the atmosphere. The suggested method
has been first applied to vertical lidar observations by Baehr et al.15 and simulated 2-D scanning
lidar by Suzat et al.16 In this work, a Windcube Doppler lidar is used to get 3-D estimations. The
measurement principle and the Windcube characteristics are described in Sec. 2. This description
leads to one assumption: the atmosphere is assumed to be locally homogeneous. Then, the usual
method to estimate turbulence is given. Next, the PF is introduced. The reconstruction algorithm
is made of a particle update and a time prediction using a local turbulence model. These two steps
are detailed in Sec. 5. An application of the reconstruction algorithm to real Windcube obser-
vations is then presented. The results show good wind reconstructions. For the turbulent param-
eter estimations, there are improvements due to the algorithm, but the main new point is the
frequency of the estimations. Turbulent parameters are estimated at the observation frequency,
namely every 4 s.

2 Lidar Instrument

In this paper, wind observations are given by a Windcube Doppler lidar. It is a pulsed lidar that
has a specific geometry. First, this section briefly introduces wind measurement using lidars.
Then, the lidar Windcube is described.

2.1 Measurement Principle

The lidar Windcube is a heterodyne pulsed lidar. It emits in the atmosphere infrared light pulses,
and it measures the backscattered signal. A local oscillator and a power oscillator are used. The
local oscillator has frequency f0, and the power oscillator has a known frequency offset foffset
from that of the local oscillator; f 0

0 ¼ f0 þ foffset. The emitted signal is generated by the power
oscillator. With a simple formalism, the emitted signal S 0

0ðtÞ ¼ E0 sinð2πf 0
0tÞ is backscattered

by the aerosols in the air. The aerosol movements induce a frequency shift in the backscattered
signal SbackðtÞ ¼ Eback sin½2πðf 0

0 þ ΔfDopplerÞt�. The sensor measures the sum of the intensities
of the signal generated by the local oscillator, S0ðtÞ ¼ E0 sinð2πf0tÞ, and the backscattered sig-
nal. It is the principle of the heterodyne measurements. Thus, the measured intensity is given by

EQ-TARGET;temp:intralink-;sec2.1;116;272I ¼ ðS0 þ SbackÞ2 ¼ S20 þ S2back þ 2S0Sback:

The interesting term is the cross product S0Sback. After calculation, its expression is

EQ-TARGET;temp:intralink-;sec2.1;116;227S0Sback ¼
1

2
E0Ebackfcosð2πΔfDoppler þ foffsettÞ − cos½2πð2f0 þ ΔfDoppler þ foffsetÞt�g:

The second cosine is a high-frequency term. Using a low-pass filter, we get the sum of the
Doppler shift and the offset. Knowing the offset, we can deduce the Doppler shift ΔfDoppler.
Velocities are deduced from the Doppler shift using the relation

EQ-TARGET;temp:intralink-;sec2.1;116;148ΔfDoppler ¼ −
2vr
λ

;

where vr is the radial velocity and λ is the wavelength of the emitted signal.
The radial velocity vr is a projection of the wind speed on the lidar line of sight

EQ-TARGET;temp:intralink-;e001;116;83vrðθÞ ¼ u cosðθÞ sinðϕÞ þ v sinðθÞ sinðϕÞ þ w cosðϕÞ; (1)
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where ðu; v; wÞ is the 3-D wind speed, θ is the longitude, and ϕ is the colatitude. To reconstruct
the 3-D wind, three radial observations are necessary. The choice of the three observations is
specific to the Windcube geometry. It is given in the next section.

2.2 Windcube Configuration

Wind reconstruction and turbulent parameter estimation are based on high-frequency and high-
quality wind observations. To get such observations, a lidar Windcube provided by Leosphere is
used. However, our method is not linked to a specific instrument. Any other 3-D Doppler lidar
could be used as well. The Windcube is a heterodyne Doppler lidar that has different lines of
sight. There is one vertical line surrounded by four oblique lines with an oblique angle of 28 deg
(see Fig. 1). The lidar emits 10,000 pulses per second. The signals detected during 0.8 s are used
to estimate a line-of-sight profile of radial measurements. This profile is made of 10 radial wind
measurements, each averaged over 20 m along the laser beam. The five lines of sight are scanned
one after the other. A full revolution takes 4 s. The lidar has a maximum range of 220 m and
probes the low ABL. Thanks to these characteristics, the lidar instrument allows observation of
inertial turbulent scales in the ABL. To evaluate the quality of the data, the carrier to noise ratio
(CNR) may be used to characterize the observational noise. A low CNR is associated with very
clear atmosphere, whereas a high CNR is associated with an obstacle in the line of sight.

Note that, as the lidar uses the Doppler effect to measure wind speed, it only observes the
projection of the wind along the line of sight. To assess the capability of lidar to measure tur-
bulence, previous works have compared three lidar beams crossing in one point close to a sonic
anemometer.17 The aim was also to compare lidar volume averaged wind measurements with
point measurements. In our case, the lidar beams are not crossing. Hence, to get the 3-D wind
ðu; v; wÞ observed by the lidar, the wind components are deduced from the five last radial wind
observations. The Windcube lidar characteristics are summarized in Table 1. The observed vol-
ume is split into boxes (Fig. 1). For each observation level, there are four outer boxes delimited
by the oblique lines of sight and one inner box around the vertical line. Three observation points
on the same vertical level are associated with each outer box. We use two same-level wind mea-
surements in opposite directions and the vertical observation point at the same level. All the
observations of the vertical level are associated with the inner box. We thus make an assumption:
to reconstruct the turbulent atmosphere, we assume that the atmosphere is homogeneous in each
box and during a pattern repeat period. It is the assumption of locally homogeneous medium.
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(a) (b)

Fig. 1 (a) The five boxes for a height are drawn. (b) The 3-D geometry of the lidar Windcube: one
vertical line of sight and four oblique lines. Observation points are drawn in red. To apply the tur-
bulence reconstruction method, the observed volume is split into boxes.

Rottner et al.: Stochastic method for turbulence estimation from Doppler lidar measurements

Journal of Applied Remote Sensing 046001-3 Oct–Dec 2017 • Vol. 11(4)



This partition is useful for computing turbulence estimations. The estimation algorithm is pre-
sented in Secs. 4 and 5.

3 Measuring Turbulence

To estimate atmospheric turbulence, the turbulent kinetic energy (TKE) is a classical parameter.
The definition of the TKE is similar to the definition of kinetic energy, but it involves velocity
fluctuations only. Let V ¼ ðu; v; wÞ be the 3-D velocity vector. Following the Reynolds decom-
position, V may be split into a mean component V and a fluctuation V 0

EQ-TARGET;temp:intralink-;sec3;116;430V ¼ Vþ V 0:

From this decomposition, we can define two kinetic energies

EQ-TARGET;temp:intralink-;sec3;116;385MKE ¼ 1

2
ðu2 þ v2 þ w2Þ;

EQ-TARGET;temp:intralink-;sec3;116;332TKE ¼ 1

2
ðu 02 þ v 02 þ w 02Þ:

MKE is the mean flow kinetic energy. The second equation defines the TKE, which is the
kinetic energy of the turbulent part of the flow. The TKE is calculated using half of the velocity
fluctuation variance. Ideally, the averaging operator should be determined by ensemble averag-
ing. As the ensemble average is unreachable in usual practical situations, time averaging is used
instead. To use time averaging, two hypotheses are made: the atmosphere probability density
function (pdf) is assumed ergodic and stationary. Then, the TKE can be approximated by

EQ-TARGET;temp:intralink-;e002;116;222TKE ¼ 1

T

Z
T

0

1

2
½u 0ðtÞ2 þ v 0ðtÞ2 þ w 0ðtÞ2�dt: (2)

The induced error and the integration time T have been studied by Lenschow et al.18 To
measure the TKE using a Doppler lidar, the time T has to be specified. Pichugina et al.19

and O’Connor et al.20 suggested methods to estimate the TKE and the dissipation rate using
a Doppler lidar. They give explicit values for the integration time T. For a case of stable boundary
layer, Pichugina suggested an averaging period of 10 to 15 min. For a case of a convective
boundary layer, O’Connor used a shorter period, from 3 to 5 min.

Following these previous works, we compute the TKE with a time average T ¼ 10 min. This
TKE is used as a reference in this paper. Indeed, we present here a way to estimate the TKE. Our
method gives direct access to a type of ensemble average (see Sec. 5.3). Thus, the TKE is instan-
taneously estimated: the estimation frequency is equal to the observation frequency. Sections 4

Table 1 A summary of the Windcube lidar characteristics.

Vertical line of sight 1

Oblique lines of sight 4

Elevation angle 28 deg

Spatial resolution 20 m

Maximum range 220 m

Observation points by line 10

Pattern repeat period 4 s

Wavelength 1543 nm
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and 5 present the necessary theoretical tools and our algorithm designed for the turbulent atmos-
phere reconstruction. The ensemble average naturally appears, and comparisons between the two
methods are then presented.

4 Nonlinear Filter

When a set of data is collected, the usual question is how to estimate the real state of a system
using one or more observations at different time steps. It is the principle of data assimilation. The
reconstruction of the turbulent atmosphere may be seen as an assimilation process: the wind
observation is assimilated in the particle model. For each time step k, the state vector of the
system ξk is associated with the observation vector yk. We consider that the observation is
not perfect. The observation error is denotedWy

k. The dimension of the vector yk is often smaller
than the dimension of the state vector ξk. The observation equation is given by

EQ-TARGET;temp:intralink-;sec4;116;573yk ¼ HðξkÞ þWy
k;

whereH is the observation operator. Assuming that ξk is a Markov process and the observational
noise is a random variable, the classical problem consists of evaluating the pdf

EQ-TARGET;temp:intralink-;sec4;116;517pðξkjy1∶kÞ ¼
pðykjξkÞ · pðξkjy1∶k−1Þ

pðykjy1∶k−1Þ
;

with the following time recursion due to the Markov property

EQ-TARGET;temp:intralink-;sec4;116;460pðξkjy1∶k−1Þ ¼
Z

pðξkjξk−1Þpðξk−1jy1∶k−1Þdξk−1:

For usual data assimilation, the evaluation expectation of pðξkjy1∶kÞ is based on variational
methods and a meteorological model is used for the time prediction. Here, we do not want to
estimate only the expectation but the whole pdf. Specific signal processing tools are used. They
are based on filters especially designed for nonlinear processes. Before the description of the
reconstruction algorithm, the next section introduces the nonlinear filter that has been used.

4.1 Background

Starting from the original idea of Kalman,21 the Kalman filter (KF) has been developed and
adapted to different applications. The classical KF is the optimal estimator for linear and
Gaussian processes. Then, it has been extended to differentiable dynamics. The extended
KF (EKF) simply linearizes nonlinear models and then applies the KF. Descriptions and appli-
cations of the EKF may be found in the work of Welch and Bishop,22 Haykin,23 or Evensen.24

However, the EKF has been difficult to implement and unreliable for strongly nonlinear dynam-
ics. Indeed the EKF can be unstable due to the linearization. Therefore, another adaptation of the
KF was introduced: the unscented KF (UKF). This filter uses deterministic sets of points to
calculate the statistics of a random variable that undergoes a nonlinear transformation.25

Inspired by Monte-Carlo methods, the ensemble KF (EnKF) has also been introduced by
Evensen.26 Unlike the UKF, the EnKF uses randomly sampled ensembles.27 The EnKF is fre-
quently used in data assimilation, but its weakness has been demonstrated. For nonlinear dynam-
ics, the convergence of the EnKF differs from the usual Bayesian filters.28

At the same time, a different kind of filter has been developed: the PF.29,30 The PF, also known
as the Monte-Carlo filter, is designed to estimate the state of nonlinear and non-Gaussian proc-
esses. The major innovation of the PF is to approximate the required, usually complicated pdf by
an ensemble of samples randomized according to this pdf. The samples are called “particles.”
Statistics of the state are directly calculated from the particles and are not restricted to the first
two moments of its pdf. Though it is still an approximation of the (often unreachable) optimal
solution, the PF has proved to be the most adapted filter for nonlinear dynamics estimation.31
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In this paper, wind observations are filtered. As wind and atmospheric turbulence are strongly
nonlinear processes,32 a PF is used despite the popularity of the different KFs. The next section
details the PF algorithm.

4.2 Particle Filter

In this work, we aim to estimate wind and atmospheric turbulence. In this context, a PF is used. A
complete mathematical description of PFs may be found in the book of Del Moral.33 This section
simply presents the main features.

Algorithm 1 Particle filter.

Require: pðξ0Þ.

Ensure: Particle approximation of pðξk jy1∶k Þ.

For the system:

EQ-TARGET;temp:intralink-;t002;116;522

�
ξkþ1 ¼ Fk ðξk Þ þWk
yk ¼ Hðξk Þ þWy

k

where Wk ∼N ð0; Qk Þ and Wy
k ∼N ð0; Qy

k Þ.

1. INITIALIZATION = 0

for i ¼ 1; : : : ; N do

Sample ξi0 ∼ pðξ0Þ.

end for

k ¼ 1

2. UPDATE

The selection keeps most likely particles.

for i ¼ 1; : : : ; N do

Evaluate the importance weights wi
k ¼ pðyk jy1∶k−1; ξ

i
k Þ,

wi
k ∼N ½Hðξk Þ; Qy

k �.

end for

for i ¼ 1; : : : ; N do

Normalize the importance weights w̃ i
k ¼ wi

kP
M
j¼1

wj
k

.

end for

Multiply (respectively suppress) samples ξik with high (low) importance weights ~wi
k to obtainN samplesbξik .

3. PREDICTION

Time prediction of the state vector

for i ¼ 1; : : : ; N do

EQ-TARGET;temp:intralink-;t002;116;144 ξikþ1 ¼ Fk ðbξik Þ þWi
k

where Wi
k ∼N ð0; Qk Þ.

end for

k←k þ 1 go to step 2.
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A PF uses a set of numerical particles to describe the pdf of interest. Note that, here, the
numerical particles are independent of the aerosols in the atmosphere. The PF algorithm is
given in Algorithm 1. The filter is made of two sequential steps. First, there is the evaluation
of the updated pdf pðξkjy1∶kÞ. The particle velocities are updated using the last observations;
these updated particles ξ̂ik are samples of the pdf pðξkjy1∶kÞ. Then, there is a Markovian time
prediction. The prediction step requires a time evolution model for the state vector. A physical
model is used to predict the state at the next time step. In this paper, a local turbulence model is
used. The predicted particles are denoted ξik. Using the particle representation at the time step k,
the updated pdf is approximated by

EQ-TARGET;temp:intralink-;sec4.2;116;628pðξjy1∶kÞ ∼ pNðξjy1∶kÞ ¼
1

N

XN
i¼1

δðξ − ξ̂ikÞ;

where N is the number of particles and ξ̂ik is the particle i at the time step k.
The update step uses the last observation to evaluate the particle likelihood given the obser-

vation. A weight wi
k is given to each predicted particle ξik using its own likelihood

pðykjy1∶k−1; ξikÞ. Then, particles are randomly selected depending on their weights. The pdf
of the medium state is thus resampled. This resampling is called “importance sampling.”

The update and the evolution model are described in Secs. 5.1 and 5.2, respectively.

5 Filtering Algorithm for Turbulence Estimation

Lidars are often considered wind profilers. As they retrieve high-frequency wind observations,
they are an interesting tool to measure turbulence. As wind reconstruction is available in three
dimensions, we may compute 3-D statistics of the wind. Then, turbulent estimations may be
available in 3-D.

In our work, the observed conical volume (Fig. 1) is filled with numerical particles. The
particles follow the air flow and carry the local characteristics of the atmosphere. The filter
has two classical steps: an update and a prediction. When new lidar observations are available,
the information of each particle is updated. Then, a local turbulence model performs the time
evolution of the whole system.

At any moment, the particle system fills the observed volume, as shown in Fig. 2. Each
particle carries information about the surrounding fluid. Under the assumption of a large enough
number of particles, we have access to the local characteristics of the atmosphere inside the
volume covered by the observations. The particles complete the lidar observations by represent-
ing the spatial variability of the observed fluid. In this sense, it is a spatialization observation
method. Therefore, structure functions can be calculated at each time step using the particles
themselves.

Fig. 2 Illustration of a particle system filling a conic volume. The colored dots are numerical fluid
particles. The colors depend on the particle velocities.
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The filtering algorithm of reconstruction links the lidar observations to the particle system.
First, particle velocities are compared with lidar observations and particles are selected according
to their likelihoods. Consequently, the particles consistent with the observations are more often
promoted. These update particles are used to performed turbulent parameter estimations. Then,
particles are pushed forward in time. The particles may be seen as passive tracers of the turbu-
lence. Then, the time evolution of the particle position and velocity uses a local turbulence model
called the stochastic Lagrangian model (SLM). Figure 3 summarizes the algorithm.

5.1 Particle Update Step

The aim of the update step is to promote particles that represent the surrounding medium. To do
so, we choose a genetic selection with first an acceptation/rejection step and then a bootstrap for
the rejected particles. In practice, particles are randomly selected or rejected depending on their
likelihood given the observations. The particles coherent with the observations have a higher
probability of being selected than the others, but this sampling method enables the diversity
of particle values to be kept. The advantage of the genetic selection is to get more accurate
estimations. The details are given by Del Moral.34

The selection procedure is described in Algorithm 2. In this algorithm, a potential function G
is introduced. It is the expression of the particle likelihood given the observation. Thus, its shape
is given by the observation noise probability density. In this work, we aim to estimate wind in
three dimensions. Hence, we need to evaluate the particle likelihood given at least three inde-
pendent observations. The overall potential G of ξik is the product of the GjðiÞ

Fig. 3 Summary diagram of the PF algorithm. There are two steps: an update followed by a time
prediction. The atmosphere reconstruction uses the updated quantities, denoted by a hat.

Algorithm 2 Update: likelihood with respect to the observations

Let B be a volume including Nobs observations ðY j Þj¼1;Nobs
.

Let Hj be the observation operator associated with the observation Y j .

Let V be the matrix of particle velocities.

Inside ← particles inside B

for j ¼ 1∶Nobs do

EQ-TARGET;temp:intralink-;t003;116;213Gj ðInsideÞ ¼ exp
�

−kHj ½VðInsideÞ�−Y j
jk

2

2×e

�

end for

GðInsideÞ ¼ QNobs
j¼1 Gj ðInsideÞ

A particle ξi ∈ Inside is accepted with probability GðiÞ

ξ̂i ¼ ξi :

If ξi is rejected, ξ̂i is obtained by multinomial resampling in ðξi ÞNi¼1 with probability ½GðiÞ�Ni¼1.
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EQ-TARGET;temp:intralink-;t003;116;735GðiÞ ¼
YNobs

j¼1

GjðiÞ;

where GjðiÞ is the potential associated with the observation Yj
k for the particle ξ

i
k and Nobs is the

number of observations. If the observation noises are assumed to be Gaussian, the potential
function is expressed by

EQ-TARGET;temp:intralink-;sec5.1;116;657GjðiÞ ¼ exp

�
−
kHjðVi

kÞ − Yj
kk2

2 × e

�
;

where Vi
k is the velocity of the particle ξ

i at the time step k, Yj
k is an observation vector,Hj is the

observation operator associated with Yj
k, and e is the covariance of the observation noise. For

lidar observations, the observation operator is the projection of the wind in the direction of the
line of sight [see Eq. (1)].

After the update step, the particles ξ̂ik are identically distributed. They approximate the pdf of
the local medium given the observations

EQ-TARGET;temp:intralink-;sec5.1;116;538pNðξjy1∶kÞ ¼
1

N

XN
i¼1

δðξ − ξ̂ikÞ:

The medium characteristics are computed using the updated particles ξ̂ik. For instance, the
estimated wind V̂k at the time step k in the volume B is given by the expectation

EQ-TARGET;temp:intralink-;sec5.1;116;469V̂k ¼ EðVkÞ ¼
1

N

XN
i¼1

Vi
k;

where Vi
k is the velocity component of the particle ξ̂ik and N is the number of particles in B.

The computation of the structure functions—average, variances, and higher order moments
—is detailed in Sec. 5.3. In the following section, we introduce the local turbulence model used
for the time prediction.

5.2 Stochastic Lagrangian Model

To perform time evolution, a physical model of local turbulence is used. It is a SLM, which
performs position and velocity evolutions. The SLM is locally consistent with the Kolmogorov
theory35 and is the inspiration of Das and Durbin36 and Pope.37,38 It was first introduced for
turbulence estimation by Baehr.14 For each particle, the position evolves with the time integration
of the velocity. The velocity evolution is driven by averaged terms—mean horizontal pressure
gradient ∇xhpi or mean vertical velocity increment ΔkW—and the turbulent kinetic energy dis-
sipation rate (EDR), ε. Depending on the application framework, these control parameters may
be seen as an external force, given by a meteorological model for instance. Here, they are directly
learned from the observations.

The velocity evolution equation is also made of fluctuation terms around the local Eulerian
average h:i and the Wiener process scattering terms ΔB•. The Wiener processes are normalized
by the time step. The computation of the local Eulerian average is not trivial. The next section
explains how we suggest computing it. Therefore, the SLM used in this work is given by the
following equation set:

EQ-TARGET;temp:intralink-;sec5.2;116;166

8>>>><
>>>>:

Xkþ1 ¼ Xk þ VkΔt
Vkþ1 ¼ Vk − ∇xhpiΔt
−C1

εk
Kk
½Vk − hVi�Δtþ ffiffiffiffiffiffiffiffiffiffiffi

C0:εk
p

ΔBV
kþ1

Wkþ1 ¼ Wk þ ΔkW
−C2

εk
Kk
½Wk − hWi�Δtþ ffiffiffiffiffiffiffiffiffiffiffi

C0:εk
p

ΔBW
kþ1

;

where Δt is the length of the time step, k is the time index, C0 is the Kolmogorov constant, and
C1 ¼ C2 ¼ 1

2
þ 3

4
C0, as suggested by Pope.37 The TKE, noted K in the previous system, is the
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turbulent parameter that we study. Note that the EDR ε directly drives the variance of the Wiener
processes. As the EDR is learned from the wind at each time step, the scattering of particle
velocities is correlated with the instantaneous turbulence.

The control parameter computation is based on averaged properties of the SLM equations.
Taking the expectation of the second equation, we get

EQ-TARGET;temp:intralink-;sec5.2;116;675EðVkþ1 − VkÞ ¼ −∇xhpiΔt:

Thus, the control parameters ∇xhpi and ΔkW are both mean increments. To get the EDR,
here, there is no need for a closure scheme, such as the famous K − ε closure scheme.39,40

Instead, we use a stochastic property of the SLM equations. The computation of εk is done
using the variance of the velocity increment

EQ-TARGET;temp:intralink-;sec5.2;116;595εk ¼
VarðVk − Vk−1Þ

Δt × C0

:

Interested readers may find explanations about stochastic calculus by Protter.41

The same expression is valid for the third equation, using the vertical velocityW instead of V.
The averaging operators are calculated using the updated particles. Then, control parameters are
computed with the previously reconstructed wind. The control parameters are learned from the
observations, which ensures the physical meaning of the system.

5.3 Structure Function Computation

This section describes the computation of structure functions using the particle system. We have
previously introduced the notion of the local Eulerian average. All the structure functions are
computed using this average. However, as particles give a Lagrangian representation of the wind,
we only have access to Lagrangian quantities. Thus, the local Eulerian average is nontrivial to
compute. Consequently, the Eulerian average used for the evolution of the particle has to be
approximated by a Lagrangian average. Let Q be a physical quantity. Qk;x is its Eulerian rep-
resentation at the point x, and the time k. (Xk ¼ x, Qk) is its Lagrangian representation at the
same point x. According to our Lagrangian point of view, the Eulerian average ofQ is computed
using the Lagrangian expectation of Qk given the point x

EQ-TARGET;temp:intralink-;sec5.3;116;345EEðQk;xÞ ≃ ELðQkjXk ¼ xÞ:

In our framework, the quantity Q is represented by the particle system. Thus, only a discrete
representation of Q on irregularly spaced points is available. It leads to a tricky implementation
of these averages. To compute the local average h:i at a given point, we have to introduce a
characteristic length δ. This length represents a medium homogeneity length. The parameter
δ is used to define a function Gδ, which weights the particles according to their distances to
the computation point. We choose a Gaussian for the function Gδ. Its standard deviation is
given by δ.

Considering the remote sensor geometry, some clues to fit the length δ appear. The lidar
Windcube retrieves observations with a 20-m spacing. We implicitly assume that the turbulent
atmosphere is homogeneous in a 20-m high volume around the observation point. We suggest
using a different δ for the horizontal and the vertical directions. In this work, we choose arbi-
trarily δv ¼ 20 m for the vertical direction and δh ¼ 100 m for the horizontal direction.

Algorithm 3 explicates the function Gδ and the local average computation.
As the average operator is defined, we can compute any needed structure functions in real

time using the particles. Usual structure functions used to estimate turbulence are variances.
Higher order moments may also be used.42 All these structure functions may be calculated
at each time step. This leads to instantaneous estimations of many turbulent parameters—
TKE or autocovariance matrix for instance.

Starting from the definition of the local average, all structure functions are simply computed
in Algorithm 4.
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In this paper, we choose to focus on the TKE estimation. As the TKE is used for the particle
time evolution, it seems appropriate to assess the quality of the estimations. It is important to note
that the instantaneously estimated TKE is used in the SLM. However, to evaluate the quality of
instantaneous estimations, we can only use the usual TKE calculated from time variances. The
differences between the two TKEs are detailed in Sec. 6.2. Moreover, to assess estimations based
on time averages or variances, turbulent intensity (TI) estimations are presented in Sec. 6.3.

6 Application to Well-Developed Turbulence Conditions

In this section, the turbulence reconstruction method is applied to wind measurements on a com-
plex terrain during a summertime turbulent period. First, the wind reconstruction is presented;
then results for the TKE and for the TI are shown.

6.1 Wind Reconstruction

To get relevant turbulent estimations, the first step is to estimate the wind. The following experi-
ments and results have been obtained using the presented reconstruction algorithm. The section
begins with a numerical experiment to validate the algorithm. Then, the algorithm is applied to
real Windcube observations.

6.1.1 Preliminary experiment

Before working on real data, the quality of the filtering algorithm has been tested. To do so, a
specific experiment was designed. The aim is to validate the filter efficiency on noisy observa-
tions. Here, the lidar observations are reference observations. A white noise with a variance of
0.5 m2 s−2 is added to real lidar observations, and the filtering algorithm performs wind
reconstruction from the noisy data. Figure 4 shows the resulting time series of the radial wind.

Algorithm 4 Local structure functions computation.

Let h:i be the average defined in Algorithm 3 and B be an homogeneous volume.

Assuming N particles are inside B, the p’th structure function of the wind in B is given by

E½ðV − hV iÞp � ¼ 1
N

PN
i¼1 ðVi − hV i iÞp , where V• are the particle velocity vectors.

Algorithm 3 Local average computation.

Let ½ξi ¼ ðXi ;Vi Þ�Ni¼1 be the particles inside the observed volume.

for i ¼ 1∶N do

for j ¼ i∶N do

EQ-TARGET;temp:intralink-;t004;116;660Gδði ; jÞ ¼ exp
�
−
ðXi − XjÞ2

2δ

�

end for

end for

The local averaged velocity around the particle i is obtained as follows:

hV i i ¼ PN
j¼1

Gδði ;jÞP
N
k¼1

Gδði ;kÞV
j .
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Note that the reconstructed wind is similar to the observed wind. The peaks on the noisy signal
are removed from the reconstructed one. It seems that the added noise has been filtered.

The power spectral densities (PSD) confirm that the noise has been removed from the recon-
structed radial wind (Fig. 4). Indeed, the spectrum of the noisy data is similar to a white noise,
whereas the reconstructed spectrum follows the Kolmogorov energy cascade. It follows that the
filtering algorithm is able to reconstruct a reference signal from noisy observations. Thus, we can
rely on the radial wind estimations performed with the reconstruction algorithm. After this suc-
cessful preliminary experiment, the next step is to apply the algorithm to raw Windcube
observations.

6.1.2 Results from real data

In this section, wind estimations are performed using raw Windcube lidar data. The aim is to
reconstruct the 3-D wind in the observed volume using the PF described in Sec. 4.2. As three
observations are needed to reconstruct the wind, we consider the atmosphere to be homogeneous
between the observations that we use. The observed volume has been split into boxes associated
with at least three observations (Sec. 2.2). In each box, the 3-D wind is estimated.

The Windcube data provided by Leosphere come from an experimental site near Athens
(Greece) and cover a seven-day period from 08/20/2010 to 08/27/2010. The site is on complex
terrain, and the observed winds are often very turbulent. For wind reconstruction, only a short
interval is shown here to facilitate the interpretation of the results. As for the preliminary experi-
ment, time series and PSD are shown. However, no noise has been added. The reconstructed
wind can be compared with the observed wind only. Moreover, the results are given in the
classical frame. The observed wind is obtained by geometric construction using the observations.
To avoid graph overcharge, we illustrate the results only in the inner box at 80 m with the hori-
zontal wind following the first coordinate u. Figure 5 shows the time series of the observed wind
and the reconstructed wind over a 30-min period with a 4-s time step. It illustrates the coherence
of the reconstructed wind with respect to the observed wind. Indeed, the reconstructed series can
barely be separated from the observed one. The times series of the wind following the second
horizontal and the vertical directions also show very good estimations of the wind. The PSD are
presented in Fig. 6. They confirm that the reconstructed wind follows the K41 Kolmogorov laws
for the inertial subrange turbulence. The K41 energy cascade is represented by a −5∕3 slope
drawn in green. Again, the PSDs of the other directions of the wind are as good as for the first
direction.

The estimated wind is thus coherent with the observations. Its realistic shape is validated by
the PSD, which follows the expected energy cascade. The validation of the 3-D wind estimations

Fig. 4 (a) Time series of radial wind. Real observed wind in black, reconstructed wind in red, and
noisy wind in blue. (b) PSD of radial wind. Real observed wind in black, reconstructed wind in red,
and noisy wind in blue. A green line indicates the Kolmogorov energy cascade (−5∕3 slope).
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leads us to the estimations of turbulent parameters. TKE estimations and TI estimations are
presented in Secs. 6.2 and 6.3.

6.2 Turbulent Kinetic Energy Measure

In this section, we want to compare the TKE particle estimation with the classical estimation
computed in each box. To achieve this, we define the two TKEs for a box.

Classical turbulence estimation methods are based on two major physical hypotheses. The
turbulence probability distribution is assumed ergodic and stationary.43 In this framework, time
average and spatial average are equivalent.44 Therefore, the TKE is obtained using the variance
of the observed 3-D wind speed V over a period T. At each box, the classical TKE, as defined by
Eq. (2), is given by

EQ-TARGET;temp:intralink-;sec6.2;116;225TKE ¼ 1

T

XT
k¼1

ðVk − hViTÞ2;

where h:iT is the time average.
As the particles carry the physical properties of the atmosphere, average and variance can be

computed using the particle values. Hence, the suggested method overcomes the ergodicity and
stationarity hypotheses. At any time, the particles represent the wind and its spatial variability.
Thus, the local wind speed variance is computed at each time step k using the particle 3-D
velocity Vi

k. For N particles in the box, the TKE is given by

EQ-TARGET;temp:intralink-;sec6.2;116;103TKEðkÞ ¼ 1

N

XN
i¼1

ðVi
k − hVkiNÞ2;

Fig. 6 PSD of the horizontal reconstructed wind [(a), in red] and the horizontal observed wind [(b),
in black]. A green line indicates the Kolmogorov energy cascade (−5∕3 slope).

Fig. 5 Time series of the horizontal reconstructed wind (in red) and the horizontal observed (by
lidar) wind (in black) at 80 m, with a 4-s time step for the 08/26/2010 at 4 pm.
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where h:iN is the spatial average computed using the updated particles as defined in Sec. 5.1. The
TKE is estimated in each box used to reconstruct the wind. Thus, we have an estimation of the
TKE, and we have access to its spatial variability at each time step k.

Figure 7 shows the contribution of the particle method for turbulence estimation. For one
box, it shows over a 2-h period with a 4-s time step, the classical TKE calculated on 10 min, and
the TKE estimated at each time step with the particle method. The usual TKE is made of 10-min
steps, whereas the particle system gives back a TKE made of irregular peaks. It seems that par-
ticles capture a spatial and time variability of the atmospheric turbulence, which, currently, is
clearly unreachable.

However, even if the particle TKE shape is coherent with the intermittent nature of the tur-
bulence, this estimation method needs to be validated.

The natural approach to validating the particle TKE estimations is to average them on a 10-
min period and then compare average particle TKE with classical TKE. This comparison is
illustrated by Fig. 8. In this figure, the usual TKE and the averaged estimated TKE on 10 min
are represented over a 24-h period. There are two important points to raise. First, the particle
TKE is globally higher than the classical TKE during night. This is due to the physical model

Fig. 7 Times series of the usual TKE (black) and the particle TKE (red), for the 08/26/2010, from 4
to 6 pm. The usual TKE is computed over 10 min.

Fig. 8 TKE time series for the 08/26/2010. Classical TKE is drawn in black, and 10-min averaged
particle TKE is drawn in red.
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used for the time evolution. Indeed the SLM is a turbulence model that has difficulties repre-
senting laminar flows. It could be a reason why the particle system overestimates the turbulence
during night. The second point is about the middle of the day estimations. When turbulent proc-
esses occur, the particle system is able to retrieve a good average TKE. One may notice that
sometimes the particle TKE is lower than the classical TKE. This shows that particle estimations
are not biased.

On average, the particle TKE estimations are coherent with the classical estimations.
However, an average validation is not enough to validate the peaky shape of the instantaneous
particle TKE. As this variability is unreachable with classical methods, we have no way of pro-
viding further validations of instantaneous turbulence estimations.

6.3 Turbulent Intensity Computation

According to the International Electrotechnical Commission,45 to ensure the integrity of wind
turbines, wind farms should be defined for different classes of turbulent intensities. As a lidar
Windcube covers the low ABL, it can be used to measure TI at the wind farm location and at the
appropriate vertical level. The standard way to measure TI is based on cup anemometer mea-
surements. Compared with the anemometer, the Windcube retrieves observations into an inter-
esting volume. However, the turbulent intensities computed using Windcube observations are
usually over-estimated.46 The TI is defined as

EQ-TARGET;temp:intralink-;sec6.3;116;495TI ¼ σðVÞ
hViT

;

where V is the wind speed, σ denotes the standard deviation, and h:iT is the time average on the
period T. The TI is currently calculated over a 10-min period as defined by the International
Electrotechnical Commission.47

Using this expression, we have compared TI independently computed from cup anemometer
observations, raw Windcube observations, and estimated wind using the reconstruction algo-
rithm. As a cup anemometer measures only the horizontal wind, the TI is computed following
the previous equation applied to the horizontal wind. According to international standards,
anemometer data have been used to have a TI reference. Then, TIs have been calculated
using raw and filtered Windcube observations. For each set of data, the TI depends on wind
speed classes. Thus, the three TIs have been compared following the wind speed classes.
Figure 9 shows the averaged TIs by wind speed classes on seven days of observations, from

Fig. 9 Averaged horizontal TI depending on the wind speed classes. The TI obtained from
anemometer data is drawn in black, raw Windcube data TI are drawn in blue, and filtered
Windcube data TI are drawn in red. Dotted lines are the standard deviations.
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08/20/2010 to 08/27/2010. Note that the TI obtained from raw Windcube data is significantly
higher than the reference one as it has been observed by Westerhellweg et al.46 On the contrary,
the estimated TI with the particle algorithm has the right order. However, the results are not so
good for low wind speed classes. This may be due to the data set: during the observation period
low wind speeds often occurred at night. Thus, low wind speeds occurred during the less tur-
bulent period of the day. As the SLM is a turbulent model, the turbulence is overestimated during
the night. The overestimation of the night turbulence may explain the overestimation of the TI for
low wind speed classes. This overestimation should not appear if the data set includes more
occurrences of low wind speed during the daytime.

A look at the standard deviations associated with anemometer TI and with particle estimated
TI confirms the very good TI estimations for high wind speed classes. There is also a less per-
forming estimation for the lower wind speed classes.

7 Application to Low Turbulence Conditions

In the previous section, the application of the reconstruction method to very turbulent wind
measurements has been presented. In this section, we suggest applying the method to a com-
pletely different data set coming from the Høvsøre test site for wind turbines in Denmark. The
test site is on flat terrain close to the North Sea seashore. The reconstruction method has been
applied to data from 10/10/2015 to 10/13/2015 provided by the Technical University of Denmark
(DTU). During this period, there is a pronounced diurnal cycle with a stable boundary layer
during nighttime and an unstable boundary layer during daytime. First, the influence of the sta-
bility on the results from the turbulence estimation method is shown. Then, TI estimations
are given.

7.1 Horizontal Wind Reconstruction

The turbulence estimation method is based on a Lagrangian model of turbulence. We have seen
in Sec. 6 that, in turbulent conditions, the method improves turbulence estimations. In Høvsøre,
the terrain is flat, and, when the atmospheric conditions are stable, the turbulence in the boundary
layer is very low. To study the behavior of the method in stable conditions, the 10-min mean
horizontal wind speeds have been computed from Windcube lidar data, sonic anemometer data,
and the reconstructed wind. The criteria used to determine the boundary layer stability is the
Obukhov length.48 The results for 10/10/2015 are shown in Fig. 10. Winds measured by the
Windcube lidar and the sonic anemometer are in good agreement, but the reconstructed
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Mean horizontal wind speed (10 min) 

Stable conditions Unstable conditions Stable conditionsTransition
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Fig. 10 Mean horizontal wind speed at 100 m from sonic anemometer data in black, raw
Windcube data in blue, and filtered Windcube data in red. The stability criteria are based on
the Obukhov length.
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wind is quite different when the conditions are stable. At the beginning of the unstable period, the
differences with the observed winds vanish and reappear at the beginning of the next stable
period. This remark can also be interpreted in terms of boundary layer stratification. When
the conditions are stable and nonturbulent, there is a strong vertical gradient of horizontal
wind. This gradient disappears during daytime when the turbulence mixes the boundary
layer. The turbulence reconstruction method overestimates turbulence when the conditions
are nonturbulent. The turbulence overestimation leads to a homogenization of the reconstructed
wind in the observed volume. Thus, it appears that the turbulence estimation method has diffi-
culties reconstructing winds in a stratified boundary layer.

7.2 Turbulent Intensity Estimation

Knowing the method limitations, in this section, we suggest working only on the nominal oper-
ating range of the turbulence estimation method. To do so, mean horizontal winds have been
plotted over four days—from 10/10/2015 to 10/13/2015. Only periods when reconstructed
winds are in good agreement with sonic anemometer winds have been chosen to work on
TI estimation. Horizontal winds and turbulent intensities are represented in Fig. 11. According
to this figure, we have worked on the 8- to 18-h period for 10/10/2015 and 10/11/2015, on the
9- to 17-h period for 10/12/2015 and on the 9:30- to 17-h period for 10/13/2015.

During these periods, TI estimations have been calculated from raw Windcube lidar data and
from reconstructed wind. Then, the estimations have been compared with reference TI calculated
from cup anemometer data. To summarize the results, the TI estimations are sorted and averaged
by wind classes. The TI estimation errors are presented in Table 2. The use of the turbulence
estimation method generally improves the TI estimations. In particular, one can notice the very
good results obtained for the wind speed classes 5, 6, and 7 m s−1, which are also the most
represented classes during the chosen periods.

According to these results, our method for TI estimation seems coherent with the usual esti-
mation when conditions are unstable. This leads to a way to use the lidar Windcube and our
algorithm for turbulence estimation in complex terrain as well as in flat terrain.

Mean horizontal wind speed (10 min) at 100 m

Turbulent intensity
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Fig. 11 Mean horizontal wind speed (higher part) and TI (lower part) from sonic anemometer data
in black and filtered Windcube data in red.
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8 Discussion

The characterization of the turbulent phenomena in the ABL is an important topic in atmospheric
sciences. The issue is not only to understand the atmospheric processes but also to answer indus-
trial and ecological concerns. Generally speaking, the turbulence raises a lot of issues: the tur-
bulent parameter definitions are not always suitable and the turbulence is tricky to quantify. In a
classical way, the turbulent parameter is defined using time averages. The use of time average is a
makeshift solution due to the ergodicity and stationarity hypotheses. Thus, using usual methods,
we only get long-time turbulence estimations. To get instantaneous estimations, we have to
change the point of view and go back to the definition of the ensemble average. We suggest
using stochastic particles to compute these averages in real time.

In this paper, we have presented a preliminary study on a way to estimate turbulence. The
suggested algorithm uses stochastic methods. It has been applied to Windcube Doppler lidar
data. A first step to assessing the algorithm was to compare the time series of estimated and
observed parameters. For a first approach, we looked at the behavior of the wind speed. Then,
we compared time averaged TKE with instantaneous particle TKE. These first tests lead to a
good agreement for the long-time estimations. However, the physical meaning of the instanta-
neous TKE still needs to be clarified. To further the validation, we have to work on instantaneous
parameters. Unfortunately, they are unreachable by direct observations using usual computation
methods. Hence, new experiments should be designed to get complementary investigations. For
instance, another way to demonstrate the algorithm capability may be to use instantaneous esti-
mations obtained with different instruments. We may think of a sonic anemometer hung on a
mast or under a tethered balloon. Using other instruments placed to the side of the Windcube, we
may get different observation sets. Then, we would estimate wind and TKE for each data set
independently and compare the estimations. Inspired by previous experiments,17 we may also
suggest pointing a lidar beam on a sonic anemometer. With 100-Hz sonic measurements, it is
possible to compute averages over 5 s. In this case, the 5-s averages may be seen as long-time
averages that can be compare every 5 s with instantaneous lidar particle estimations.

The reconstruction algorithm may also be tested on an entire numerical realization of a tur-
bulent atmosphere. A high-resolution simulation of a turbulent field could be used to generate

Table 2 Averaged error on the TI estimation calculated from Windcube data and from recon-
structed winds by comparison with TI calculated from cup anemometer data. The results are pre-
sented by wind speed classes at five heights. Only data from the 8- to 18-h period for 10/10/2015
and 10/11/2015, from the 9- to 17-h period for 10/12/2015 and from the 9:30- to 17-h period for 10/
13/2015 have been used.

Wind classes (ms−1) 3 4 5 6 7 8 9 10 11

Reconstructed TI error

40 m (%) 90.62 15.92 18.44 1.11 18.92 6.66 3.94 3.19 —

60 m (%) 54.10 29.06 14.81 1.91 16.82 12.38 10.53 3.31 —

80 m (%) — 30.29 15.45 2.25 17.69 11.44 6.20 5.90 7.58

100 m (%) — 30.53 22.15 4.42 10.88 15.31 20.34 3.56 2.75

120 m (%) — 96.30 35.55 5.62 13.27 18.49 20.60 52.16 4.18

Windcube TI error

40 m (%) 108.87 33.64 37.82 59.98 104.18 73.49 23.54 22.97 —

60 m (%) 47.67 30.26 16.15 37.99 60.18 43.80 28.74 13.54 —

80 m (%) — 17.43 17.38 20.06 41.16 32.11 19.41 13.99 19.63

100 m (%) — 4.52 14.31 25.26 35.85 30.53 25.33 15.69 22.84

120 m (%) — 77.60 15.83 21.11 41.54 42.26 34.58 32.98 23.02
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observations. Then, we may apply our algorithm to the simulated observations and get particle
reconstruction of the numerical atmosphere. Finally, this reconstruction could be compared with
the reference realization. The main advantage of this solution is that the numerical environment
is totally under control.

Working on the reconstruction methods, we stated that turbulent structures, smaller than the
observation boxes, were systematically created and advected by the particle system. These phe-
nomena have not been yet investigated. Nevertheless, this new capability seems interesting.
Here, we face the theoretical limits of the Shannon theorem. This question will lead us to
think about the issue of the effective resolution of the reconstruction system.

This set of experiments would also help to tune the algorithm parameters. Recall that the
choice of the length δ, which appears in the local average, may be discussed. Indeed, we suggest
tuning it, depending on the geometry of the observation system. However, further experiments
are required to improve the relation between δ and the observation spacing. Moreover, δmay also
depend on other variables, such as the instantaneous turbulence. It seems that the work on the
length δ has to be done step by step. The first step should be to perform a sensitivity analysis of
the reconstruction system to better understand the influences of the input parameters on the
outputs. In the end, the choice for δ would be a compromise between modeling difficulties
and improvements of the estimations.

Looking at the results, we have seen that the SLM was not suitable for laminar or nontur-
bulent flows. To get nonturbulent wind reconstructions, another stochastic physical model is
needed. When we get a laminar flow model, one more issue will arise: how can we switch
from one model to the other? There are mathematical solutions to the multimodel estimation
problem coming from target tracking.49 It may be possible to apply these methods to our appli-
cation framework.

The problem of TI overestimation—for low wind speed classes for the first data set or for
stable conditions for the second data set—is linked to the absence of the laminar model. To
further the investigation, we could apply the reconstruction algorithm to data sets containing
different classes of turbulent wind speed, which will ensure that the quality of the estimations
does not depend on wind speeds. Then, it will be relevant to use both a laminar model and a
turbulent model to compute turbulent intensities, whatever the flow.

To end the discussion with a technical point, we underline that the effects of the volume
integration on the lidar observation have to be characterized. In this preliminary study, the
use of the direct lidar measurements with a Gaussian error sound sufficient for our first
tries. However, particle methods are able to deal with many other hypotheses.

9 Conclusions

A method for turbulence estimation has been introduced. The method, which has been patented,
is based on tools that are not usual in measurement technology. To estimate turbulent parameters,
the wind is reconstructed in three dimensions using a PF. Here, the particles have physical prop-
erties that make them easy to represent: they may be seen as scatter points evolving with the flow.
Particles also have statistic properties that make available turbulent parameter estimations in real
time. The reconstruction algorithm has been applied to lidar Leosphere Windcube measure-
ments, but the reconstruction system is not dependent on the manufacturer specifications.
The 3-D configuration allows the reconstruction of the wind in three dimensions and the esti-
mation of turbulent parameters in the observed volume. Since the Doppler lidar technology is
used, the turbulence estimation method is not suitable for rain or fog conditions. To evaluate the
quality of the lidar data, the CNR may be used.

To validate the algorithm, we have compared the estimated wind with the observed wind. The
results show that the algorithm is able to reconstruct the 3-D wind when the conditions are
unstable or turbulent. We have then worked on the estimations of two turbulent parameters:
the TKE and the TI. The TI estimations are significantly improved by the use of the recon-
struction algorithm. For the TKE, the reconstruction algorithm brings completely new informa-
tion on turbulence.

Thanks to the association of high-frequency observations with particle methods, we now
have access to local reconstruction of the turbulent atmosphere. Fine turbulence estimations
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are thus available. Very good results are demonstrated by the experiments on real data when
conditions are unstable. The physical model used to reconstruct the atmosphere has to be com-
plete to deal with stable conditions or other atmospheric specific dynamics. Moreover, the val-
idation of the high-frequency turbulence estimations is still an open question as, currently, there
is no way to assess the time variability of turbulent parameters.
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