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Abstract. Evapotranspiration (ET) plays an important role in surface–atmosphere interactions
and can be monitored using remote sensing data. The visible infrared imaging radiometer suite
(VIIRS) sensor is a generation of optical satellite sensors that provide daily global coverage at
375- to 750-m spatial resolutions with 22 spectral channels (0.412 to 12.05 μm) and capable of
monitoring ET from regional to global scales. However, few studies have focused on methods of
acquiring ET from VIIRS images. The objective of this study is to introduce an algorithm that
uses the VIIRS data and meteorological variables to estimate the energy budgets of land surfaces,
including the net radiation, soil heat flux, sensible heat flux, and latent heat fluxes. A single-
source model that based on surface energy balance equation is used to obtain surface heat fluxes
within the Zhangye oasis in China. The results were validated using observations collected
during the HiWATER (Heihe Watershed Allied Telemetry Experimental Research) project.
To facilitate comparison, we also use moderate resolution imaging spectrometer (MODIS)
data to retrieve the regional surface heat fluxes. The validation results show that it is feasible
to estimate the turbulent heat flux based on the VIIRS sensor and that these data have certain
advantages (i.e., the mean bias error of sensible heat flux is 15.23 Wm−2) compared with
MODIS data (i.e., the mean bias error of sensible heat flux is −29.36 Wm−2). Error analysis
indicates that, in our model, the accuracies of the estimated sensible heat fluxes rely on the errors
in the retrieved surface temperatures and the canopy heights. © The Authors. Published by SPIE
under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this work in
whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.
JRS.11.046012]
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1 Introduction

Evapotranspiration (ET) is an important parameter in the interactions among soil, vegetation, and
the atmosphere, and it is central part of surface energy and water budgets.1,2 Approximately 46%
to 53% of the incoming solar radiation absorbed by the surface is globally consumed by the ET
process as latent heat.3,4 ET can provide useful information about the heat and vapor exchange
between the land surface and the atmosphere. A thorough understanding of ET can improve
water resources management at different scales; in particular, detailed ET estimations in agri-
cultural areas can improve the detection of water stresses and aid in irrigation scheduling.5,6
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Currently, the general equipment used to measure ET includes a weighing lysimeter,
a Bowen-ratio energy balance system, eddy covariance systems (ECs), and a large aperture
scintillometer (LAS). ECs and LASs are widely used around the world.7 ECs can directly
measure heat, carbon dioxide flux, and water vapor, with a measurement scale of hundreds of
meters.8 LASs can measure the sensible heat flux, and kilometer-scale ET can be acquired by
combining this data with available energy data (net radiation minus surface soil heat flux).9

All the mentioned measurements are point-based data that are location-specific; thus,
extrapolating these values to cover large regions is difficult. Moreover, the instruments needed
to perform this generalization are expensive. With the modern advances in technology, remotely
sensed data have revealed unprecedented large-scale atmospheric, oceanic, and land data.
Remote sensing-based ET values offer a suitable data source for regional- to global-scale appli-
cations. Five types of methods have been developed to estimate ET from satellite images and
meteorological variables. (1) The Penman–Monteith equation is used in the moderate resolution
imaging spectrometer (MODIS) ET product MOD16.5,10,11 The inputs used in this model include
the following: land cover, albedo, fraction of vegetation cover, and meteorological variables.
(2) The Priestley–Taylor models expand the range of the Priestley–Taylor coefficient in the
Priestley–Taylor equation or combine the physiological force factors with the energy component
of ET.12–14 (3) The latent heat flux (LE) is estimated as a residual term based on the surface
energy balance (SEB) equation. According to the partitioning of the sources and sinks of
the soil–plant–atmosphere continuum, SEB-based models can be classified as single-15,16 or
dual-source models.17,18 (4) The land surface temperature-vegetation index (LST-VI) method
describes the dry and wet edges of the LST-VI region as having the minimum and maximum
ET, respectively. These methods interpolate the available data and use the Priestley–Taylor or
Penman–Monteith equations to calculate the LE.19,20 (5) Additional methods include statistical/
empirical methods,21 the use of complementary models,22 and land-process models with data
assimilation schemes.23

MODIS data have a daily return time (one overpass per day at varying view angles).
Currently, such data are ideal for simulating regional-scale changes in surface energy and
water fluxes. The high-resolution spectral configuration and improved radiometric and geo-
graphic accuracy of MODIS facilitate a high-quality global ET product given a frequency
of 8 days.10,11 However, the MODIS sensors on the Terra and Aqua satellite platforms are
aging; therefore, continuing to build this dataset in the future will require relying on data
from the daily weather satellites represented by the Suomi National Polar-orbiting Partnership
(NPP) and its successor.24 The visible infrared imaging radiometer suite (VIIRS) onboard the
Suomi NPP satellite and the future Joint Polar Satellite System (JPSS) missions have similar
designs to MODIS and thus provide a similar complement of visible and near-infrared and short-
wave infrared channels to monitor the LST, albedo, and vegetation index products.25,26 Many
websites provide these products, which lay the foundation for regional ET estimations.
Moreover, there are few reports about the application of VIIRS data to calculate regional
ET values. The purpose of this work is to investigate the reliability of VIIRS-derived surface
variables for regional ET estimation.

2 Study Area and Datasets

2.1 Study Area

Our study was conducted in the middle stream of the Heihe River Basin (HRB) at the Zhangye
oasis, which is located near the city of Zhangye in the arid region of Gansu Province in
northwestern China (100.10°E to 100.66°E, 38.68°N to 39.15°N). The Zhangye oasis has a semi-
arid climate, with an annual precipitation of <200 mm and an annual potential ET of ∼1200 to
1800 mm; the annual average temperature is ∼7°C.27,28 Areas of the Gobi desert and alpine
vegetation are located near the study area in the Qilian Mountains (see Fig. 1). Around the
oasis, the land surface is mainly covered by maize, which has a growing season that lasts
from May to September. The artificial oasis is highly heterogeneous, which impacts its thermo-
dynamic and hydraulic features. Consequently, its water use efficiency and ET are variable.
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The HRB has long served as a test area for integrated watershed studies and land surface and
hydrological experiments.28 One major objective of the Heihe Watershed Allied Telemetry
Experimental Research (HiWATER), namely the Multi-Scale Observation Experiment on ET
(HiWATER-MUSOEXE), is to capture strong land surface heterogeneities and the associated
uncertainties within a watershed.29–31

2.2 Datasets

The data in this study were mainly derived from VIIRS and MODIS. We combined these two
sensors datasets with ancillary data and in situ HiWATER-MUSOEXE data to estimate and
validate the VIIRS and MODIS heat fluxes.

2.2.1 Remote sensing data

Two kinds of remote sensing data were used in this study, specifically MODIS and VIIRS data.
The MODIS sensor launched on December 18, 1999 aboard the Terra satellite has been in oper-
ation for nearly 18 years and provides global data that are used for monitoring long-term regional
land surface heat and water vapor fluxes as well as other Earth-related changes.32 The MODIS
data have high temporal (i.e., at least once every day) and spectral resolutions (i.e., 36 bands in
total). The NPP/VIIRS was launched in late 2011 and has imaging capabilities in 22 bands with a
spectral coverage from 0.412 to 12 μm. Among the 22 bands, there are five high-resolution
imaging channels (I-bands), 16 moderate resolution channels (M-bands), and 1 day/night band
(DNB). The I-bands have spatial resolutions of 375 m at nadir, and M-bands (and DNB) have
a resolution of 750 m at nadir. In the cross-track direction, the scan swath width is ∼3040 km.
The data for one granule covers ∼85 s of data and comprises 48 scans.33 The images produced by
VIIRS are stable with balanced band performances.

In this paper, we mainly use two kinds of VIIRS operational products [i.e., VIIRS/NPP sur-
face reflectance daily L2G global 1 km and 500 m SIN grid (VNP09GA) and VIIRS/NPP daily
gridded land surface temperature 1-km SIN grid day (NPP_DLSTD_L3D)], which can be freely
downloaded.34 The parameters from the MODIS sensor used for estimating heat fluxes, such as
normalized difference vegetation index (NDVI), albedo, LSTs, and emissivity, are freely avail-
able from the NASA website. We used the MODIS and VIIRS image data that cover the HRB
region from 2012. Many algorithms for estimating ET using surface parameters require clear-sky
conditions; therefore, we combined the available information on data quality with visual

Fig. 1 Study area and distribution of ground observation stations in HiWATER-MUSOEXE.
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interpretations to select satellite images without clouds. We obtained data for 9 days during the
period of ground observations: June 19 and 30, July 8 and 27, August 3, 22, and 29, and
September 2 and 14. These two kinds of satellite products used in this study are shown in
Table 1.

All of the above data are required for the corresponding preprocessed. The MODIS products
that cover the study area were downloaded and corrected for geometric and projection effects.
VNP09GA is a level-2G surface reflectance product obtained by adjusting the top-of-atmosphere
reflectance to compensate for atmospheric effects. The effects of molecular gases, including
ozone and water vapor, and the effects of atmospheric aerosols are corrected. Previous studies
showed that VIIRS LST products have reasonable accuracies.25 The VIIRS data covering the
HRB were preprocessed using geometric correction, radiometric calibration, and atmospheric
correction.14 To estimate the regional ET, various surface variables, including the NDVI,
the surface albedo,26 the emissivity,35 the leaf area index (LAI), and the fractional vegetation
coverage (FVC), were retrieved by applying the lumped method to the VIIRS data.14 These
two kinds of satellite data were organized and paired with each other on the Universal
Transverse Mercator (UTM) projection (i.e., WGS 84 UTM ZONE 47N).

2.2.2 Data from the HiWATER experiment

The in situ HRB observational data were provided by HiWATER. From June to September 2012,
HiWATER designed nested observation matrices of 30 km × 30 km and 5.5 km × 5.5 km

within the middle stream oasis.
For the larger observation matrix, four EC systems and one superstation (EC15) were

installed in the oasis–desert ecosystem. Each station was supplemented with an automatic
meteorological station (AMS) to record the meteorological and soil variables and to monitor
the spatiotemporal variations of ET and its associated factors,28 including air pressure, precipi-
tation, wind speed/direction, four-component radiation, and soil moisture. Each AMS has
a different observation date, and its specific observation time and sensor characteristics can
be found in Ref. 30. Within the oasis, 17 AMSs and EC towers were used, including one in
a vegetable field (EC01), one in a residential area (EC04), one in an orchard (EC17), and
14 in maize fields. Because the HHZ station (shown in Fig. 1) and EC16 station lacked
net radiations and soil heat flux observation data, they were excluded from this study.
Additionally, four groups of optical LASs (eight sets, with two sets per group) were installed
in the 3 × 3 and 2 × 1 MODIS pixels within the kernel experimental area (three groups in three
3 × 1 MODIS pixels, named LAS1 to LAS3, from west to east, respectively, and one group in a
2 × 1 MODIS pixels, LAS4). Considering the observational scale of the LAS systems and the
resolution of satellite data used in this paper, we mainly use the EC data to validate the surface
variables (i.e., land surface temperature, net radiation, and soil heat flux) and the LAS data to
validate the sensible heat flux. The details of these LAS systems are shown in Table 2.

An LAS is a device that derives the turbulent intensity through measuring the refractive
index of air, C2

nðm−2∕3Þ. The sensible heat flux (LAS-H) was obtained using Monin–Obukhov
similarity theory (MOST) via an iterative method that combines various meteorological data

Table 1 Datasets used in this study.

Product Sensor
Spatial

resolution (m) Data interpretation Location Application

VNP09GA NPP/VIIRS 500, 1000 Daily surface reflectance Tile h25v05 Calculating NDVI,
FVC, etc.

NPP_
DLSTD_L3D

NPP/VIIRS 1000 Daily land surface
temperature

Tile h25v05 Providing LST data

MOD11A1 MODIS 1000 Daily land surface
temperature/emissivity

Tile h25v05 Providing LST data

MOD09GA MODIS 500, 1000 Daily surface reflectance Tile h25v05 Calculating NDVI,
FVC, etc.

Li et al.: Estimation of land surface heat fluxes based on visible infrared imaging radiometer. . .

Journal of Applied Remote Sensing 046012-4 Oct–Dec 2017 • Vol. 11(4)



(e.g., wind speed, air temperature, and air pressure).7,30 Finally, the LAS-H data were averaged
across 30-min intervals. The data were carefully screened to ensure the LAS data quality: (i) the
data were rejected when C2

n exceeded the saturated criterion, which was determined according to
Ref. 36, (ii) the data were rejected when the demodulated signal was less than the threshold,30

(iii) the data were rejected when collected on nights with weak turbulence, and (iv) the data were
rejected when precipitation occurred. Additionally, to avoid advection conditions, we selected
data at 30-min intervals during periods when the H values of the EC and LAS measurements
were >10 Wm−2. The soil heat flux was measured using three soil heat plates at a depth of 6 cm
at each site and the surface soil heat flux was calculated based on the soil temperature and mois-
ture above the plates.14 The surface meteorological variables, such as wind direction, wind speed,
air pressure, and relative humidity, were used to interpolate images using inverse distance
weighting. The data obtained during the HiWATER experiment can be freely obtained from
the Heihe Plan Data Management Center.37

3 Methodology

We have developed a single-source ET estimation algorithm that combines sensor-derived sur-
face variables with meteorological data over the northwestern China HRB area. For comparison,
we use the MODIS-derived surface variables to calculate the regional ET values and the two
ETs are compared with ground-based observations; the errors in the model are then analyzed and
discussed.

3.1 Pixel Evapotranspiration Algorithm

The SEB describes the transfer of energy between the land surface and the atmosphere. The
energy budget is commonly expressed as follows:

EQ-TARGET;temp:intralink-;e001;116;224Rn ¼ GþH þ LE; (1)

where Rn is the net radiation (Wm−2), G is the soil heat flux (Wm−2),H is the sensible heat flux
(Wm−2), and LE is the latent heat flux (Wm−2). Sensible heat flux is the flux caused by the
temperature gradient between the land and the air, whereas LE is the change in energy due to ET
or condensation. Atmospheric turbulence at the boundary layer causes the heat transfer at
the land surface and atmospheric boundary. LE can be derived from the residual of the energy
balance equation when Rn, G, and H are known. Figure 2 shows the flowchart for ET retrieval
using VIIRS data. The models that permit the estimations of Rn, G, and H using remote sensing
data are introduced.

Rn, also known as the radiation balance or radiation budget, is the main energy source of
land surface heat and mass transfers and exchanges, such as evaporation, and is calculated as
the difference between the incoming and outgoing radiation

Table 2 Details of the LAS systems in HiWATER-MUSOEXE.

Station Latitude (°N) Longitude (°E) Path length (m) Height (m) Type, manufactures

LAS1-N 38.8841 100.3510 3256 33.45 BLS900, Scintec Germany

LAS1-S 38.8547 100.3524 3256 33.45 zzlas, RR9340, Rainroot, China

LAS2-N 38.8827 100.3625 2841 33.45 BLS900, Scintec Germany

LAS2-S 38.8571 100.3618 2841 33.45 BLS450, Scintec Germany

LAS3-N 38.8834 100.3733 3111 33.45 BLS900, Scintec Germany

LAS3-S 38.8555 100.3722 3111 33.45 LAS, Kipp&zonen, Netherland

LAS4-N 38.8607 100.3785 1854 22.45 BLS450, Scintec Germany

LAS4-S 38.84682 100.3685 1854 22.45 zzlas, RR9340, Rainroot, China
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EQ-TARGET;temp:intralink-;e002;116;508Rn ¼ Rs ↓ −Rs ↑ þRL ↓ −RL ↑¼ ð1 − αÞRs ↓ þεsRL ↓ −εsσT4
s ; (2)

where Rs ↓ is the downward shortwave radiation (Wm−2), Rs ↑ is the shortwave radiation
reflected by the surface (Wm−2), RL ↓ is the downward atmospheric longwave radiation
(Wm−2), and RL ↑ is the upward longwave radiation emitted by the surface (Wm−2). α is
the surface albedo, εs is the emissivity of the land surface, RL ↓¼ εaσT4

a, εa is the effective
emissivity of the atmosphere, σ ¼ 5.67 × 10−8 Wm−2 K−4 is the Stefan–Boltzmann constant,
Ta is the air temperature, and Ts is the surface radiation temperature.

G is the heat exchange between the surface and the deeper soils and is related to the
exchanges of water and heat within the soil. Generally, heat is transferred from deeper depths
to the surface at night. Studies have found that soil heat flux is correlated with Rn and can be
derived using land surface parameters.15 Because canopies exert significant influences on G,
the fractional canopy coverage fc is used to determine the ratio of G to Rn

14

EQ-TARGET;temp:intralink-;e003;116;353G ¼ Rn × ½Γc þ ð1 − fcÞ × ðΓs − ΓcÞ�; (3)

where Γc ¼ 0.05 and Γs ¼ 0.315 represent the ratio of G and Rn with full canopy coverage and
bare soil.

H is the turbulent heat transfer between the surface and the atmosphere that is derived using
the temperature gradient between them. According to gradient diffusion theory

EQ-TARGET;temp:intralink-;e004;116;274H ¼ ρCp
Taero − Ta

rac
; (4)

where ρ is the air density (kgm−3),Cp is the specific heat of air at a constant pressure, and Taero is
the radiative surface temperature (K). Ta is the air temperature at a reference height (K), and rac
is the aerodynamic resistance (s−1 m), which is determined using the zero-plane displacement
height and the roughness length. rac was calculated based on MOST using a stability correction
function.38–40 Because remote sensing-based methods cannot obtain Taero, the value of Taero is
usually replaced by the radiative surface temperature (Ts). It should be noted that Ts is not
strictly equal to the Taero in Eq. (4). The difference between these terms for homogeneous and
full-coverage vegetation is ∼1 to 2 K41 and it can reach 10 K in sparsely vegetative areas.42

The method used by Chen et al.43 corrects for this discrepancy by adding an “excess resistance”
rbh and thus, was used in this study. The modified H can be specified as follows:

EQ-TARGET;temp:intralink-;e005;116;111H ¼ ρCp
Ts − Ta

rac þ rbh
: (5)

Solar radiation

Surface albedo

 Upward
longwave radiation

 Downward 
longwave radiation

Net radiation Rn

Fractional 
canopy 

coverage

 Soil heat flux G Sensible heat flux H

Meteorological 
parameters

Aerodynamic resistance
 to heat transfer

Surface 
temperature 

Latent heat flux LE= Rn-G-H

Surface 
morphology 
parameters

Air 
temperature 

Observation 
data

Validation and analysis

Fig. 2 Flowchart of ET retrieval based on VIIRS data.
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3.2 Accuracy Evaluation Index

To control model inputs and analyze error sources, the land surface temperature, net radiation,
and soil heat flux were evaluated using in situ data. The analyses were performed using the root
mean square error (RMSE), the mean bias error (MBE), and the coefficient of determination (R2)

EQ-TARGET;temp:intralink-;e006;116;680R2 ¼
�
n
P

n
i¼1 eimi −

P
n
i¼1 ei ×

P
n
i¼1 mi

�
2

h
n
P

n
i¼1 e

2
i −

�P
n
i¼1 ei

�
2
i
×
h
n
P

n
i¼1 m

2
i −

�P
n
i¼1 mi

�
2
i ; (6)

EQ-TARGET;temp:intralink-;e007;116;621MBE ¼ 1

n

Xn
i¼1

ðei −miÞ; (7)

EQ-TARGET;temp:intralink-;e008;116;578RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðei −miÞ2
s

; (8)

where mi represents the observed value, ei represents the estimated value, and n represents
the number of observations.

The ground-based land surface temperature (Ts) was calculated using the Stefan–Boltzmann
law from the AMS measurements of the longwave radiation fluxes25

EQ-TARGET;temp:intralink-;e009;116;483Ts ¼
�
RL ↑ −ð1 − εSÞ · RL ↓

εS · σ

�
; (9)

where RL ↑and RL ↓are the in situ surface upwelling and atmospheric downwelling longwave
radiations, respectively, and εS is the surface broadband emissivity.

4 Results and Discussion

4.1 Evaluation of Surface Variables

The station validation results of two LSTs are shown in Tables 3 and 4. The R2, MBE, and RMSE
values of the VIIRS LST data are 0.77, 0.55 K, and 2.40 K, respectively. As shown in Table 3, the
VIIRS MBE varies from −6.67 to 1.95 K; the RMSE varies from 1.16 to 7.10 K. The VIIRS
LSTs are warmer than the ground LSTs for most stations. From Table 4, the MBE values for

Table 3 The station validation of VIIRS LST.

Station R2 MBE (K) RMSE (K) Station R2 MBE (K) RMSE (K)

EC1 0.78 0.26 1.16 EC11 0.56 1.02 1.60

EC2 0.88 1.56 2.25 EC12 0.87 1.72 2.02

EC3 0.92 1.20 2.26 EC13 0.71 1.90 1.88

EC4 0.82 −6.67 7.10 EC14 0.88 0.99 1.42

EC5 0.91 1.32 1.59 EC15 0.94 1.35 1.41

EC6 0.72 0.84 1.16 EC17 0.85 1.53 1.69

EC7 0.90 1.89 2.28 GB 0.92 1.90 2.09

EC8 0.94 1.35 1.40 SSW 0.88 0.74 1.41

EC9 0.83 0.59 1.29 SD 0.73 1.95 2.30

EC10 0.74 1.66 1.95 Overall 0.77 0.55 2.40
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the MODIS LST are negative for most stations, and the MBEs and RMSEs are much larger,
with two stations (GB and SSW) showing MBEs > 2 K and RMSEs > 3 K. From Fig. 1,
the land cover of GB and SSW is uncultivated land. In our study area, the Gobi region and
desert area comprise uncultivated land. Therefore, the MODIS LST products underestimate
the LSTs for barren surfaces during the daytime, consistent with the results of Refs. 25 and 44.
There are two possible reasons for the large Terra MODIS LST errors over barren surface sites.
First, the LST product algorithm does not cover the wide range of LSTs, i.e., the daytime LSTs
are greater than the air temperature at the surface level by >16 K, which is beyond the upper
limit. Second, the large errors are present in the surface emissivity values in MODIS bands 31
and 32 estimated from land cover types.44

As shown in Tables 3 and 4, the EC4 accuracy of both LST products is low. The main causes
of the large errors are as follows: (1) buildings and soil/vegetation are distinct materials, and the
emissivity algorithm may not be suitable for buildings and (2) the EC4 foundation is nonuniform
and is not suitable for validation. After removing the EC4 data, the R2, MBE, and RMSE values of
the VIIRS LST data are 0.86, 0.75 K, and 1.97 K, respectively, and the R2, MBE, and RMSE
values of the MODIS LST data are 0.82, −0.87 K, and 2.77 K, respectively. The SD errors for
both were large due to large errors on particular days. For example, although it was briefly cloudy
above station SD on July 27, this area was not identified as cloudy in the cloud detection process.

The validation of net radiation and soil heat flux based on scatterplots is shown in Fig. 3. As
shown in this figure, the R2, MBE, and RMSE values of the Rn calculated using the VIIRS data
were 0.68, −8.44 Wm−2, and 40.80 Wm−2, respectively, whereas the errors in the Rn estimates
obtained using the MODIS data were 0.64, −33.87 Wm−2, and 55.25 Wm−2, respectively.
According to the sensitivity analysis of Eq. (2), Rs ↓ and RL ↓ are highly sensitive variables
when calculating Rn, whereas the albedo, LST are not as sensitive. However, the Rs ↓ and RL ↓
values used in the ET model are derived from ground observations; thus, the Rs ↓ and
RL ↓ are relatively accurate. Therefore, LST and albedo are the main sources of error and are
discussed in Sec. 4.3. A 1 K bias in LST would result in an Rn error of −0.96%, but an albedo
bias of 0.03 can lead to an Rn error of ∼20 Wm−2 when the incoming solar radiation is large.
Studies have shown that land surface albedos retrieved using VIIRS data are better than those
retrieved using MODIS;26 thus, the Rn values calculated using the VIIRS data show better results.

The R2, MBE, and RMSE values of G calculated using the VIIRS data were 0.58,
−11.80 Wm−2, and 30.84 Wm−2, respectively, whereas the errors in the G values calculated
using the MODIS data were 0.52, −20.47 Wm−2, and 40.98 Wm−2, respectively. Since G is
calculated using Rn, G and Rn show the same sensitivity results. As shown in the validation of G
in Fig. 3, the sensor-retrieved G is overestimated at many sites, which may be related to the soil
temperature and moisture above the soil heat plates at each site. For example, at EC5, the soil
temperature and moisture were the same at different depths after July 19, which resulted in the

Table 4 The station validation of MODIS LST.

Station R2 MBE (K) RMSE (K) Station R2 MBE (K) RMSE (K)

EC1 0.71 0.48 2.14 EC11 0.53 1.12 1.91

EC2 0.95 1.53 1.83 EC12 0.96 −1.50 1.65

EC3 0.84 1.48 2.38 EC13 0.90 −1.66 2.33

EC4 0.90 −9.71 9.84 EC14 0.94 0.89 1.06

EC5 0.96 1.26 1.51 EC15 0.96 −1.64 1.72

EC6 0.83 −1.27 2.02 EC17 0.85 1.69 2.30

EC7 0.95 1.73 1.87 GB 0.90 −2.80 3.82

EC8 0.87 1.64 2.01 SSW 0.86 −2.49 3.69

EC9 0.75 1.00 1.44 SD 0.80 −1.82 2.20

EC10 0.95 −1.09 1.23 Overall 0.72 −1.22 3.45
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surface G being equal to the G at a depth of 6 cm. However, the G values below the surface are
usually less than those at the soil surface; thus, the validation results of G at EC5 indicate that G
was overestimated. However, G is still underestimated as a whole (MBE < 0) because Rn is also
underestimated.

4.2 Validation of Sensible Heat Fluxes

Figure 4 provides the turbulent heat flux results calculated from VIIRS and MODIS on June 19,
2012. The differences in the distributions of the heat fluxes calculated from the two sensors are
not obvious because they follow certain underlying rules. Specifically, the spatial distributions of
the turbulent heat fluxes are related to their underlying land covers. H values are higher in areas
covered by buildings and uncultivated land, including land patches in the desert areas, barren
areas, and Gobi regions. However,H values are lower in the water-covered and agricultural areas
within the oasis. Comparing Figs. 4(e) and 4(f) and Figs. 4(g) and 4(h), we see that the H values
(LE values) of the barren areas in the southwest are lower (higher) than those of the desert areas
in the southeast, although both areas were classified as uncultivated land. Because the barren
areas in the southwest border of the Qilian Mountains, the groundwater levels are high due to
snow melt and the downward movement of water, leading to a soil moisture content of ∼30%
according to in situ measurements at a depth of 2 cm.14 As shown in Figs. 4(e) and 4(f),
some areas in the H distribution map have values less than zero due to inversion from the
oasis effect or irrigation. The HiWATER soil moisture data show that irrigation occurred on
June 19, 2012. Irrigation is the main source of water within the oasis and cools the land surface
to temperatures below that of the air.

To further analyze the heat fluxes retrieved from the two sensors, theH values were evaluated
using in situ data. In recent years, many researchers have employed a footprint model to validate
remote sensing-based ET estimates (specifically only H and LE). When combined with the flux
contribution source areas, this model solves the problems associated with mismatches between
the observed values and the remote sensing-based estimates and leads to better results.45,46 In this
study, we employ the path-weighting function of the LAS and the footprint model for point
fluxes to calculate the LAS source area.30,46 The station-validated results for the H values are
shown in Fig. 5.

The footprint validation results show that the R2, MBE, and RMSE values of the H values
calculated using the VIIRS data were 0.68, 15.23 Wm−2, and 39.55 Wm−2, respectively, and
those of the MODIS-based H values were 0.56, −29.36 Wm−2, and 50.81 Wm−2, respectively.
Compared with the observed values, the H calculated using VIIRS data is overestimated
(MBE > 0), whereas the H calculated using MODIS data is underestimated. The reason is
related to the LST. According to Eq. (4), H is most sensitive to the LST values. A 1 K bias
in LST would result in an error in H of 20.5%. Consequently, LST is the most important factor
affecting H. However, this sensitivity to LST is unstable and depends on the strength of the
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Fig. 4 Maps of the turbulent heat fluxes (a) and (b) calculated by VIIRS and (c) and (d) calculated
by MODIS on June 19, 2012.
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turbulence present, as discussed in Sec. 4.3. The validation of the VIIRS and MODIS surface
temperature products in Sec. 4.1 shows that the VIIRS LSTs are warmer than the ground LSTs
(with an average bias of 0.55 K), whereas the Terra MODIS LSTs are significantly underesti-
mated (with an average bias of −1.22 K).

4.3 Error and Sensitivity Analysis

Many sources of error are unavoidable, including the calibration coefficients of the onboard
satellite sensors; the drifts in the sensors caused by the aging of the instruments; mismatches
in the timescales of the observational data, which are averaged over time, and the remotely
sensed turbulent heat fluxes, which are instantaneous; and the geometric corrections cause a
half-pixel bias less than or equal to the deviation of the artificially subjective interpretation.
The estimation of H is the most important and difficult step in the remote sensing-based assess-
ment of the SEB; thus, the sensitivity of H was analyzed first. Land surface variables, including
LST, canopy height, FVC, and LAI, and meteorological variables, including wind speed,
air temperature, and relative humidity, are the major factors in the sensitivity analysis of H.
Figure 6 presents a sensitivity analysis of H. In this case, the average LST is 304 K, with
a range from 297.5 to 311 K, and has a step size of 0.5 K; meanwhile, LAI ranges from
0.1 to 2.5 and has a step size of 0.1. The canopy height is 1 m, with a range from 0.1 to
1.9 m. The wind speed ranges from 0.50 to 4.95 m s−1, the air temperature is Ta ¼
297.90 K, FVC ¼ 0.54, and the relative humidity is RH ¼ 40.29%. In addition, the land
cover is maize and the reference H is 250.05 Wm−2.

The air pressure is stable over short periods and has little effect on the ET results. Although,
H is sensitive to meteorological variables, such as wind speed and air temperature (see Fig. 6),
the meteorological data used in the ET model are derived from ground observations; thus, the
meteorological factors are relatively accurate. As shown in Fig. 6, LAI, LST, and the canopy
height are all influential variables. H is sensitive to LAI when LAI is <1. The momentum
roughness length increases as LAI increases and the turbulent exchange is enhanced.
However, when LAI is >1, the plant canopy is regarded as a continuum that is not a sensitive
variable. Because our study area is dominated by agriculture and the study period extended
from June to September, the crops in the middle reaches of the HRB grew quickly; thus,
LAI was usually >1. Hence, LST and canopy height are the main sources of error.
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1. Errors in LST. As shown in Fig. 6, a 1 K bias in LST would result in 20.5% error in H
when H is 250.05 Wm−2, the corresponding errors in Rn and G are both only −0.96%.
Therefore, in this paper, LST is mainly affected by the impact of H on the role of heat
fluxes. However, as we mentioned in Sec. 3, H depends on the temperature gradient
between the surface and the atmosphere. Hence, the LST sensitivity is unstable and
depends on the strength of the local turbulence. The strength of the turbulence deter-
mines the mass and energy transports and the resistance to heat transfer, which influences
the sensitivity of H to the LST. A weaker turbulence corresponds to a weaker LST
sensitivity and vice versa.

2. Errors in the canopy height. The canopy height was obtained from a phenophase and
classification map. Thus, the accuracy of the canopy height depends mainly on the plant
growth state and classification accuracies. Even within the same region, the canopy
height of a crop can differ due to differences in seeding times and soil attributes,
such as soil moisture and fertilization.

As discussed above, the accuracy of the LSTand canopy height parameters greatly influences
the estimated turbulent heat flux. Since the VIIRS sensor is still running, the algorithm to
calculate its LST product is still being explored.25 Canopy heights are known a priori and are
derived from phenophase classifications; these classifications influence the accuracies of the
surface roughness calculations. Multisource remote sensing data, such as active microwave and
LiDAR data, can be used to obtain canopy heights for future studies,14 which would lead to more
robust canopy height values. Since a footprint model was used in the validation, discrepancies
between the in situ measurements and remote sensing pixels still exist in the footprints.3

Additionally, to correct the discrepancies between the remotely sensed radiative surface
temperatures and the aerodynamic temperatures at the source of heat transport, a brief and
well-constrained parameterization scheme (under a uniform and flat plant surface) that included
excess resistance was used to calculate the aerodynamic resistance of the heat transfer.14 Since
the surface cover of the HRB is very heterogeneous,4,30 multiple parameterization methods
should be compared to select an optimal method.43 Although these preliminary results show
that VIIRS data have certain advantages over MODIS data when calculating surface heat fluxes,
the limited ground observation data in this paper use only 9 days in calculating and validating
the results. Future work will involve testing this single-source ET estimation algorithm and the
practicality of VIIRS data for calculating the heat fluxes in the range of actual environmental
conditions.

5 Conclusion

We use a single-source model and VIIRS data to calculate the components of SEB. To determine
the usefulness VIIRS sensors in estimating regional heat fluxes, we also used MODIS data to
calculate the regional ET. After data preparation, SEB component inversion, verification
(Rn, G, and H), and error analysis, the following conclusions can be drawn:

1. We have developed a single-source ET estimation algorithm that combines sensor-
derived surface variables with meteorological data over the HRB area of northwestern
China. This method can be used to estimate the turbulent heat flux based on VIIRS
sensor data, which has certain advantages (i.e., the MBE of the sensible heat flux is
15.23 Wm−2) compared with using MODIS data (i.e., the MBE of the sensible heat
flux is −29.36 Wm−2).

2. To control model inputs and analyze error sources, the model parameters (including the
land surface temperature, net radiation, and soil heat flux) were evaluated using in situ
data. The validation results show that the VIIRS LST product exhibits a more consistent
agreement with in situ measurements on barren surfaces compared with the Terra
MODIS LST product.

3. To estimate ET using a single-source model and remote sensing data, the sensible heat
flux is the most important component, but the calculation of this component is also
complex. In our model, the accuracy of the sensible heat flux mainly depends on the
inversion accuracy of the surface temperature and the canopy height.
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The VIIRS data have considerable advantages due to their fine temporal resolutions and free
access. Moreover, the expansion and improvement of MODIS data and the next-generation of
JPSS platforms will provide a broader application space. Because the Suomi-NPP/VIIRS has
been in orbit for several years, the long-term data are promising for applications in monitoring
energy budgets.
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