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Abstract. The classification accuracy of a remote sensing image should be assessed before the
classification result is used for scientific investigation and policy decision. We proposed an accu-
racy assessment model based on spatial sampling to reflect region sensitivity of a remote sensing
image. The proposed model aims to solve the following problems: (1) what sampling size should
be selected for accuracy assessment; (2) where sample points should be distributed in a region;
and (3) how to analyze the result of accuracy assessment. This assessment model was proposed
based on gray-level co-occurrence matrix (GLCM) and considered both sampling size calcula-
tion and sample points distribution during the assessment. The overall accuracy and kappa
coefficient derived from this model were very close to the true value derived from the total
assessment, suggesting that the assessment accuracy of the model is close to that of total assess-
ment. Compared with the percent sampling model, the model could quantify the relationship
between GLCM-correlation parameter and sample size, thereby allowing producer and user
to determine sample size according to spatial uniformity and heterogeneity. Compared with
the random sampling model, the model could ensure that the sample points are uniformly dis-
tributed in the spatial region and proportionally distributed in different types of land cover. Taken
together, the proposed model is suitable for the accuracy assessment of the classification result of
a remote sensing image. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of
the original publication, including its DOI. [DOI: 10.1117/1.JRS.11.046023]
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1 Introduction

Remote sensing images could provide the representation of object surface at different spatial and
temporal scales. They are widely used in a great number of fields, including predicting epidemi-
ology and burned area,1,2 detecting forest and cultivated land changes, monitoring soil erosion
and environmental change,3,4 and mapping land cover and species distribution.5–8 In particular,
the majority of a remote sensing image should be conducted image classification before their
applications, which can be achieved by either visual or computer-aided analysis. A key concern
during image classification is whether the classification result derived from the remote sensing
image has sufficient quality for operational application. Thus, it is required to propose accuracy
assessment model to judge whether the accuracy of classification result meets the requirement of
user’s applications.

Currently, several methods have been used for accuracy assessment of remote sensing clas-
sification result, including population-based statistical framework,9 multiple-objective accuracy
assessments,10 geographically weighted accuracy measures,11 and stratified random sample for
the National Land Cover Database.12 Some studies take sampling size calculation as the major
concern, whereas other studies take sample points distribution as the major concern. However,
the classification result of remote sensing is a special product. Both sampling size calculation and
sample points distribution are crucial for the classification accuracy. During image classification,
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it is required to determine sample size based on spatial autocorrelation, select sample points
based on spatial heterogeneity, and qualify classification accuracy by comparing sample points
and reference data.

In this paper, we proposed an accuracy assessment model for a classification result of
a remote sensing image based on spatial sampling. This model considered both sampling
size calculation and sample points distribution. It would allow producer and user to determine
sampling rate according to spatial uniformity and heterogeneity. Moreover, it could ensure that
sample points are uniformly distributed in the spatial region and proportionally distributed in
different types of land cover.

2 Materials and Methods

2.1 Remote Sensing Data and Study Region

The study region is located in Sichuan Province, Western China. The data set is a fusion image of
multispectral and panchromatic images based on the Landsat-8/OLI image obtained on August
24, 2015, with 15-m spatial resolution [Fig. 1(a)]. The image has 256 different gray levels. The
original image is available at http://www.gscloud.cn. The reference data are aero high spatial
resolution images obtained on August 10, 2015, with 0.6-m spatial resolution [Fig. 1(b)].
The two data follow the same coordinate system WGS_1984_UTM_zone_48N.

2.2 Accuracy Assessment Model

The accuracy is typically used to express the degree of “correctness” of a classification result.
We proposed an accuracy assessment model to reduce data redundancy and ensure assessment
precision based on two parameters, sampling size (n) and optimal distance (d). In the model,
each pixel was defined as an assessed item. Supposed that the remote sensing image was
rectangular, which had Nx columns and Ny rows, the lot size (N) of accuracy assessed items
was N ¼ Nx × Ny.

According to the first law of geography,13 each pixel had the spatial autocorrelation with each
other. The closer autocorrelation was more strongly related than that of more distant ones. In this
paper, the spatial autocorrelation was calculated by gray-level co-occurrence matrix (GLCM).
The sampling size n and optimal distance d were then deduced based on the model of accuracy
assessment.

Fig. 1 Two remote sensing images in the study: (a) remote sensing image of study region with
15-m spatial resolution based on the Landsat-8/OLI image obtained on August 24, 2015, and
(b) remote sensing image of reference data with 0.6-m spatial resolution obtained on August
10, 2015.
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2.2.1 Gray-level co-occurrence matrix

Supposed that the gray level at each pixel was quantified as Ng levels. Gx ¼ f0; 1; : : : ; Ng − 1g
was the set of Ng quantified gray levels. The remote sensing image, H, indicated a function that
assigned some gray level in G to each pixel or pair of coordinates in N ¼ Nx × Ny.

The texture-context information was specified by the matrix of relative frequencies (Pij) with
two neighboring pixels separated by distance d in the remote sensing image, where one pixel
with gray level i and the other pixel with gray level jði; j ∈ GxÞ.

The matrices of gray-level co-occurrence frequency (Pij) were represented as a function of
the angular relationship (θ) and distance (d) among the neighboring pixels as

EQ-TARGET;temp:intralink-;e001;116;621

pði; j; d; θÞ ¼ #f½ðk; lÞ; ðm; nÞ� ∈ ðNy × NxÞðNy × NxÞg
fðk −m ¼ 0; j1 − tj ¼ dÞ × ðjk −mj ¼ d; 1 − t ¼ 0Þ; Hðk; lÞ ¼ i; Hðm; tÞ ¼ jgj; (1)

where # was the item number, ðk; lÞ and ðm; tÞ were the rows and columns information of
the pixel with i and j gray, respectively, and d was the number of interval pixels between
ðk; lÞ and ðm; tÞ on angular ðθÞ in the practical calculation.

GLCM-correlation parameter ðrÞ of each pixel was calculated by the following equation:

EQ-TARGET;temp:intralink-;e002;116;523r ¼
P

i

P
jðijÞpði; j; d; θÞ − μxμy

σxσy
; (2)

where Pði;j;d;θÞ was the entry in a normalized GLCM. The mean (μ) and standard deviations (σ)
for the rows and columns of the matrix were calculated as follows:

EQ-TARGET;temp:intralink-;e003;116;452μx ¼
X
i

X
j

i · pði; j; d; θÞ; (3)

EQ-TARGET;temp:intralink-;e004;116;408μy ¼
X
i

X
j

j · Pði; j; d; θÞ; (4)

EQ-TARGET;temp:intralink-;e005;116;370σx ¼
X
i

X
j

ði − μxÞ2 · pði; j; d; θÞ; (5)

EQ-TARGET;temp:intralink-;e006;116;331σy ¼
X
i

X
j

ðj − μyÞ2 · pði; j; d; θÞ: (6)

GLCM-correlation parameter ðrÞ ranged from −1 to 1. When r was close to 1, the pixels had
strong spatial correlation, which were located at ðk; lÞ and ðm; tÞ. Otherwise, the pixels had weak
spatial correlation.

2.2.2 Accuracy assessment model

Based on the GLCM-correlation parameter ðrÞ, the sampling size ðnÞ, and optimal distance ðdÞ
were deduced as shown below:

EQ-TARGET;temp:intralink-;e007;116;195

8>>>>><
>>>>>:

min
n
ε2

s:t:

�P
i

P
j
ðijÞpði;j;d;θÞ−μxμy

σxσy − r0

�
¼ ε

n ¼
��� Nx·Ny

n0 deg ·n90 deg

���
; (7)

where ε was an arbitrarily small value, r0 was the critical value of GLCM-correlation parameter
ðrÞ provided by the users and producers to balance data redundancy and accuracy, θ was defined
as the value with four different orientation information, including 0 deg and 90 deg. Here, for
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simplified calculation, only two different orientations were considered. nwas the optimal sample
size. n0 deg and n90 deg were the number of the interval pixels at 0 deg and 90 deg, respectively.

2.3 Accuracy Analysis and Comparison

The feasibility and advantage of our proposed accuracy assessment model were assessed
by comparing with total assessment, percent sampling model, and random sampling model.
The overall accuracy, producer accuracy, user accuracy, commission, omission, and kappa
coefficient were used as the assessment parameters during these comparisons.14–19

3 Results

3.1 Classification Result of Remote Sensing Images

Five different types of land cover were classified from the two above-mentioned images, includ-
ing building, agriculture, bare, water, and forest based on the support vector machine (SVM) in
ENVI 5.1 software. Two classification results in vector form were shown in Fig. 2. (a) was the
classification result of experiment data, and (b) was the classification result of the reference data.

SVM method consisted of finding a separation hyperplane among the training samples with
the larger margins. The separating hyperplane was the geometric place where the following
linear function was zero

EQ-TARGET;temp:intralink-;e008;116;476fðxÞ ¼ hx; wi þ b; (8)

where w represented the orthogonal vector to the hyperplane, fðxÞ ¼ 0; b∕jjwjj was the distance
from the hyperplane to the origin, and hx; wi denoted that x inner products w. The parameters of
Eq. (8) were obtained from the following quadratic optimization problem:

EQ-TARGET;temp:intralink-;e009;116;409

Xm
i¼1

λi −
1

2

Xm
i¼1

Xm
j¼1

λiλjyiyjhφðxiÞ;φðxjÞi subject to∶
�
0 ≤ λi ≤ C; i ¼ 1; : : : ; mP

m
i¼1 λiyi ¼ 0

; (9)

where λi was the Lagrange multipliers, yi ¼ f−1;þ1g defined the class of xi, since SVM was
a binary classifier, C acted as an upper bound of λ values, and φðxÞ was a function adopted to
remap the input vectors into a higher dimensionality space. The inner product hφðxiÞ;φðxjÞiwas
known as the kernel function. A popular example of kernel was the radial basis function,
expressed by hφðxiÞ;φðxjÞi ¼ expðkxi − xjk2∕2σ2Þ; σ ∈ Rþ, which was adopted in this
study.20,21 The parameters C and σ were performed as C ¼ 100 and σ ¼ 0.25, respectively.

Fig. 2 Classification result of two images: (a) classification result of experimental region and
(b) classification result of the reference data.
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3.2 Accuracy Assessment Model

3.2.1 Sample size calculation

The pixels of the studied remote sensing image (N) were 401,888 totally. The sampling rate was
the proportion covered by the sample size (n) in the total size of this image data (N). Calculated
by Eq. (2), the quantitative relationship of study region between distances (interval pixel) and
GLCM correlation was shown in Fig. 3.

Taken the GLCM-correlation parameter r ¼ 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6, 0.55, and 0.5
as example, the values of the optimal number of interval pixels and the optimal distance in both
90- and 0-deg orientations were shown in Table 1.

Based on Table 1 and Fig. 3, we knew that GLCM-correlation parameters were negatively
related with the number of interval pixels. If the number of interval pixels became large enough,
the GLCM-correlation parameter would be close to 0. GLCM-correlation parameters had
a different gradient in different orientations. In this study, the gradient was sharper at 90-deg

Table 1 Sample size with different correlations.

GLCM correlation

Optimal number
of interval pixels

Optimal distance
D (m)

Sample size (pixel) Sample rate (%)0 deg 90 deg 0 deg 90 deg

0.9 2 1 30 15 203,072 50

0.85 3 2 45 30 67,792 16.7

0.8 6 4 90 60 16,872 4.15

0.75 10 7 150 105 5829 1.44

0.7 17 12 255 180 2379 0.59

0.65 27 19 405 285 800 0.20

0.6 38 27 570 405 414 0.10

0.55 51 37 765 555 208 0.05

0.5 66 49 990 735 120 0.03

Fig. 3 GLCM-correlation parameters with different interval pixels.
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orientation than that at 0-deg orientation. If the GLCM-correlation parameters had a large value,
lager sample size should be selected for the accuracy assessment of land cover.

3.2.2 Sample points distribution

The distribution of sample points affected the assessment precision. In this study, the principle of
sample points selection was uniformity and heterogeneity. Based on the optimal distance (D) in
Table 1, the experimental region was divided into n rectangles and one’s area was D ×D. One
sample point was then selected in each rectangle region. Thus, n sample points were selected.
Taken GLCM-correlation parameters r ¼ 0.85, 0.8, 0.75, 0.7, and 0.65 as example, sample
points located in the region were shown in Fig. 4.

Based on Fig. 4 and Table 2, we concluded that: (1) the sample points are uniformly dis-
tributed in the studied region, which were not associated with sample size (Fig. 3) and (2) the
sample points are uniformly distributed in different types of land cover, which were consistent
with the area of different types of land cover (Table 2). Thus, the result showed that the proposed
model could ensure that the sample points are uniformly distributed in the spatial region and
different types of land cover, which were unrelated with the definition of GLCM-correlation
parameter and the size of land-cover area.

3.2.3 Accuracy analysis of classification result of remote sensing image

In this study, we took the land-cover classified from high-resolution image as reference data. We
then selected the points located at the same positions from the high-resolution image and studied
image, respectively. If the type of land cover from the two different images was consistent,
the variable was assigned as 1. Otherwise, the variable was assigned as 0. The confusion matrix
of accuracy assessment was shown in Table 3 (GLCM-correlation parameters r ¼ 0.85).
Overall accuracy, kappa coefficient, and other assessment parameters could be obtained from
the above-mentioned confusion matrix.

Fig. 4 Sample points located in study region with different correlation parameters: (a) correlation
parameter r ¼ 0.6 and the sample size n ¼ 825, (b) correlation parameter r ¼ 0.70 and the
sample size n ¼ 2322, (c) correlation parameter r ¼ 0.75 and the sample size n ¼ 5808, and
(d) correlation parameter r ¼ 0.80 and the sample size n ¼ 16872.
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The accuracy parameters obtained from total assessment (401,888 pixels) were taken as the
true value. The accuracy parameters obtained from our model were taken as the assessment
values (Tables 4 and 5).

The rate of deviation (r) was calculated by Eq. (8). Figure 5 showed the rate of deviation
comparison of each GLCM-correlation parameters

EQ-TARGET;temp:intralink-;e010;116;363r ¼
���� P̃P − 1

���� � 100%; (10)

where r was the rate of deviation, ~P denoted the accuracy value of each GLCM-correlation
parameters, which was overall parameter or kappa coefficient, and P was the overall parameter
or kappa coefficient of true value.

Based on Tables 4 and 5 and Fig. 5, we knew that the overall accuracy and kappa coefficient
derived from our model were very close to the true value. The greatest rate of deviation was only
0.54%. As the GLCM-correlation parameter increased, the rate of deviation of overall parameter
and kappa coefficient decreased. Thus, the assessment accuracy of our proposed model was close
to the accuracy of total assessment.

3.3 Comparison Results of Different Assessment Models

In this section, we used three different assessment models to conduct accuracy assessment for the
classification result of the above-mentioned remote sensing image, including percent sampling
model, random sampling model, and our proposed model.

3.3.1 Compared with percent sampling model

Taking 2% as the sampling rate, the percent sampling was used to assess the accuracy of land
cover. As shown in Fig. 6, we knew that the percent sampling model had a fixed sampling rate.
The autocorrelation among different pixels was ignored in the remote sensing image. Thus, it
was different to define the sampling rate for percent sampling model. However, our model could

Table 3 The confusion matrix for accuracy assessment.

Classified

Reference data

Water Forest Agriculture Bare Building Total

Water 1002 1 5 1 508 1517

Forest 2 2256 478 0 34 2770

Agriculture 433 21 7547 43 891 8935

Bare 9 0 48 743 35 835

Building 1 0 0 0 2814 2815

Total 1447 2278 8078 787 4282 16,872

Table 4 Comparison of the overall accuracy and kappa coefficient.

Accuracy value

Different GLCM-correlation parameters

True valueR ¼ 0.65 R ¼ 0.7 R ¼ 0.75 R ¼ 0.8

Overall accuracy 0.8497 0.8570 0.8569 0.8524 0.8540

Kappa coefficient 0.7799 0.7879 0.7807 0.7859 0.7837
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Fig. 6 Comparison sampling rate with each GLCM-correlation parameter and percent sampling.

Fig. 5 Rate of deviation comparison of each GLCM-correlation parameters.

Fig. 7 Sampled pixels divided in the region by random sampling (n ¼ 825).
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quantify the relationship between GLCM-correlation parameter and sampling rate. Thus, the
producers and users could easily determine the sampling rate according to the spatial autocor-
relation and heterogeneity.

3.3.2 Compared with random sampling model

Given the sampling size of 825, the sample points were randomly selected in the region three
times. Figure 7 showed the result of the random sample sampling at one time. Figure 8 showed
the rate of deviations for random sampling model and our proposed model. We knew that the
result of accuracy assessment for random sampling model was not consistent. Sample distribu-
tion is an important determinant in accuracy assessment. If sample distribution was considered,
it would lead to sample choice preference and could not provide an objective result. As shown
Table 4, the sample rate was consistent across different experiments in our model. Moreover,
the sample rate deviation of our model was less than that of random sampling model.

4 Discussions

The classification accuracy of the remote sensing image is very necessary before the application
for scientific investigation and policy decision. In this study, we proposed an accuracy assess-
ment model based on spatial sampling. This model considered both sample size calculation and
sample points distribution during the accuracy assessment. Compared with percent sampling
model, the proposed model could quantify the relationship between GLCM-correlation param-
eter and sample size. Compared with random sampling model, the proposed model ensured that
the sample points are uniformly distributed in the spatial region and proportionally distributed in
different types of land cover. Overall, our model is suitable for the accuracy assessment of
the classification result of the remote sensing image.

During the classification accuracy assessment of the remote sensing image, our model could
not only consider sample size calculation but also consider sample points distribution. As for
sample size calculation, we used the GLCM to quantify the relationship between spatial auto-
correlation and sample size. This matrix could provide useful information about the spatial rela-
tionships of pixels in an image. Compared with percent sampling, which has a fixed sampling
rate, our model could allow the producers and users to determine the sampling rate according to
the spatial autocorrelation and heterogeneity. As for sample point distribution, our method con-
sidered both the uniformity and heterogeneity of sample points distribution. It ensures that the
sample points are uniformly distributed in the spatial region and proportionally distributed in
different types of land cover. Compared with random sampling model, our model has great
advantage on accuracy consistence and sample rate deviation.

However, there are some limitations for our proposed model. We only calculated the GLCM-
correlation parameter ðrÞ at two different orientations, including 0 deg and 90 deg. More direc-
tions should be considered in future study.

Fig. 8 Rate of deviation comparison of each sampling methods.
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5 Conclusions

In this study, we proposed an accuracy assessment model for remote sensing classification result
based on spatial sampling. This model calculates the sample size required for accuracy assess-
ment, determines the sample points distributed in a region, and analyzes the result of accuracy
assessment. This model considers both sampling size calculation and sample points distribution
during the classification accuracy assessment. Our model could allow producer and user to easily
determine sample size. Moreover, our model ensures that the sample points are uniformly
distributed in the spatial region and proportionally distributed in different types of land cover.
Thus, our proposed model is a suitable model for the accuracy assessment of the classification
result of the remote sensing image.
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