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Abstract. The assessment of building damage following a natural disaster is a crucial step in
determining the impact of the event itself and gauging reconstruction needs. Automatic methods
for deriving damage maps from remotely sensed data are preferred, since they are regarded as
being rapid and objective. We propose an algorithm for performing unsupervised building seg-
mentation and damage assessment using airborne light detection and ranging (lidar) data. Local
surface properties, including normal vectors and curvature, were used along with region growing
to segment individual buildings in lidar point clouds. Damaged building candidates were iden-
tified based on rooftop inclination angle, and then damage was assessed using planarity and point
height metrics. Validation of the building segmentation and damage assessment techniques were
performed using airborne lidar data collected after the Haiti earthquake of 2010. Building seg-
mentation and damage assessment accuracies of 93.8% and 78.9%, respectively, were obtained
using lidar point clouds and expert damage assessments of 1953 buildings in heavily damaged
regions. We believe this research presents an indication of the utility of airborne lidar remote
sensing for increasing the efficiency and speed at which emergency response operations are
performed. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the origi-
nal publication, including its DOI. [DOI: 10.1117/1.JRS.11.046024]
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1 Introduction

Building damage assessment represents an urgent response priority following a natural disaster.
This is true because determination of the damage status of buildings allows first responders to be
directed to the most important locations, while resources, which are often a limiting factor in
emergency response, can be utilized to their full potential. The geographic extent of large-scale
disasters and potentially unsafe ground conditions often prohibit field-based assessments from
providing a rapid overview of damaged regions.1 Instead, remote sensing platforms can be
utilized to collect two-(2-D) or three-dimensional (3-D) data over the affected area, which
can in turn be used to assess damage, either manually by analysts or automatically by algorithms.

Much research has been conducted in building damage assessment using a wide variety of
remotely sensed data. In the 2-D domain, optical and synthetic aperture radar (SAR) imagery
have been used to detect and classify the damage of buildings after disasters such as earthquakes.
For optical imagery, features such as spectra, texture, shape, and building shadows have been
used to detect damage in both change detection and postevent analysis.2 However, change detec-
tion of optical imagery requires precise registration between the two sets of imagery and can
result in false alarms due to illumination and color differences. Methods using SAR imagery
typically exploit backscattering intensity and phase information to locate damage.3 Success
with SAR data in urban areas has been limited due to issues arising from an oblique viewing
geometry, occlusions, and multiple scattering from tall buildings.2 Some building types are also
undetectable in the 2-D domain due to a lack of height information, such as “pancake collapses,”
in which one or more stories collapse onto themselves because of structural failures.4
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3-D data, typically in the form of point clouds, provide accurate height information that
facilitates the detection of building damage. Geometric features such as planarity and inclination
angle, combined with surface features such as curvature and size, provide insight into the struc-
tural condition of a building. Point clouds can be collected using airborne light detection and
ranging (lidar) or formed during postprocessing from imagery (structure-from-motion).5

Airborne lidar is advantageous for rapid building damage detection for several reasons. The
data can be collected day or night and do not suffer from illumination shadows cast by tall
buildings. Additionally, the data can be used as soon as it is downloaded from the sensor without
the need for extensive postprocessing (as compared to image-based point clouds), which is criti-
cal in a time-sensitive scenario such as disaster response. Select research has used coregistered
lidar data and optical imagery for building damage assessment using object-based image analysis
and obtained improved results over using just lidar data.6,7 For example, one experiment used
spectral and textural features in addition to lidar-derived height values in an object-based image
classification framework and obtained 87% overall classification accuracy for several classes in
postearthquake Haiti including damaged buildings.7 Although these methods are effective, they
need additional processing to coregister the sensing modalities and rely on a collection platform
that can collect both modalities simultaneously or require multiple data collections. Other studies
have performed change detection on pre- and postevent planar segments, derived from 3-D data,
to classify damage based on changes such as volume reduction and inclination change.8,9 The
challenge with change detection is that it relies on the availability of pre-event data, which is not
always the case. Even in cases where the pre-event data are available, precise registration is
needed to avoid introduction of damage false alarms, which can be difficult with two 3-D data-
sets that are often collected by different sensors, and at different point densities. Methods that use
only postevent lidar point clouds stand alone and can be applied to the raw point cloud data as
soon as it is available from the laser scanner. These methods address the time-sensitive criteria of
a natural disaster response plan and will be the focus of this paper. In the next section, a review of
the methods in the literature that utilize only postevent airborne lidar point clouds for building
damage assessment is presented.

2 Literature Review

Awide variety of techniques for detecting building damage from airborne lidar point clouds are
present in the literature. All of the methods are based on extracting features and classifying
damage at either the point, segment, or roof level. One of the main distinguishing features
is the use of supervised classification versus unsupervised classification.

Methods that use supervised classification require a human operator to manually select
labeled data to train a classifier. In the case of building damage assessment, this means supplying
the classifier with training data with damage labels. For example, one publication used a linear
support vector machine (SVM) to classify a digital surface model (DSM) rasterized from a point
cloud collected after an earthquake.10 The SVMwas used for binary classification of pixels into a
debris class or intact class, based on eight texture features and height above ground. Buildings
containing 30% or more debris pixels were classified as damaged. The study reported an overall
classification accuracy of 91.6% on a dataset consisting of 43 buildings, of which only five were
damaged. Another experiment performed supervised classification of planar segments, extracted
from postearthquake lidar data, using a rule-based classifier and a maximum entropy classifier.11

Five features were computed for each segment that represented its size, height, and planarity. The
rule-based and maximum entropy classifiers obtained overall qualities of 56% and 60%, respec-
tively. Similarly, a different publication classified planar segments into damaged or undamaged
using three different classifiers: a linear discriminant classifier, linear SVM, and random
forests.12 An initial set of 18 segment features was reduced to a subset of six using forward
selection and backward elimination. Notable features from the subset included the ratio of unseg-
mented points to segmented points, sphericity, and the height above ground. The authors were
able to obtain an overall accuracy of 85% on a test set of 698 labeled segments, but did not
supply a method for deriving building-level damage from the classified segments. The main
limitation of damage assessment techniques based on supervised classification is that they
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require a user to manually label training data. As the number of features increases, the number of
training samples needed to produce an accurate classification also increases. The training time
can create a significant bottleneck in the damage assessment workflow, which could negatively
impact the response effort.

Unsupervised classification techniques found in the literature can be divided into two distinct
groups, namely those that classify damage at the point level and those that classify damage at the
building level. One publication proposed a method in which damaged roof points were detected
by comparing the slopes of the lines formed with neighboring points.13 If the difference in slopes
in both x- and y-directions was greater than some threshold, the point was considered damaged.
Buildings containing 16% or more damaged points were classified as damaged. The method
achieved an overall accuracy of 73.4%, but was able to correctly classify only 38.5% of the
heavily damaged buildings in the dataset. In a continuation of that study, authors of Ref. 14
developed an improved damage assessment technique that used surface normals to identify dam-
aged points. Building roofs were gridded into small tiles and the points within each tile were used
to compute a surface normal. A histogram of the angles between the surface normals and a zenith
vector was computed; the points in tiles with angles that fell in bins containing less than 20%
of all the angles were considered damaged. A damage percentage was computed as the ratio of
damaged points to total points in a building. Buildings with a damage percentage of 51% or
higher were classified as damaged. The study achieved an accuracy of 68.3% on a dataset of
160 buildings, with many false alarms resulting from hipped roofs. The angles between surface
normals and zenith vectors have been utilized to identify damaged points.15 A surface normal
and angle was computed for every point using its nine nearest neighbors. Angular thresholds
were derived to classify points in flat roofs and inclined roofs as damaged by examining
the angle distributions for buildings labeled as collapsed, partly collapsed, or undamaged.
The ratio of the angle standard deviation to the mean absolute deviation was used as an indicator
of the severity of damage. Although visual comparisons are presented for buildings with differ-
ing levels of damage, no classification results are presented in that paper.

Other damage assessment methodologies compute building-level features in order to achieve
a more direct classification. For example, one study classified buildings as damaged if their
inclination angle was above a certain threshold.16 The inclination angle was defined as the
angle between the geometric axis of the building (the normal vector of the roof plane for
flat buildings, or the sum of the normal vectors of “main” planes for buildings with slanted
roofs) and the normal vector of the terrain that the building sits on. However, classification
results were presented only for a single undamaged and damaged building. Another publication
introduced a damage classification method using a 3-D shape descriptor for buildings.17 Each
building was represented as clusters of contours within a contour tree, and the shape descriptor
was computed based on shape similarities within the contours. Buildings were classified as
damaged if the shape descriptor met a set threshold. The algorithm was able to correctly classify
87% of the 1875 buildings tested.

Despite the wide range of damage assessment mechanisms present in the literature, the
majority of them share similar strategies. For example, planarity, surface normals, and the angles
between surface normals and a vertical zenith vector appear in many of the previously mentioned
publications. This is because building damage assessment lends itself naturally to an investigation
of planarity and surface normals. A manmade surface is typically dominated by planes, but this
assumption is often violated when buildings are damaged.18 Roof points at high or near vertical
angles are unusual for most intact buildings and can be used as an indication of damage.
Combining aspects of work already in the literature, this paper proposes an automatic building
damage assessment methodology that identifies candidate damaged buildings as those with
roof points at high angles and then performs a rule-based classification dependent on the planarity
and height above ground of roof features. The objective of this research is to assess the feasibility of
creating an end-to-end, robust building damage assessment algorithm that is fully unsupervised
and requires only a postdisaster point cloud. Based on the work presented in the literature, it is
hypothesized that the research objective can be accomplished if appropriate point features are used
as indicators of damage, and if building damage is adequately sampled in the lidar point clouds.

Section 3 introduces the dataset and building damage scale used for this research. Section 4
provides a detailed explanation of the methods used to preprocess the point cloud, detect
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buildings, and finally assess damage. In Sec. 5, experimental results are presented on airborne
lidar data from the 2010 earthquake in Haiti, along with a discussion of the results, while
conclusions and future work are addressed in Sec. 6.

3 Data

The study area used to test the proposed algorithm consists of seven sites located in the Haitian
cities of Port-au-Prince and Carrefour, two regions that were heavily affected by the 7.0Mw

earthquake that occurred on January 12, 2010 (see Fig. 1). These sites were chosen because
they contain both a wide range of building types and building damage types. Different construc-
tion types include: one- to three-story reinforced concrete buildings, masonry bearing walls,
timber frames, and shanty housing made of reinforced concrete and masonry block with corru-
gated metal roofs.19 The damage level in buildings range from completely undamaged to fully
destroyed, and everything in between.

The building damage assessment method proposed in this paper requires only one input, an
airborne lidar point cloud. The lidar data used for development and testing were collected on
January 21, 2010 by Kucera International Inc. and the Rochester Institute of Technology (RIT).

Fig. 1 A map showing the portion of Haiti that was used in this research. The location of the seven
test sites are marked by the circles.

Fig. 2 One of the sites from Port-au-Prince: (a) a WASP image of the scene and (b) the corre-
sponding lidar point cloud of the scene. The cloud is colored by height.
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The point clouds for the seven sites have an average point density of 4.2 pts∕m2 and were
captured by a Leica ALS60 at an altitude of ∼820 m with a pulse rate of 150 kHz. The vertical
point measurement accuracy of the instrument is 0.15 m. Multispectral imagery simultaneously
was collected on the aircraft by the Wildfire Airborne Sensing Platform (WASP) system at a
resolution of 0.15 m.20 Although the imagery was not used for building segmentation or damage
assessment, it served as a reference for visualization and was used in figures throughout the
paper. Figure 2 shows both a WASP image and lidar point cloud of one of the scenes from
Port-au-Prince.

4 Methods

The proposed workflow ingests an airborne lidar point cloud, segments the cloud into individual
building regions, and then classifies the damage level of the buildings. The method can be di-
vided into three components: preprocessing, building segmentation, and damage classification.
Figure 3 shows a visual representation of the workflow.

4.1 Point Cloud Preprocessing

The only input to the proposed workflow is an airborne lidar point cloud of a disaster-affected
region. The required attributes for each point in the cloud are its x-, y-, and z-coordinates.
The point cloud is filtered to remove noise and outlier points using a filtering technique called
statistical outlier removal.21 The statistical outlier removal algorithm first calculates the mean
Euclidean distance, d, between each point, p, and its k-closest neighbors. Statistics of the mean
distances are used to characterize the distribution across all of the points in the cloud.
Specifically, the mean (μk) and standard deviation (σk) are calculated, and points that are con-
sidered statistical outliers, based on those two values, are removed

EQ-TARGET;temp:intralink-;e001;116;416P� ¼ fp ∈ Pjd ≤ ðμk þ γ · σkÞg; (1)

where P� is the entire point cloud after statistical outlier removal and γ is a scalar multiplier to
control the severity of point removal.

Ground points are separated from nonground points (i.e., buildings, vegetation, and vehicles)
through an implementation of the progressive morphological filter (PMF).22 The PMF operates
by using a morphological filter of gradually increasing window size, along with an elevation
difference threshold, to separate ground and nonground points. The increasing window size
is used to remove nonground objects of increasing size in each iteration, i.e., initially small
objects such as bushes, and later large objects such as buildings. One of the main parameters
of the PMF is the initial elevation difference threshold, dho. Points that have a height above the
estimated ground surface higher than dho are classified as nonground points. By setting dho to be

Fig. 3 A high-level flowchart of the building damage assessment algorithm.
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very low (we use the vertical accuracy of the lidar system, which is 15 cm in our case), debris
around the base of damaged buildings can be correctly classified as nonground, facilitating dam-
age assessment in a later portion of the workflow. Following the PMF, a digital elevation model
(DEM) is created by performing a Delaunay triangulation with natural neighbor interpolation on
the points classified as ground. A normalized digital surface model (nDSM) of the points
classified as nonground is created by subtracting their elevations from the corresponding DEM
elevations. The nDSM is stored for use later in the workflow.

The final step of preprocessing is vegetation removal. Vegetation contained in the point cloud
can be mistaken for damaged buildings during damage assessment, so it is important to remove
as much vegetation cover as possible during preprocessing. Vegetation removal is accomplished
using a graph cuts optimization, based on local surface properties of points.23 Manmade surfaces
are typically locally smooth with little variation of surface normals in a small region. Vegetation,
on the other hand, exhibits large variations of surface normals and high curvature. Therefore,
local surface properties are used to distinguish between vegetation and nonvegetation points.
First, the normal vector of each point, p, is calculated using all points in a local neighborhood,
Np, defined by the radius, r. The radius, r, is automatically set as 2 · μk to ensure that enough
points are used to obtain a reliable normal vector estimate. The neighborhood points of p are
obtained using

EQ-TARGET;temp:intralink-;e002;116;520Np ¼ fq ∈ Pjdðp; qÞ < rg; (2)

where q are all of the points in the entire point cloud P, and d is the Euclidean distance between
two 3-D points. Eigenanalysis of the covariance matrix of Np produces the eigenvalues
λ1 < λ2 < λ3. The eigenvector corresponding to λ1 is the estimate of the point normal, n.
Airborne lidar data are collected from above, so the absolute value of the z-component of
n is used to ensure the normal vector points outward from the surface. The curvature, v, of
the point can also be computed using

EQ-TARGET;temp:intralink-;e003;116;416v ¼ λ1
λ1 þ λ2 þ λ3

: (3)

The neighborhood analysis is taken one step further by computing the distribution of normals
in Np. Eigenanalysis is again used, but this time on the covariance matrix of Np, resulting in
λn1 < λn2 < λn3 . The eigenvalue corresponding to λn2 is representative of the variation of the local
distribution of normals around the point. For simplified notation in equations, λn2 will be
represented as f.

A weighted graph, G, of all of the points, v, is constructed using each point and its four
nearest neighbors. The weight on each link between two points is the inverse Euclidean distance
between the two points. The energy function, E, which is comprised of a data term, D, and
a smoothness term, S, is used for optimization, as shown in

EQ-TARGET;temp:intralink-;e004;116;263EðlÞ ¼
X
p∈V

DpðlpÞ þ
X

fp;qg∈Np

Sp;qðlp; lqÞ; (4)

where l is the label assigned to a given point (i.e., 1 for vegetation and 0 for nonvegetation).
The data term [Eq. (5)] accounts for the curvatures and local normal variations for each point

in the cost of making a cut

EQ-TARGET;temp:intralink-;e005;116;182DpðlpÞ ¼ sv · e
−
v2p

σ2v þ sf · e
−

f2p

σf
2 ; (5)

where sv is a scalar coefficient for the curvature term, sf is a scalar coefficient for the normal
variation term, σv is the standard deviation of all of the point curvatures, and σf is the standard
deviation of all of the normal variations.

The smoothness term [Eq. (6)] controls the cost of neighboring points based on their labels

EQ-TARGET;temp:intralink-;e006;116;91Sp;qðlp; lqÞ ¼ ss · δðlp; lqÞ; (6)
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EQ-TARGET;temp:intralink-;e007;116;723δðlp; lqÞ ¼
�
0 if lp ¼ lq
1 if lp ≠ lq

; (7)

where ss is a scalar coefficient.
As a result of the graph cuts optimization, all points are classified as either vegetation or

nonvegetation. The points classified as vegetation are removed, which is the last preprocessing
step.

4.2 Building Segmentation

After preprocessing, the remainder of the points consists of buildings, debris from damaged
buildings, and small objects, such as vehicles. The next step is to segment both damaged
and undamaged buildings into individual point clouds for damage assessment. To accomplish
this task, a region-growing-with-smoothness-constraint approach is used.24

The inputs to region growing include all of the points (p), their normal vectors (n), and their
curvatures (v). The points are sorted in order of increasing curvature and the point with the
lowest curvature is chosen as the first seed point. All of the points within a selected radius,
r, of the seed point are considered as candidate points in the current region. If the angle, β,
between the normal vectors of the seed point and candidate point are below an angular threshold,
Tβ, then the point is added to the current region. If the curvature, v, of the candidate point is
below a threshold, Tv, it is added to a list of potential seed points. After all of the candidate points
have been tested, the next seed point in the list is selected as the current seed point and the
process is repeated. This sequence of steps is repeated until no more points can be added to
the current region. The process is completed once all of the points have been assigned to a region.
The value of r is automatically set to 2 · μk to ensure that all neighbors belonging to the same
surface are considered.

The output of region growing is considered to be the set of buildings to be assessed for
damage. A minimum point threshold, Tp, of 100 points is used to remove regions that are
too small to be reliably considered for damage. Figure 4 shows an example of building segmen-
tation of a point cloud that has already been preprocessed. Some undersegmentation is present as
a result of liberal parameters (Tβ ¼ 25 deg, Tv ¼ 0.05) and the close proximity of buildings in
the scene. These thresholds were determined through experimentation with several scenes.
However, this undersegmentation allows debris to be segmented with buildings and helps to
identify partially damaged buildings during the next step of the algorithm.

4.3 Building Damage Assessment

The proposed algorithm performs a classification of each building into one of two categories,
damaged or undamaged. There is sometimes a large amount of segmented buildings in a given
scene that are completely undamaged. To maintain efficiency, the first step is to identify can-
didate buildings for damage assessment, using two rules. The first rule involves analyzing the
angles, θ, between the surface normals of building points and a horizontal zenith vector (i.e.,
corresponding to a normal vector of a completely vertical surface). Low values of θ (i.e., cor-
responding to highly inclined surfaces) have been shown to be indicative of building damage, in
both flat and inclined roofs.15 An angle threshold, Tθ, is used to find potential damage points.
If a building has a ratio of points that are below Tθ to total points greater than a threshold, Td,
then that building is marked as a candidate for damage assessment. Figure 5 shows point clouds
for an undamaged building and a damaged building colored by θ. The damaged building had
several values in the 40 deg to 70 deg range, while the undamaged building points were almost
exclusively 85 deg or higher.

The second rule is based on the assumption that damage to buildings often results in debris
and portions of the building located at low points around the base of the building. A majority of
these points are segmented with the rest of the building points during region growing. Low points
are identified as points with a height, h, (taken from the nDSM) below a threshold, Th. If
a building has a ratio of low points to total points above a certain threshold, Tl, then that building
is marked as a candidate for damage assessment. Figure 6 shows point clouds for an undamaged
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building and a damaged building, colored by h. Points in the undamaged building range from
about 9 to 13 m above ground, whereas points in the damaged building range from 0 to 2.5 m
above ground.

Equation (8) shows the mathematical notation of the two rules

EQ-TARGET;temp:intralink-;e008;116;262CðiÞ ¼
�
1 if

#ðθi<TθÞ
#θi<Td

∨ #ðhi<ThÞ
#hi

< Tl

0 otherwise
; (8)

where CðiÞ indicates if building i is a candidate for damage assessment (a value of 1 indicates
candidacy). The values of the thresholds will be described in Sec. 5.

Each candidate building undergoes evaluation to classify it as damaged or undamaged.
Similar to the candidate identification process, two rules are used for damage classification,
a planarity rule and a height rule. An assumption is made that undamaged parts of buildings
can be represented as planar segments. The points are segmented into planes using the same
region growing algorithm described in Sec. 4.2, but with stricter parameters to ensure planarity
(Tβ ¼ 4 deg, Tv ¼ 0.02). A minimum segment size of 15 points is used to prevent miniature
groups of points being counted as true planes. A threshold, Ts, is placed on the ratio of seg-
mented points (those that were grouped into planar segments) to total points (Rs) in a building.
If the segmentation ratio is less than Ts, then the building is classified as damaged and removed
from the list of candidate buildings. Figure 7 shows the segmentation of planes of an undamaged
and a damaged building.

Fig. 4 A point cloud in a region of Port-au-Prince that was affected by an earthquake is segmented
into buildings using region growing: (a) a WASP image of the scene and (b) the point cloud over-
laid on the image. The point cloud is colored by height; and (c) the individual buildings resulting
from region growing overlaid on the image. Each unique color represents one building.
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In some cases, whole roofs or portions of roofs remain intact, but collapse to the ground due
to damage to the structures that support the roof. The planarity rule is unable to detect these types
of damage, so a second rule, based on height, is used. Low points are identified as points with
a height, h, below a threshold, Th2. If a building has a ratio of low points to total points above
a certain threshold, Tl2, then that building is classified as damaged. Otherwise, the building is
classified as undamaged.

EQ-TARGET;temp:intralink-;e009;116;288DamðiÞ ¼
�
1 if Rsi < Ts ∨

#ðhi<Th2Þ
#hi<Tl2

0 otherwise
; (9)

where DamðiÞ is the classification of building i.

4.4 Experimental Validation

4.4.1 Building segmentation and damage assessment reference data

In the days and weeks following the Haiti earthquake on January 2, 2010, several organizations
contributed to what became an international humanitarian relief effort. A joint collaboration
between the United Nations Institute for Training and Research (UNITAR) and the World
Bank (WB) generated building damage assessments for most of the affected regions of
Haiti. The assessments were made by manually interpreting pre- and postevent airborne
(15 cm) and satellite (50 cm) imagery. The EMS9825 provides a building damage classification
scale from grades I to V, in increasing order of damage, and is frequently used with remotely
sensed imagery.26 The Haiti damage assessments were classified into four damage categories,
roughly corresponding to damage grades I, III, IV, and V from the EMS98: no visible damage,

Fig. 5 Surface normal angles (θ) of an undamaged and a damaged building in Port-au-Prince:
(a) a WASP image of the undamaged building; (b) a WASP image of the damaged building;
(c) the undamaged building point cloud, colored by θ; and (d) the damaged building point
cloud, colored by θ.
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moderately damaged, severely damaged, and destroyed.27 Figure 8 shows illustrations from
the EMS98 that represent the damage categories for masonry and concrete buildings used in
assessing the Haiti imagery.

A GIS file containing the building damage assessments by the UNITAR-WB team in point
form was obtained and cropped to the seven test sites described in Sec. 3. Building outlines,
corresponding to the validation assessment points, were manually traced using 15 cm WASP
imagery and attributed with the damage grades from the assessment. These building outlines
with associated damage grades served as the reference data for validating the building segmen-
tation and damage classifications of the proposed algorithm.

4.4.2 Building segmentation

The workflow proposed in this paper was applied to the point clouds from the seven test sites
from Port-au-Prince and Carrefour. The point clouds were automatically preprocessed and seg-
mented into individual buildings. The 2-D boundaries of the segmented building point clouds
were compared with the reference building outlines. Each reference building polygon was
labeled a true positive (TP) if it overlapped with the boundary of a building segmented by
the algorithm, or a false negative (FN) if there was no overlap. Buildings segmented by the
algorithm that did not overlap any of the reference polygons were classified as a false positive
(FP). True negatives (TNs) were not considered, because all segmented objects are assumed to be
buildings. The TP, FP, and FN counts were used to characterize the performance in terms of
completeness, correctness, and quality. Completeness reflects the percentage of validation build-
ings that were detected by the algorithm [Eq. (10)]. Correctness reflects the percentage of seg-
mented buildings that were true buildings [Eq. (11)]. Quality is a measure of overall performance
that takes into account both the completeness and the correctness of the results [Eq. (12)]28

Fig. 6 Heights (h) of an undamaged and a damaged building in Port-au-Prince: (a) aWASP image
of the undamaged building; (b) a WASP image of the damaged building; (c) the undamaged
building point cloud, colored by h; and (d) the damaged building point cloud, colored by h.
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EQ-TARGET;temp:intralink-;e010;116;168Completeness ¼ TP

TPþ FN
× 100; (10)

EQ-TARGET;temp:intralink-;e011;116;135Correctness ¼ TP

TPþ FP
× 100; (11)

EQ-TARGET;temp:intralink-;e012;116;98Quality ¼ TP

TPþ FPþ FN
× 100: (12)

Fig. 8 Illustrations of the damage grades used for masonry and concrete buildings in the Haiti
building damage assessment. Figure adapted from the EMS98 document.25

Fig. 7 Segmentation of planes in undamaged and damaged buildings. Points segmented into
planes are colored based on the planar segment, and black points are points that were unseg-
mented: (a) a WASP image of the undamaged building; (b) a WASP image of the damaged
building; (c) an undamaged building is segmented into two planes and very few points are left
unsegmented; and (d) a damaged building is segmented into five planes and almost half of
the points remain unsegmented.
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4.4.3 Building damage assessment

In order to accurately evaluate the building damage assessment algorithm, it was necessary to
decouple it from the effects of building segmentation. Rather than using the building point
clouds from building segmentation, building point clouds were segmented for each building
by extracting all of the points from the preprocessed point cloud that fell within the validation
building boundaries. The building damage assessment algorithm was applied to each building,
resulting in a classification of damaged or undamaged. To match the binary output of the algo-
rithm, the reference damage data were grouped from four severity grades into two classes.
Buildings that were labeled grade I (no visible damage) were considered undamaged, and build-
ings that were classified as grades III to V (from moderately damaged to destroyed) were
clustered into the damaged group. If a damaged reference building was correctly classified as
damaged by the algorithm, it was labeled a TP. If an undamaged reference building was correctly
classified as undamaged by the algorithm, it was labeled a TN. If a damaged reference building
was misclassified as undamaged by the algorithm, it was labeled an FN. If an undamaged
reference building was misclassified as damaged by the algorithm, it was labeled an FP.

5 Results and Discussion

5.1 Building Segmentation Results

Table 1 presents the segmentation results for all seven scenes in terms of completeness, correct-
ness, and quality. A visual representation of the segmentation results for scene one is shown in
Fig. 9. The results are overlaid on a WASP image of the scene in Port-au-Prince. The building
outlines drawn in green represent TP, those in red are FP, and those in blue are FN.

The algorithm achieved high accuracy for building segmentation, obtaining completeness,
and correctness scores of over 96%, and an overall quality of 93.46%. Out of 1953 validation
buildings, 1890 were correctly segmented with only 0.03% errors of commission and 0.03%
errors of omission. Although the algorithm showed robust performance during the building seg-
mentation stage, it was still important to investigate the source of the errors of commission and
omission. Building segmentation preceded the main objective, damage assessment, and therefore
errors during the segmentation stage were propagated throughout the rest of the workflow. The
following paragraphs take a closer look at the sources of false positives and negatives during
building segmentation.

Overall, obtaining 63 false negatives out of 1953 buildings was a satisfactory result. Analysis
of the false negatives revealed that most of them were undamaged buildings. Although it is better
to omit an undamaged building than a damaged building in a disaster response scenario, all
errors are important to understand. One of the main causes of buildings being omitted was veg-
etation covering the roof. Although the lidar penetrated the tree canopies and produced returns

Table 1 Building segmentation results for all seven of the scenes.

Site # # Validation buildings TP FP FN Completeness (%) Correctness (%) Quality (%)

1 479 474 20 5 98.96 95.95 94.99

2 243 238 20 5 97.94 92.25 90.49

3 132 129 1 3 97.73 99.23 96.99

4 232 223 4 9 96.12 98.24 94.49

5 326 303 6 23 92.94 98.06 91.27

6 199 191 4 8 95.98 97.95 94.09

7 342 242 8 10 96.03 96.80 93.08

Total 1953 1890 63 63 96.77 96.77 93.75

Axel and van Aardt: Building damage assessment using airborne lidar

Journal of Applied Remote Sensing 046024-12 Oct–Dec 2017 • Vol. 11(4)



below the canopy in some cases, the number of returns on rooftops obscured by vegetation was
much lower than those with no obscurations. In cases where the vegetation covered a significant
portion of the rooftop, buildings sometimes did not meet the 100 point criteria required for seg-
mentation. Many of the other false negatives were simply a result of the buildings not having
enough lidar points and therefore being rejected. Shanty housing represented a majority of the
false negatives caused by size. The best way to overcome this problem would be to collect lidar
data at a higher point density. The vegetation removal step may have also contributed to the
errors of omission. Both vegetation and building debris exhibited increased surface normal varia-
tion and high curvature. Typically, normal variation and curvature were significantly higher for
vegetation than for damaged buildings, but in some extreme cases, portions of damaged build-
ings were misclassified as vegetation and removed. Future work will investigate augmenting
the vegetation identification step to prevent accidental debris removal. One potential solution
would be to use the number of returns for each point as an added feature to classify vegetation.

In total, 63 errors of commission were observed when evaluating the proposed algorithm.
False positives were troublesome when passed into the building damage assessment stage,
because the planarity assumptions used for rooftops did not hold for other objects, especially
when they were not manmade objects. The largest cause of false positives was vegetation.
In some cases, the centers of large, dense canopies were not properly classified during the veg-
etation removal stage. Multiple iterations of graph cuts with adjusted parameters could poten-
tially be used to improve vegetation removal, but the need for parameter adjustment would result
in a loss of automation and therefore was not implemented in our workflow. Relief tents were
another source of errors of commission. The canopy tents were distributed during the emergency
response for people displaced by the earthquake. Often times, many of the tents were placed
directly next to each other, and as a result, several tents were segmented together as a single
building. In some cases, groups of two or three tall vehicles in close proximity to each
other were mistaken as a building. Despite these sources of errors of commission, a correctness

Fig. 9 Building segmentation results for a scene in Port-au-Prince. True positives are outlined in
green, false positives are outlined in red, and false negatives are outlined in blue.
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of almost 97% suggests that our algorithm can reliably be used for building segmentation even at
relatively low point densities (4.2 pts∕m2 on average).

5.2 Building Damage Assessment Results

A total of 1953 buildings (812 damaged and 1141 undamaged in the reference data) across seven
scenes were classified as damaged or undamaged by the algorithm. The combined confusion
matrix for all seven scenes is presented in Table 2. An overall accuracy of 78.9% and a Kappa
coefficient of 0.57 suggest reasonable performance in damage classification, given the wide
range of building types and damage patterns in the Haiti scenes. Both errors of commission
and omission were caused by several factors, which are discussed in the following paragraphs.
A visualization of the results for a scene in Port-au-Prince is shown in Fig. 10.

In total, 24% errors of omission were observed across the seven scenes for the damage class.
Most of these false negatives were a result of building damage not adequately being represented
in the lidar data, which occurred most frequently for buildings that sustained only minor or
moderate damage. For example, in some cases, small portions of a roof would break off and
fall to the ground. Although the building damage was visible in imagery, the portions on the
ground were low enough to be omitted during preprocessing, and the remaining intact portions
of the roof resembled an intact roof. The building damage assessment considered only the intact
portion of the roof, and therefore omitted the damage. The airborne lidar data did not obtain
returns from building walls, so any damage sustained to the walls was not detected. In some
cases buildings that were labeled damaged in the reference set were classified as undamaged by
the algorithm, because there was simply no discernible damage in the point cloud or image.
Rathje conducted field surveys to assess the accuracy of the UNITAR-WB team and found
that the assessments were around 77% accurate.19 The authors even suggested that buildings
in grade III should be grouped as undamaged, because of how difficult they are to identify
from satellite and airborne imagery, but we chose not to do so because many of the buildings
assigned a grade of III were clearly damaged. Despite these issues, 619 out of the 812 damaged
buildings in the reference set were correctly classified. At this level of accuracy, the damage
maps created by the algorithm would be vital tools for helping direct emergency responders
to areas of heavy damage, and dictate regions of interest for detailed damage analysis by ground
crews. Feedback from emergency response teams was that they would rather have a rapid dam-
age assessment product than a marginally more accurate, but delayed damage map.

Errors of commission for the damage class were slightly more prevalent than errors of omis-
sion, with a total of 26% buildings misclassified as damaged. One of the main causes of false
positives was vegetation that was not fully removed during preprocessing. All points that fell
within the validation building outlines were used for damage assessment, including vegetation.
During the actual workflow of the algorithm, vegetation that remains after preprocessing would
typically be removed during the region growing stage of building segmentation due to the merg-
ing criteria. As a result of the vegetation remaining in the scene, the buildings were sometimes
mistaken as damaged by the planarity rule. Another source of errors of commission were oddly
shaped roofs or roofs that contained many small structures. Due to the relatively low point

Table 2 Confusion matrix for damage classification of all scenes.

Classification

Reference

Undamaged Damaged User’s accuracy (%)

Algorithm Undamaged 922 193 82.69

Damaged 219 619 73.87

Producer’s accuracy (%) 80.81 76.23

Overall accuracy (%) 78.90

Kappa coefficient 0.57
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density (4.2 pts∕m2), these rooftop structures were often undersampled and resembled a dam-
aged rooftop that was not planar. If the point clouds had been collected at higher point density,
these errors would likely occur far less often. The algorithm still achieved producer’s and user’s
accuracies of 80.8% and 82.7%, respectively, in classifying undamaged buildings, which was
reasonable for a preliminary rapid-delivery damage map in such a diverse environment.

6 Conclusions

In this paper, we proposed and evaluated an automated technique for assessing building damage
via airborne lidar point clouds. Local surface properties of lidar points were used, along with
region growing to cluster the points into individual buildings, and then features such as surface
normal angle, planarity, and height above ground were used to make a classification of damaged
or undamaged. The building segmentation method was tested on seven point clouds from the
2010 Haiti earthquake, and achieved a detection accuracy of 93.75% for 1953 validation build-
ings. The building damage assessment algorithm was tested on the same 1953 buildings and
obtained an overall damage classification accuracy of 78.9% and a Kappa coefficient of
0.57. The main factors that affected the quality of the building damage assessment were veg-
etation that was not successfully removed during preprocessing, and undersampling of complex
rooftops due to relatively low lidar point densities (4.2 pts∕m2). Future efforts will focus on
improved vegetation removal using iterative application of the graph cuts technique with
data-driven parameter calculation. The results obtained from this research suggest that automated
building damage assessment can be used in lieu of the traditional manual interpretation of
imagery with similar levels of accuracy. Automated damage assessment could significantly
reduce the time needed to produce damage maps, ultimately leading to faster and more efficient
search and rescue missions and prioritization of resources.

Fig. 10 Building damage assessment results for a scene in Port-au-Prince. True positives are
outlined in green, true negatives are outlined in cyan, false positives are outlined in red, and
false negatives are outlined in blue.
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