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Abstract. An early warning of crop losses in response to weather fluctuations helps farmers,
governments, traders, and policy makers better monitor global food supply and demand and
identifies nations in need of aid. This paper discusses the utility of vegetation health (VH) indi-
ces, derived from the advance very high-resolution radiometer (AVHRR) and visible infrared
imaging radiometer suite (VIIRS), as a proxy for modeling Australian wheat from the National
Oceanic and Atmospheric Administration (NOAA) operational afternoon polar-orbiting
satellites. These models are used to assess wheat production and to provide an early warning
of drought-related losses. The NOAA AVHRR- and VIIRS-based VH indices were used to
model wheat yield in Australia. A strong correlation (≥0.7) between wheat yield and VH indices
was found during the critical reproductive stage of development (enhanced crops sensitivity to
weather), which starts 2 to 3 weeks before and ends 2 to 3 weeks after wheat heading. The results
of modeling and independent testing proved that the VH indices (especially those estimating
thermal and health conditions) are a good proxy providing 1 to 2 months before harvest
yield prediction (with 3% to 6% error). With the new generation of NOAA-20 operational
polar-orbiting satellites, launched in November 2017, the VH method will be improved consid-
erably both in an advanced crop/pasture prediction, spatial resolution, and accuracy. © The
Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original pub-
lication, including its DOI. [DOI: 10.1117/1.JRS.12.026002]
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1 Introduction

Among the major world grain producing countries, Australia is a modest contributor (1.3%) to
total global production, ranking ninth with slightly over 32 million tons of grain collected on
average annually during 1993 to 2013.1 However, Australia is among the world’s largest grain
exporting nations (USA, Russia, European Union, and Canada), ranking fifth in wheat exported
annually (contributing 4% to 8% to global grain in trade) since the 1980s.2,3 Most of the
Australian wheat that is sold overseas is produced in western and southern Australia. The
major Australian export markets are in the Asian and Middle East regions, which include
Indonesia, Japan, South Korea, Malaysia, Vietnam, and Sudan.4 Considering the substantial
global demand for grain, wheat in Australia is a significant contributor to the nation’s economy.
Grain and oilseed crops produce about 35 to 45 million tons per annum from an area of slightly
more than 20 million hectares, with an annual gross production value of around $9 to 13 billion.4

Among grains, wheat is the principal crop grown in Australia and is typically sown in April to
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May and harvested in October to November. The main producing states in the country are
Western Australia, New South Wales, South Australia, Victoria, and Queensland. Wheat
grown for domestic consumption and feedstock is predominately produced on Australia’s
east coast. Therefore, an advanced knowledge about the amount of wheat collected in a particular
year is very important not only for the estimation of domestic grain availability and use but also
for projections of global trade and also for accurate assessment of supply/demand and conse-
quently global food security.

Of the nearly 800 million hectares of land in Australia, only 10% is suitable for crops and
pastures. The majority of the land is desert, semidesert, and some grasslands [Fig. 1(a)]. In gen-
eral, the soils in Australia have low fertility, especially compared with the excellent soils of
European Russia (south) and USA’s prairies. Australia’s climate is mostly arid, such that
any shortage in rainfall combined with hot weather puts considerable strain on water resources,
and thus agriculture.3,4 Annual precipitation in the two biggest ecosystems (desert and grassland)
is greater than in the other world’s big deserts (for example, Sahara) and grassland (China) areas,
accounting for 50 to 250 mm in desert and 250 to 500 mm in grassland.5 Therefore, these areas
have some vegetation and the normalized difference vegetation index (NDVI) is quite elevated
[0.10 to 0.25, Fig. 1(b)], compared to similar ecosystems in the other world areas.6 However,
precipitation in nearly 90% of Australia is much below potential evapotranspiration [the differ-
ence is −1200 to −1800 mm, Fig. 1(c)] due to extremely high temperatures during the growing
season,5,7 which limits agricultural activities.

Examination of climate and weather characteristics of Australia reveals that the wheat grow-
ing areas still have a negative balance [−300 to −600 mm, Fig. 1(c)] between annual precipi-
tation and potential evapotranspiration.5 Moreover, during the warmest months temperatures are
relatively high (24°C to 26°C) and up to 10 days during the growing season air temperatures can

Fig. 1 Environmental resources and wheat in Australia: (a) ecosystems, (b) midseason (June 21,
2016) NDVI, (c) shortage of water [difference between annual precipitation (P) and potential
evapotranspiration (PET)], and (d) wheat growing area.
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be 40°C or higher, increasing stress on winter wheat. Therefore, wheat production can be sig-
nificantly impacted by precipitation and temperature extremes. For example, in drought years up
to 55% of wheat production might be lost.3 The weather station network in Australia provides
data that are useful for estimating weather impacts on wheat production, but the number of
stations and their density are limited compared with data sets that can be obtained via remote
sensing [Fig. 1(d)]. Therefore, high-resolution operational satellite data, used before in other
grain producing countries, were tested in Australia for modeling wheat yield and assessment
of model-based yield prediction in advance of harvest. These results are discussed in the paper.

2 Data

This study employs satellite and in situ data. In situ data were presented by mean Australia wheat
production [P, tons (t)] and area [A, hectares (ha)] from 1961 to 2014.1 The principals of data
aggregation were the following: P and A were collected from the reports of farms growing wheat
at the end of each agricultural year and aggregated to the Australia total country level. Country
mean yield (Y, t/ha) was calculated as a ratio of the country’s P∕A. Satellite data were collected
from the National Oceanic and Atmospheric Administration (NOAA) global vegetation health
(VH) data product from 1981 to 2014.6,8 The VH product was developed from the 4-km2

Advanced Very High Resolution Radiometer (AVHRR) flying on NOAA operational polar-
orbiting satellites since 1980 and currently from the Visible Infrared Imaging Radiometer
Suite (VIIRS) flying on the new generation of Suomi National Polar-Orbiting Partnership
(S-NPP) satellite since 2012. Spatial data resolution was 4 km2 and temporal—7-day composite
sampled from each of the 7-day data.8–10 The original AVHRR data were solar radiation in the
visible (VIS, 0.58 to 0.68 μm), near-infrared (NIR, 0.725 to 1.0 μm), and infrared (10.3 to
11.3 μm) spectral bands. The VIIRS similar data11 were VIS (0.600 to 0.680 μm), NIR
(0.846 to 0.885 μm), and IR (10.0 to 12.4 μm), which are different than AVHRR and need
to be adjusted in order to use them together. Pre- and postlaunch calibrated VIS and NIR counts
were converted to reflectance for each pixel and week8 and used to calculate the NDVI ¼
ðNIR − VISÞ � ðVISþ NIRÞ−1 the infrared counts were converted to brightness temperature
(BT). NDVI and BT data were composited over a 7-day period, processed to remove short-
and long-term noise, special climatology was calculated, and the data were converted to
three vegetation health indices (VHI).9,10,12,13

3 Methodology

3.1 Satellite Data

The advances in the application of operational satellites in the recent 35-year have proved that
observed radiances are an excellent tool for monitoring the environmental impacts on agricul-
ture. The initial attempts in the application of remote sensing data for yield modeling and assess-
ment has started from the late 1970s using Landsat/MSS and SPOT/VGT along with NOAA/
AVHRR data.14,15 Most of research used the satellite-derived NDVI16 for yield modeling and
assessment. The results were quite promising since NDVI correlated with total vegetation
dry matter, primary production, and yields.14,17–19 NDVI application has expanded with the
launch of NOAA-7 afternoon operational polar-orbiting satellite with AVHRR sensor on
board. Modeling was initially focused on grain yield in Africa since the continent suffered
from drought and has food security problems in many countries.20–22 With an establishment
of NOAA operational polar-orbiting satellites as a reliable source of data for vegetation
monitoring, NDVI-based yield assessment was applied to other areas (North America, Asia,
and Europe) and was combined with in situ data such as rainfall and some indices, for
example, z-index.18,22–29 Such assessments were typically used by the United Nations’ Food
and Agriculture Organization, Famine Early Warning System, United States Agency for
International Development, European Commission’s MARS project, and others.25 In the
early 1980’s, new VH methodology was introduced, permitting, in addition to NDVI, to use
radiative temperature (BT) and also to use that portion of NDVI and BT, which are controlled
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by weather only.9,10 The VH method has introduced VHI derived from the processed NDVI and
infrared radiance converted to BT. NDVI is based on a combination of reflectance in VIS and
NIR channels. Reflectance in the VIS part of solar spectrum is strongly controlled by chlorophyll
and water contents, and NIR depends on vegetation biomass and vigor and, through them,
on water content.26 Following these biophysical considerations, NDVI was accepted as an
indicator of moisture content in vegetation;9,10,14,17 BT is a characteristic of vegetation thermal
conditions.9,10 Additionally, such data-aided drought detection and monitoring in USA,
China, Greece, Mongolia, Brazil, Poland, Argentina, Morocco, Kazakhstan, Mexico, and
other countries.12,13,30–38 In the strategy of yield modeling was to: (a) derive weather-impact
component in crop yield; (b) derive VHI; (c) correlate weather-related components of yield
and VHI; (d) assess if the time of the strongest correlation coincides with wheat critical period
in Australia; (e) select predictors; (f) construct models; (g) predict wheat yield; and (h) validate
the results in an independent test.

3.2 Yield Data

Since most Australia areas have a very dry climate with deserted type of ecosystems [Figs. 1(a)–
1(c)], wheat is growing in a very limited area of the eastern and southern Australia [Fig. 1(d)].
One of the most important problems to match wheat area with the corresponding VHI is to
calculate wheat area mask in order to collect satellite data for that area. The wheat belt
mask was delineated using Australian Bureau of Statistics 2010 to 2011 Agricultural Census
data.28 Statistical area level 2 (SA2) wheat production data were downloaded for the entire coun-
try. Because the size of each SA2 region differs, the wheat production data were divided by the
area of each SA2 region to remove sampling size bias. The normalized data were then ranked
from the most productive to the least productive SA2 regions. The major wheat-producing areas
were defined as the most productive SA2 regions within the country, which combined account
for 85% of national wheat production. This area coincides with “general purpose wheat (GPW)”
type, which is equivalent to the area of hard wheat.39 The mask shown in Fig. 1(d) was used to
digitize satellite data inside this mask. The delineated GPW mask (AWB 2018) was digitized
(using specific software) in order to collect all 4 km2 pixels inside this area, which was used to
calculate mean VHI values for each year in this research.

Over at least a 20-year period, crop yields often experience a statistically significant long-
term trend (mostly upward) because of technological improvements in crop cultivation (breed-
ing, mechanization, fertilizers, pest/diseases control, etc.). This trend can be approximated by
a polynomial (either linear or nonlinear depending on the longevity of yield series and climate
impacts), which illustrates this change over time. Annual fluctuations in crop yields around the
trend are often a result of weather variations during the growing season from year to year.
In years when the weather is favorable for crop development, yields often exceed the trend.
In contrast, when unfavorable weather occurs, yields often dip below the trend. Following
these considerations, yield time series were divided into two components: technology-related
trend and yield deviation from the technological trend.40,41 The first one characterizes long-
term yield tendency associated with technology change and the second characterizes variation
of yield around the trend due to year-to-year weather fluctuations. The second component is
normally expressed as a ratio of actual to trend-estimated yield.

During 1981 to 2014, wheat yields (Y) in Australia experienced an upward trend [Fig. 2(a)]
due to improvements in the applied agricultural technology. This trend (Yt) was approximated
linearly as a function of year number by the following equation:

EQ-TARGET;temp:intralink-;e001;116;171Yt ¼ 0.1198 � Year − 222.84: (1)

This equation approximates technology-based yield level provided that weather is near-
normal (close to many-year mean). Following this equation, technology provided wheat yield
increase from 1.4 t∕ha in 1981 to nearly 1.8 t∕ha in 2014, adding nearly 22% during 25 years.
In spite of such a strong increase, weather-related variations around the trend, shown in Fig. 2(b),
are very large indicating strong weather contribution to yield variations from year-to-year.
During the most unfavorable weather years, especially those associated with droughts, wheat
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yield might be reduced up to 40% to 50% below the trend (for example, 1982 and 2001).
These deviations (dY) were approximated as40

EQ-TARGET;temp:intralink-;e002;116;439dYi ¼ 100 � ½ðYi − YTiÞ∕YTi�: (2)

There is currently a concern that yield increase is associated not only with agricultural tech-
nology improvement but also with climate changes.29 We investigated NDVI, BT, and rainfall
several decade time series from wheat area of Australia.42,39 Figure 3 presents these results,
showing that neither of these parameters has changed since the early 1980s. Moreover,

Fig. 3 Weekly NDVI, BT during 1982 to 2017 and annual precipitation (1987 to 2017) in wheat
area of Australia.

Fig. 2 Hard wheat yields in Australia during 1981 to 2014: (a) collected annually (Y ) and linear
trend [Yt, Eq. (1)] and (b) deviation from trend [dY%, Eq. (2)].
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Australian Bureau of Meteorology27 calculated temperature anomaly for the entire Australia
during the recent 115 years, showing that the temperature is warming up since 1910. During
the period of our investigation (from the early 1980s), temperature anomaly increased around
0.3°C (from 0.4°C to 0.5°C to 0.7°C to 0.8°C). Desert, occupying 80% of Australia, provides
considerable contribution to this trend. Our BT data in wheat are of Australia do not show any
trend (Fig. 3). Therefore, for the data of our investigation, it is possible to consider that wheat
increase was not associated with moisture (NDVI) and thermal (BT) climate changes.

3.3 Vegetation Health Indices

The principle for constructing VHI stems from the properties of green vegetation to reflect and
emit solar radiation. If vegetation is healthy it reflects little radiation in the VIS part of the solar
spectrum (due to a higher amount of chlorophyll, which absorbs more incident radiation), much
in the NIR part (due to higher water content and specificity of scattering the light by leaf internal
tissues), and emits less in the IR (because the transpiring canopy is cooler). As a result, calculated
NDVI becomes large and the IR-derived BT small. Oppositely, for unhealthy vegetation, the
NDVI becomes smaller (reduced chlorophyll and water amount) and the BT larger (vegetation
surface becomes hotter following reduced transpiration). The VH algorithm described in Kogan9

includes three multilayer steps: (1) data processing, which includes radiance retrieval, pre- and
postlaunch calibration, calculation of VIS and NIR reflectance and IR emission, calculating top
of the atmosphere (TOA) NDVI and BT [TOA was warranted since noise removal in step
(2) eliminated most of atmospheric contamination impacts on NDVI and BT values], adjusting
NDVI and BT between AVHRR and VIIRS sensors;43 (2) noise removal from weekly NDVI and
BT, which includes development of weekly composite NDVI and BT from their daily data,
removing low (weekly) frequency noise, due to clouds, aerosols, elevated moisture, etc. from
annual indices’ time series; removing high frequency noise (difference among the sensors, heavy
aerosols from volcanoes, late equator crossing time, and others) from the indices; and approxi-
mation of their annual cycle; and (3) calculation of VHI from the noise-reduced NDVI and BT to
characterize satellite-based weather component (WC).9,10,34

The last step is theoretically grounded since NDVI and BT quantify two environmental
components (a) spatial difference between productivity of ecosystems and (b) weather-related
variations in each ecosystem. The problem is that the first one is controlled by long-term
environmental factors such as climate, soils, topography, landscape, etc., which further will
be called ecosystem component (EC), and the second is controlled by short-term WC. From
the two components (EC and WC), short-term weather-related NDVI and BT variations control
annual crop productivity. Because the WC is much smaller than the EC, the EC was removed
from NDVI and BT.9,34 Following these considerations, first, multiyear climatology of NDVI and
BT was calculated based on three environmental laws: Leibig’s law-of-minimum, Shelford’s
law-of-tolerance and principle of carrying capacity), and second, annual fluctuations of
NDVI and BT from their climatology were approximated. As a result, NDVI-based vegetation
condition index (VCI), BT-based temperature condition index (TCI), and VCI–TCI combined
VHI were approximated as

EQ-TARGET;temp:intralink-;e003;116;231VCI ¼ 100 � ðNDVI − NDVIminÞ∕ðNDVImax − NDVIminÞ; (3)

EQ-TARGET;temp:intralink-;e004;116;200TCI ¼ 100 � ðBTmax − BTÞ∕ðBTmax − BTminÞ; (4)

EQ-TARGET;temp:intralink-;e005;116;174VHI ¼ a � VCIþ ð1 − aÞ � TCI: (5)

NDVI, NDVImax, and NDVImin (BT, BTmax, and BTtmin) are no noise weekly NDVI and BT
and their 1981 to 2016 absolute maximum and minimum (climatology), respectively; a is
a coefficient quantifying a share of VCI and TCI contribution in the VHI. Since this share
is generally not known for specific crop and location, it was assumed that VCI and TCI
contributions are equal (a ¼ 0.5).

The VCI, TCI, and VHI have numeric values varying from 0 to 100 where zero estimates
exceptional vegetation stress, 100 and 50 estimate favorable and near-normal conditions,
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respectively. Area-average VCI, TCI, and VHI were calculated for the major growing area of
wheat shown in Fig. 1(d). Application of these indices in some countries showed that they
correlate strongly with productivity of crops and pastures and can be used as satellite-based
numerical weather-related indicators of crop yield in advance of harvest.12,13,31–35 Further
discussion is focused on the indices applied to Australia wheat.

4 Correlation and Regression Analysis

According to the modeling methodology, dY-VH (VCI, TCI, and VHI) correlation analysis was
performed. Since Australia is the Southern Hemisphere country the wheat is growing in their
winter. It is planted in May-June (sometimes as late as in early July) and harvested in November-
December. There are several varieties of wheat (w): prime hard w, hard w, premium white w,
noodle w, durum, and GPW. The GPWarea is the largest and equivalent to hard wheat.39 Figure 3
shows correlation dynamics of dY versus the indices during Australia’s wheat year (January
through December). Our interests were to investigate (a) the strength of dY-VCI, dY-TCI,
and dY-VHI relationship, using Pearson correlation coefficients (R) and (b) if the strongest cor-
relation (R ≥ 0.7) coincides with wheat’s critical period (∼2 to 3 weeks before and after head-
ing). The analysis of Fig. 4 indicates that in an early period of wheat season, which is January to
April, the correlation for all three VHI is low (R ¼ 0.2 to 0.3). It increases sharply during the
emergence and green biomass accumulation (after May to June), reaching maximum at weeks 38
to 40, September to October. Thermal conditions (dY correlation with TCI) are as important as
moisture (dY-VCI) and moisture-thermal combination (dY-VHI). The importance of thermal
conditions starts 2 weeks later compared to moisture. The maximum dY correlation with
TCI in Fig. 4 comes to the weeks 40 to 41, which coincides with the critical period of
wheat development (around heading and flowering). During this period, good water supply
and cooler temperatures stimulate larger wheat yield. Following the figure, a positive correlation
between dY and VHI indicates that when yield is below trend, VHI have values below 40
indicating moisture stress (lack of water) and thermal stress (hotter weather). Oppositely,
above trend yield occurs when VHI are above 60 (favorable conditions, when weather is
wet and cool). After September to October the dY-VH correlation is gradually declining.

EQ-TARGET;temp:intralink-;e006;116;369

dY ¼ −1.061þ 0.0036 � VCI36 þ 0.0036 � VCI37 þ 0.0039 � VCI38 þ 0.0039 � VCI39
þ 0.0038 � VCI40RM ¼ 0.799; StDev ¼ 0.242; (6)

EQ-TARGET;temp:intralink-;e007;116;319

dY ¼ −0.726þ 0.0029 � TCI38 þ 0.003 � TCI39 þ 0.003 � TCI40 þ 0.003 � TCI41 þ 0.003

� TCI42RM ¼ 0.684; StDev ¼ 0.300; (7)

EQ-TARGET;temp:intralink-;e008;116;274

dY ¼ −0.982þ 0.0035 � VHI36 þ 0.0038 � VHI37 þ 0.0038 � VHI38 þ 0.0038 � VHI39
þ 0.0038 � VHI40RM ¼ 0.777; StDev ¼ 0.276; (8)

EQ-TARGET;temp:intralink-;e009;116;229

dY ¼ −1.115þ 0.0168 � VCI38 þ 0.0144 � TCI40; R ¼ 0.785; RM ¼ 0.801

StDev ¼ 0.239: (9)

Fig. 4 Correlation time series between annual hard wheat dY and weekly VCI, TCI, and VHI in
Australia’s hard wheat area.
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Finally, regression Eqs. (6)–(8) have been developed relating dY with each index for the most
correlated weeks. All three have high multiple correlation coefficient (RM). Moisture conditions
(VCI) having higher correlation are the most important and thermal conditions are slightly less
(the lowest RM). Meanwhile, their combination (VHI) has a high correlation and a very good
predictive power. At the same time, it is important to mention that following regression coef-
ficient values contribution of different weeks’ indices into final model prediction is almost equal.
Therefore, additional model was developed with two variables only VCI and TCI for the weeks
of their highest correlation [Eq. (9)]. The statistical estimate of the Eq. (9) shows that its per-
formance is similar (RM ¼ 0.785 and StDev ¼ 0.256) to dY-VCI [Eq. (6)] and dY-VHI Eq. (8).

Equations (6)–(8) analysis indicates that the contribution of indices of the neighboring weeks
are practically equal. Moreover, the neighboring weeks indices are collinear, which might lead to
some errors when models are applied for yield prediction. Therefore, for each index (VCI, TCI,
and VHI), weekly variables with the highest Pearson correlation coefficient (PCC) were com-
bined together with the weights corresponding to the value of the dY-VH PCC for the corre-
sponding weeks. Following these considerations, four models were developed
EQ-TARGET;temp:intralink-;e010;116;445

dY ¼ −1.063þ 0.0189 �VCI36−40RM ¼ 0.776

VCI36−40 ¼ 0.189 �VCI36 þ 0.199 �VCI37 þ 0.205 �VCI38 þ 0.205 �VCI39 þ 0.201 �VCI40;
(10)

EQ-TARGET;temp:intralink-;e011;116;378

dY ¼ −0.726þ 0.0148 � TCI38−42RM ¼ 0.684

TCI38−42 ¼ 0.196 � TCI38 þ 0.200 � TCI39 þ 0.203 � TCI40 þ 0.202 � TCI41 þ 0.200 � TCI42;
(11)

EQ-TARGET;temp:intralink-;e012;116;316

dY ¼ −0.982þ 0.0186 �VHI36−40RM¼ 0.777

VHI36−40 ¼ 0.196 �VHI36 þ 0.200 �VHI37 þ 0.203 �VHI38 þ 0.202 �VHI39 þ 0.200 �VHI40;
(12)

EQ-TARGET;temp:intralink-;e013;116;254

dY ¼ 1.175þ 0.0206 � VCI38TCI42RM ¼ 0.755

VCI38TCI42 ¼ 0.54 � VCI38 þ 0.46 � TCI42: (13)

Statistical assessments of these models’ performance do not show many differences with the
previous models [Eqs. (6)–(9)]. Figure 5 demonstrates Pearson correlation (R) between dY and
the multiweek blended VHI. The correlation for most of the indices is strong (R ≥ 0.7).
However, it is mostly similar to the previous four models [Eqs. (6)–(9)].

5 Independent Model Testing

One of the most important procedure with dY-VH modeling is model validation. Therefore, the
last four models [Eqs. (10)–(13)] were tested independently for the accuracy of predictions.
Considering a relatively short period of the investigated data, the “Jacknife” (or “one-out,
one-in”) technique was used for independent model testing. Following this technique, years

Fig. 5 Scatter plots of hard wheat dY versus weekly indices (VCI, TCI, VHI, and VCI-TCI), when
several weeks during crop’s critical period in Australia were combined together [Eqs. (10)–(13)].

Kogan et al.: Space-based vegetation health for wheat yield modeling and prediction in Australia

Journal of Applied Remote Sensing 026002-8 Apr–Jun 2018 • Vol. 12(2)



were removed one-by-one from the data set, a new equation was developed (without the elim-
inated year’s data) and this equation was applied to predict dY of the eliminated year. This pro-
cedure was performed 33 times and dY was calculated for each year not included in model’s
development [Eqs. (10)–(13)]. Finally, Eq. (7) was used to calculate simulated (predicted) wheat
yield (Y) based on independently VH-simulated dY and approximate Yt [Eq. (6)]. Finally, the
independently predicted (PY) and measured (MY) wheat yield were statistically evaluated
(Table 1) and showed fairly good independent performance.

Figure 6 shows time series of hard wheat’s actual yield (blue line) versus independently
evaluated (using “Jacknife” approach) yield (black line) from model Eq. (13) when both mois-
ture (VCI) and thermal (TCI) indices were used as predictors. Coincidence between the inde-
pendently evaluated model’s yield prediction and the collected wheat yield is very decent,
especially good coincidence for extreme yield fluctuations. Since the prediction is provided
in mid-October, which is 1 month ahead of harvest, there is some lead time for development
of an advanced marketing strategy.

6 Conclusions

This globally universal satellite-based VH technique for monitoring VH, including drought
detection and impact assessment, was used to model wheat yield in the principal growing
areas of Australia. Correlation and regression analysis during 1981 to 2014 showed a strong
relationship between wheat yield anomaly (deviation from technological trend) and VCI,
TCI, and VHI (weekly weather-related components of the environment) during the period of
highest wheat yield sensitivity to weather (critical period). This period starts 2 to 3 weeks before
and ends up 2 to 3 weeks after wheat heading. The developed models provide prediction of
wheat yield 1 to 2 months in advance of harvest. This paper proved again that the VH meth-
odology can be applied to many different environments. The advance yield prediction in
Australia from NOAA operational satellites can help the agricultural community plan in advance
wheat delivery to the international market and also help countries address food security issues.

The VHI and historical data are delivered every week to the following NOAAWEB,44 which
shows 37-year global, continental, country (192), and the first-order administrative regions

Table 1 Statistics of Eqs. (10)–(13).

Model # R StDev Mean difference

Model (10) 0.804 0.242 0.0028

Model (11) 0.683 0.300 0.0045

Model (12) 0.737 0.276 0.0033

Model (13) 0.785 0.256 0.0018

Fig. 6 Australia’s hard wheat yields during 1981 to 2014: collected and predicted by Eq. (13)
model.
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(around 4000) VH, drought (start/end, area, intensity, and origination), moisture and thermal
conditions, moisture and thermal crop stress, fire risk potential, and other indicators useful
for real-time monitoring and climate services. Nearly 12,000 (depending on the season)
users access this WEB site every month. Finally, the VH-based crop monitoring method is
currently being improved (providing 1 km2 data) with observations from Suomi NPP (S-NPP),
launched in 2011, and will continue this improvement with the November 2017 lunch of
NOAA-20, satellite (providing 0.5 km2 data). The new generation of polar-orbiting satellites
is scheduled to be in space until the mid-2030s and will considerably improve VH-based assess-
ments (crop and pasture monitoring, drought detection, impacts assessments, and prediction of
food security in Africa and Asia).

Disclaimer

Manuscript content is solely the opinion of the authors and do not constitute a statement of
policy, decision or position on behalf of NOAA or U.S. Government.
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