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Abstract. Increasing demand for food in East Africa has created a shift to utilize wetlands for
food production. Lack of spatial information hampers sustainable use of the Kilombero Valley
floodplain. We take advantage of multispectral data from RapidEye, Landsat-8, and Sentinel-2 to
derive high temporal resolution maps along three hydrological zones of the Kilombero Valley,
assess seasonal land cover dynamics, and relate these dynamics to groundwater measurements.
The depth of groundwater increases from June and declines from December, consistent with the
end and the beginning of the rainy season, respectively. Bare land cover over the study area was
45% to 57% and increases to 62% to 69% as the season shifts from rainy to dry seasons while
vegetation coverage, which was 34% to 47%, decreased to 25% to 27%. During the dry season,
68% to 81% of the total vegetation is within the riparian zone indicating the hydrological con-
ditions favor plant growth. Vegetation growth in the fringe and middle zones mainly relies on
precipitation whereas that in the riparian zone relies on saturation from the river. Our findings
exemplify the relationship between seasonal land cover change and hydrological conditions and
contribute to improved understanding of the spatial–temporal land cover dynamic in the
Kilombero floodplain, required for planning sustained use of the wetland. © The Authors.
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1 Introduction

Sub-Saharan Africa is expected to account for 20% of the world population by 2050.1 Land
therefore remains under increasing pressure driven by urbanization and population growth.
Subsequently, the need for land to expand agricultural production has led to deforestation
and encroachment in protected areas such as wetlands, negatively affecting the regulatory func-
tions of the ecosystem. In addition, agricultural production systems are adversely affected by
climate variability and climate change causing extreme weather events (increase of amount and
variability of rainfall and increase of temperature) and changing seasons.2–4 Low crop produc-
tivity due to water stress and degradation of soil fertility is among the consequences of the chang-
ing climate.

Tanzania is an agricultural country with 80% of the population depending on subsistence
agriculture.5 Kilombero Valley was identified as a potential agricultural area to enhance food
security and meet the SDG 2.6–8 A large seasonally flooded alluvial floodplain is within the
Kilombero Valley. Expansion of agricultural land in the floodplain is restricted due to the exist-
ence of protected areas, i.e., the Kilombero Game Controlled Area, the Selous Game Reserve,
and the Udzungwa National Park. Furthermore, changing climatic patterns affects agricultural
production causing extreme periods of dryness, floods, and changes in seasonality.

*Address all correspondence to: Fridah Kirimi, E-mail: fridahkirimik@gmail.com

Journal of Applied Remote Sensing 026027-1 Apr–Jun 2018 • Vol. 12(2)

https://doi.org/10.1117/1.JRS.12.026027
https://doi.org/10.1117/1.JRS.12.026027
https://doi.org/10.1117/1.JRS.12.026027
https://doi.org/10.1117/1.JRS.12.026027
https://doi.org/10.1117/1.JRS.12.026027
mailto:fridahkirimik@gmail.com
mailto:fridahkirimik@gmail.com


The increasing demand for food, shortage in arable land, and unpredictable climate con-
ditions in East Africa have recently created a shift from upland cultivation to Kilombero
Valley. This highlights the need for wetland monitoring and the generation of seasonal
land cover maps for sustainable conservation policies.9,10 Within the study area, few studies
on the status of the wetlands exist. Monitoring spatial phenomenon through ground survey
method is tedious and not cost effective. With their synoptic view, spectral and temporal capa-
bilities of remote sensing sensors provide an alternative timely and cost-effective method of
data acquisition.

Remote sensing of wetlands in East Africa has had a long history of study. The evaluation of
vegetation dynamics at regional scale over East Africa with Advanced Very High Resolution
Radiometer (AVHRR) data for 1983 to 1984 revealed that NDVI is suitable in determining phe-
nology in areas of high spatial variability.11 Haack12 reported an increase in sedimentation and
decreased water levels in Lake Turkana due to increased agriculture and livestock farming
between the years 1979 and 1989. AVHRR was applied in assessing the land cover changes
in Mara National Reserve ecosystem in Kenya for the periods between 1981 and 1994.
Reports indicated that expansion of agriculture within the buffer of the national park has resulted
in decreased vegetation though the reserve is stable in terms of land cover changes since it is a
protected area.13 Within the Lake Baringo catchment in Kenya, pressure due to increasing human
livestock population was reported to cause reduction in forested areas and increased sediment
deposition between 1986 and 2000.14

More recently however, within the Kilombero Valley, land cover change was assessed by
Ntongani et al.15 using local knowledge. From their research, the local population reported a
conversion of forested areas and grasslands to cultivated areas for a period of more than 30
years. Recently, Leemhuis et al.16 analyzed long-term land changes (1994 to 2004 and 2004
to 2014) in the whole Kilombero Valley while Seki et al.10 assessed land cover changes
(1990, 1998, and 2011) in the Kibasira Swamp in the Kilombero Valley with both studies
revealing an increase in agricultural land. While these studies cover periods between 8 and
13 years, they are relevant in portraying the long-term changes. The land cover dynamic within
1 year is important for determining the suitable cropping seasons in this rainfed agricultural
region. Understanding the land cover dynamics will therefore aid in recognizing the short-
term land use patterns subsequently promoting monitoring programs to ensure sustainable
use of the wetland to increase agricultural production.17,18 Furthermore, to our knowledge,
there is no published work on land cover mapping at high temporal resolutions over East
African wetlands. Knowledge on seasonal land cover is important to farmers as it aids in under-
standing the patterns experienced throughput the year within the wetland and hence aid in
identification of times and locations with optimum vegetation growth.

Groundwater provides base flow for rivers, dilutes effluents, and is a source of water for
domestic and commercial uses.19 A strong feedback between groundwater and land use exists
influencing water availability for plants and groundwater recharge.20–23 With changing climate,
the value of groundwater is expected to increase to sustain agriculture and domestic use needs.24

A review of land cover relation to groundwater in Ref. 25 revealed a need for site-specific
groundwater monitoring networks due to the highly varied environmental and geological land-
scapes of Africa. The importance of the land use-groundwater relation is emphasized due to the
increased demand for water to meet the needs of the rising population.25

In this study, analysis of multispectral imagery (RapidEye, Landsat, and Sentinel-2 images
spanning from 2013 to 2016) was conducted to map seasonal land cover variability. The selected
optical images played complimentary roles as RapidEye has a high spatial resolution but is costly
while Sentinel-2 and Landsat-8 data are both freely accessible. Landsat, however, has a longer
time series compared to Sentinel-2, which was launched in 2015. First, RapidEye images were
selected due to the availability of the red edge band capable of detecting drastic reflectance
changes in vegetation.26,27 The open access, free of charge, and consistent availability of
European Space Agency’s high-resolution Sentinel-2 images favored their selection as the sec-
ond set of imagery for the study. The subhumid wetland lies in a tropical region experiencing the
presence of clouds exacerbated during the rainy season witnessed from March to May. To
address the problem of cloud coverage, the third set of images used was Landsat-8 to densify
the acquisitions acquired over the study area despite their lower spatial resolution.
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The supervised nonparametric statistical learning technique support vector machine (SVM)
was applied in the land cover characterization.28 The concept of SVM is the generation of hyper-
planes that best differentiate the input features. Learning involves iterative selection of optimal
boundaries minimizing the misclassification. SVMs ability to give good accuracies despite lim-
ited training samples prompted its use for the research.28,29 Moreover, the ability to define kernels
and to map the raw data into higher dimension space thus increasing separability between classes
favored the use of SVM over other classification algorithms.30

In addition to mapping seasonal land cover dynamics, other vegetation dynamics explanatory
variables such as depth to groundwater and meteorological conditions are assessed.31 The infor-
mation obtained is important in understanding spatiotemporal patterns of water availability that
drive plant growth.

The specific objectives of this study are:

• To assess seasonal land cover changes using multitemporal multispectral satellite imagery
with an aim of understanding how land cover reflects the impact of water balance
components.

• To generate cumulative seasonal land cover maps.
• To evaluate the temporal patterns of precipitation and spatiotemporal patterns of land cover

and their relationship to depth to groundwater along the hydrological zones of a floodplain.

2 Materials and Datasets

2.1 Study Area

The Ifakara study site is located in an alluvial fan within the Kilombero Valley in Tanzania
(Fig. 1) with a coverage of 13 km × 5 km. The study area was chosen because of the high vari-
ability of water tables with extensive flooding during the rainy season, subsequent land use
patterns,32 and its location within the study area of the project GlobE Wetlands of East Africa.33

Moreover, the alluvial fan at Ifakara study site acts as a natural dam that retains water during the
rainy season. To the north west of Ifakara are the Udzungwa Mountains and to the south are the
Mahenge Highlands. Natural forests cover the slopes of the Udzungwa and Mahenge mountains.
The region experiences bimodal rainfall with an annual rainfall of 1200 to 1400 mm and a mean
annual temperature of 23°C to 25°C.34 The main subsistence farming practiced in the area
includes maize in relatively dry conditions and rice in naturally inundated areas. Both large-
and small-scale farmers practice sugarcane farming. Fishing is an important economic activity,
which provides food and a source of livelihood for the local population. Forest products, brick
making, and livestock keeping are among other economic activities taking place in the
wetlands.35 The Kilombero Valley is also an important tourist destination for those visiting
the Udzungwa National Park, the Mikumi National Park, and the Selous Game Reserve.

The hydrological zones were subdivided based on extent and duration of flooding during the
long rainy season.36 The fringe zone is not flooded; the middle zone is flooded on a regular basis,
whereas the riparian zone is completely flooded during the long rains. The riparian fields are
located closest to the Kilombero River, the middle fields located between riparian and fringe
fields have elevation slightly higher than the riparian fields, and the fringe fields are located
furthest from the river at a higher elevation compared to the other two test sites. Elevation
increases with increasing distance from the river. Subsequently, the flooding depths are higher
in the riparian zone. This is important as planting rice in the riparian zone implies the risk of
drowning the crops.

2.2 Datasets

2.2.1 Satellite data

The multispectral data used in this study comprised of two high-resolution (RapidEye and
Sentinel-2) and the medium resolution (Landsat) imagery (Fig. 2). Classification was performed
on each individual image to generate a series of land cover maps on the dates of image
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acquisition. RapidEye has five spectral bands with at nadir pixel resolution of 6.5 m × 6.5 m

resampled to 5 m × 5 m. The data acquired from Ref. 37 were level 1B in which the radiometric
and sensor corrections have been applied. RapidEye images have a resolution of 5 m for all
bands hence no resampling was applied. Fourteen level 1B RapidEye scenes from August
2013 to June 2015 were analyzed.

Fig. 2 Temporal distribution of the RapidEye, Landsat, and Sentinel-2 image acquisitions.
Percentage of cloud coverage of the images is indicated.

Fig. 1 Location of the Ifakara study site within the Kilombero Valley, Tanzania. The riparian,
middle, and fringe zones are hydrological zones categorized based on the flooding pattern during
the rainy season. Elevation information, piezometer (PZ) locations, and corresponding study site
photos taken April 26, 2015. The location of the rain gauge installed at IHI is indicated as blue spot.
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Nine Sentinel-2 images were downloaded from Ref. 38. The images have a spatial resolution
of 10 m with acquisitions from December 2015 to August 2016. Sentinel-2 has 13 bands that
include aerosol detection bands, vegetation classification bands, water vapor, and cloud discrimi-
nation bands.39 In this research, bands 2 to 8 designed for vegetation classification were utilized.
Sentinel-2 bands 2, 3, 4, and 8 have a 10-m resolution while bands 5, 6, 7, and 8A have a 20-m
resolution. Nearest neighbor resampling was performed on the 20-m bands to obtain an image
with uniform 10-m resolution.

Seven Landsat images were downloaded from the USGS Earth Explorer platform.40 For the
period spanning 2013 to 2016, bands 2 to 8 were used in the analysis as the other images had a
big cloud coverage. Landsat Operational Land Imager multispectral bands 1 to 7 have 30-m
spatial resolution whereas panchromatic band 8 has a resolution of 15 m. Nearest neighbor
resampling was performed on the 15-m band for uniformity in the Landsat bands. Resampling
to a higher and common pixel size for the three sets of imagery would introduce a smoothing
effect and a subsequent loss of spatial accuracy and the ability to discriminate features. The
spectral properties of the bands in the classification are presented in Fig. 3.39,41,42

The spectral band selection (visible, near-infrared, short wave infrared) is reported to be
optimal bands in wetland mapping due to their spectral response on the electromagnetic
spectrum. The strong reflectance in the red edge and near-infrared related to plant biochemical
properties are suitable for mapping vegetation.43

2.2.2 Ground data collection

Study design. During the data collection campaigns, the fields had rice plantations with
varying plant heights (Fig. 1). The plantation in the fringe had heights of 1 to 1.5 m, the middle
between 0.5 and 1 m while the lowest heights were in the Riparian ranging from 0.3 to 0.7 m.
Plantations in the riparian fields were submerged by floods to a height of 0.5 m. Scattered maize
plantations were also present in the riparian fields.

Training and validation data. Knowledge of study area, false color composition (FCC),
and NDVI images generated from the optical images formed the basis of generation of the train-
ing and validation points. Utilization of images collected in the past with no corresponding field
data and nonaccessibility of some areas within the wetland necessitated the inclusion of NDVI
and FCC in the identification of land cover class. FCC used for clear identification of the classes

Fig. 3 Attributes of the spectral bands of the sensors used in the classification of the wetland. OLI,
operational land imager; MSI, multispectral instrument.
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under study was NIR:R:G, hence for RapidEye 5:3:2, for Sentinel 8:4:3, and for Landsat 5:4:3.
Land cover type auxiliary information from global positioning system (GPS) data (March to
May 2015 and December 2015 to February 2016) and unmanned aerial vehicle (UAV) photos
(May and September 2014 and February 2015) were collected to create a database for generating
the training and validation data for the 2013 to 2016 thematic maps.

A LumixGX 1 camera was mounted on an UAVand the MaVinci Desktop software was used
for flight planning. The flight periods were May 29 to June 1, 2014, September 24 to 26, 2014,
and the last flight campaign was from February 27 to March 2, 2015. Postprocessing of the
geotagged UAV photos was performed with the Agisoft PhotoScan software.

Training and validation sample points identifying the land cover classes were determined
with the Garmin Etrex 30 GPS with horizontal positional accuracy of <3 m.44 Points located
in a clouded area on the images were removed. Acquisition time for the satellite images, the
GPS points, and the UAV photos varied. Field data points were directly obtained from GPS
points and others selected from UAV photos close to an image acquisition. Random sampling
divided the points into training (70%) and validation (30%). However, in some cases, there was
no field data (GPS points or UAV flights) corresponding or taken close to image acquisition date
while other areas were inaccessible. Hence, NDVI was computed and random sampling per-
formed on the each of the NDVI images to generate 80 to 150 reference points. The sampling
design tool on ArcGIS 10.3.1 randomly subdivided these points into training (70%) and vali-
dation (30%). Therefore, ∼2∕3 (50 to 100) and 1/3 (25 to 50) points were available for training
and validation, respectively. In such cases, inference from NDVI ranges, FCC and local knowl-
edge of the study area were used in identifying the land cover classes.

Monitoring depth to groundwater. Despite the large size of the Kilombero Valley, the
study site focused on a small area over which the piezometers were installed. Depth to ground-
water was monitored hourly by pressure sensors installed in 10-cm-diameter piezometers at each
hydrological position from March 2015 to June 2016.45 This research included observations
from nine piezometers (Fig. 1). Piezometers 1, 2, and 4 were located in the riparian zone,
piezometer 3 was located a few meters from River Kilombero, piezometer 6 was in the middle
zone, and piezometers 10 and 14 in the fringe zone while piezometers 12 and 13 were located on
higher regions above the study site. In addition to monitoring depth to groundwater, a rain gauge
station (Fig. 1) installed at the Ifakara Health Institute (IHI) within the floodplain provided daily
precipitation data.

3 Methods

3.1 Work Flow for Satellite Image Processing

The RapidEye images were orthorectified using the 1-arcsecond Shuttle Radar Topography
Mission Digital Elevation Model (SRTM DEM) to ensure they are located in their corresponding
x and y locations. The orthorectification was performed in Erdas imagine inbuilt rational poly-
nomial coefficients that relate image and ground coordinates taking into account the satellites
orbital position. Atmospheric correction (ATCOR) model removes the influence of the atmos-
phere, solar illumination, sensor viewing geometry, and terrain information from optical images
in the extraction of physical earth surface parameters.46 This is important especially when com-
parison of images acquired from different satellite sensors is required. Atmospheric correction
implemented with ATCOR 2 in Erdas imagine applies for multispectral imagery acquired over
flat terrain. Bidirectional reflectance distribution (BRDF) defines the reflectance of a target as a
function of Sun and sensor viewing geometry. The BRDF effect is reported to have impacts on
reflectance.47 In small, flat areas with undulating topography, however, the BRDF effect is small
as differences in illumination are negligible and therefore BRDF correction was not applied since
our study site is 13 × 5 km with an elevation difference of ∼170 m (Fig. 1).48

Cloud coverage greatly affects optical imagery over the tropical region (Fig. 2). Cloud
removal process involved setting thresholds of brightness, second, selecting of areas identified
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as either clouds or cloud shadows was performed by application of the thresholds, third, gen-
erating masks from the cloud and cloud shadow layer, and finally, clipping the RapidEye images
to eliminate the cloud areas. Cloud masking of top of atmosphere Sentinel-2 and Landsat was
performed using the F-mask.49 Orthorectification and coregistration followed in the processing
chain. Ground control points and Google Earth images were references for the coregistration
implemented by autosync tool in Erdas imagine assessed. The positional accuracies were
<2 m for the Sentinel-2 and <5 m for Landsat. Clipping to the size of the study area extent,
13 × 5 km as shown in Fig. 1 was the final step in preprocessing.

3.2 Classification

SVM is a supervised machine-learning algorithm that separates classes by generating hyper-
planes for optimal class separation. The method was selected as it has resulted in high accuracies
in monitoring wetland dynamic.50,51 The radial basis function that fits data in a higher dimen-
sional space to increase class separability was implemented in EnMap toolbox.52 All optical
images were classified individually using the training data after which performance metrics
were assessed by computing the overall and Cohen’s–Kappa coefficient.53 Separation of training
and validation points offered an independent unbiased accuracy assessment. Figure 4 shows the
processing chain of the optical images.

The analysis was as follows:

• SVM classification algorithm was run on the series of multispectral images: RapidEye,
Sentinel-2, and Landsat. Built up areas, bare land, vegetation cover, and water extent cov-
erage were the classes of interest. The tropical region is vastly affected by clouds thus a
separate class of all masked out areas was included. The total area of classification was
5000 ha. The sensing period for the RapidEye ranged from August 2013 to June 2015 and
for Sentinel-2 from December 2015 to August 2016. To increase the temporal resolution of
the time series, cloud-free and minimum-clouded Landsat images acquired within the
3-year study period were included in land cover mapping. The RapidEye, Sentinel-2,
and Landsat 5-, 10-, and 30-m resolution were retained for the classification as resampling
to a higher pixel size will lower the classification accuracy.54

• The validation dataset was used to calculate overall and Kappa coefficient as accuracy
assessment tests for the classification. The overall accuracy is the percentage of correctly
classified pixels divided by the total number of test pixels. The Kappa coefficient estimates
the error reduction generated by the classier verses the error of a random classifier.53 It is
given as

Fig. 4 Data process flow. Auxiliary training and validation points for the SVM classification were
obtained using the UAV photos and the GPS points.
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EQ-TARGET;temp:intralink-;e001;116;735K̂ ¼ pc − pe

1 − pe
; (1)

in which K̂ is the Cohen’s–Kappa coefficient, pc is the correct classification giving the
observed level of agreement, and pe is the expected agreement by chance.

• Cumulative seasonal land cover maps were generated from all the classified images to
identify the spatial distribution of the most frequent classes over the study area. The spatial
resolution of the classified RapidEye images was 5 m, Sentinel-2 was 10 m, and Landsat
was 30 m. All the maps were resampled to a common resolution of 5 m. Resampling to the
smallest resolution ensured that the classes assigned to the pixels are retained since the
bigger pixels in Landsat and Sentinel-2 are subdivided into smaller sizes. The resampled
classified maps were separated into individual classes, i.e., bare, water, vegetated, and
built-up. A stack was generated for each land cover class. The number of occurrence
of each class through the stacked image was then calculated. This gave the frequency
of detection of the given class presented as the cumulative seasonal maps, whose resolution
is 5 m. The study selected images taken between January and June (time epoch 1 in the
rainy season) and July and December (time epoch 2 in the dry season) in generation of the
frequency maps.

• Groundwater levels were qualitatively related to land cover as an additional validation
method explaining the occurrence of land covers and groundwater levels in the dry
and wet seasons. Ratios generated were constrained to one such that bareratio þ
vegetatedratio þ waterratio þ builtupratio ¼ 1.

• The percent land cover within the riparian zone was computed as follows:

EQ-TARGET;temp:intralink-;e002;116;463percentage land cover ðxÞwithin riparian zone

¼ land cover ðxÞ in the riparian zone

total land cover ðxÞ in the whole study region
× 100: (2)

3.3 Geostatistical Analysis of Depth to Groundwater

A limited number of piezometers observations provided groundwater levels information. To
obtain values for all areas in the study site, the piezometer readings were used in generation
of groundwater surfaces. For interpolating the groundwater level measurements, a number of
methods are available from which geostatistical methods are the most sophisticated approaches
as they analyze the spatial structure of the data. This involves estimation and modeling of spatial
correlation (covariance or semivariance)55,56 of measured point data. The average squared differ-
ence of data points separated by lag distance h defines the semivariance γðhÞ.

EQ-TARGET;temp:intralink-;e003;116;286γðhÞ ¼ 1

2NðhÞ
XNðhÞ

i

f½zðsiÞ − zðsi þ hÞ�2g; (3)

where NðhÞ is the number of pairs of observations separated by distance h, zðsiÞ is the measured
value at si, and zðsi þ hÞ is the measured value at si þ h.

The exponential variogram was fitted

EQ-TARGET;temp:intralink-;e004;116;199γðhÞ ¼
�

0

C0þ C1ð1 − e−h∕aÞ
h ¼ 0

h > 0
; (4)

where C0 ≥ 0 is the nugget variance and C1 is the structural variance (C1 ≥ C0), C0þ C1 is the
sill, and a is the range.

The nugget variance represents the small-scale variation due to random factors whereas the
sill gives an indication of the total variance of the system. The sill consists of the random and
structural variance. Structural variance can be caused by intrinsic factors such as climate, parent
material, topography, and soil type.57 The degree of spatial dependence indicates the level of
correlation between the measured point data different spatial locations
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EQ-TARGET;temp:intralink-;e005;116;735degree of spatial dependence ¼ C0
C0þ C1

: (5)

A spatial dependence <25% indicates a strong spatial correlation between the groundwater
levels measured at different locations, 25% to 75% describe a moderate correlation, and a value
>75% indicates a weak spatial dependence.58 Monthly groundwater raster maps were generated
for the period under study.

4 Results and Discussion

4.1 Time Series of Land Cover Characterization Using Multisource Imagery

The SVM classification algorithm was applied to multitemporal multispectral RapidEye,
Sentinel-2, and Landsat satellite imagery (Figs. 5 and 6). The overall classification accuracies
for the RapidEye, Sentinel-2, and Landsat ranged from 70% to 96, and the Cohen’s–Kappa
coefficients ranged from 0.61 to 0.95 (Table 1).

Despite the varying spatial resolution for Landsat (30 m), Sentinel-2 (10 m), and RapidEye
(5 m), the overall accuracies were all above 70%. The potential of each of the satellite sensors in
delineating bare, vegetated, water, and urban areas portrays its use in inventorying and monitor-
ing land cover over the study area. The probability that the locations with bare, vegetated, urban,
and water on the ground are correctly classified in the map (user accuracy) ranged from 0.48 to 1,
0.55 to 1, 0.83 to 1, and 0.64 to 1, respectively. The probability that the bare, vegetated, urban,
and water in the classified map is well represented on the ground (producer accuracy) ranged
from 0.5 to 1, 0.33 to 1, 0.93 to 1, and 0.4 to 1, respectively. The highest user and producer
accuracies were for the vegetated and water classes. There was confusion in identification of the
urban and bare classes attributed to building material of many buildings made from earthen
bricks. Many roads are also earth roads and hence delineating those from the bare fields pre-
sented a challenge. The maps developed show temporal changes in land cover patterns providing
seasonal change information for land use planning. Different climate-smart technologies can be
adopted depending on the spatial seasonal patterns from the land cover maps and time of year.

The current study was limited to general land cover classes and did not assess crop type
mapping. The major challenge was the small sizes of the farms having varying crop types.
Object-based classification offers a solution to crop type and field-scale mapping. However,
it would require very high-resolution imagery capable of delineating the actual field boundaries.

The use of different sensors with slightly varying number of spectral bands and range is a
possible cause of error in classification (Fig. 3). To minimize further differences and likely bias
in the data acquired from the three satellite sensors, the same classification algorithm was
performed on each individual image. The interpretation of each image is independent of the
subsequent images. Varying spatial resolution introduces uncertainties particularly for the
Landsat 30-m resolution images. High-resolution satellite imagery is preferable for classification
of small sites with small and heterogeneous field sizes and small features present like in the
current study.54 Features with sizes smaller than the low Landsat resolution pixels were not
distinguishable.

The bare cover class is >70% in the months of August to October, which coincides with the
dry season. It is a common practice for the farmers to clear their fields by burning in preparation
for the subsequent short rainy season.

From December to February, the bare land coverage decreases as the rainy season begins.
Flooding along the Kilombero River is a periodical event although the extent varies from year to
year (Fig. 5). In June, bare land coverage increases due to sediment accumulation following
receding waters after the floods. The location of vegetated land cover shifts depending on
the season. In the rainy season, areas outside of the riparian zone are vegetated while vegetation
coverage within the riparian zone increases in the dry season. The built-up class remains constant
with the slight variations due to changes in masked out areas. The road heading to Kilombero
River is slightly higher than the surrounding area. During the rainy season, flooding partly sub-
merges this road. As a result, the width of the road varies between the rainy and the dry seasons
as seen on the optical images. During the dry season, the road width remains constant and is

Kirimi et al.: Assessing seasonal land cover dynamics in the tropical Kilombero. . .

Journal of Applied Remote Sensing 026027-9 Apr–Jun 2018 • Vol. 12(2)



clearly visible in the optical images. Cloud coverage ultimately prevents that the areas masked
out due to clouds and cloud shadows fall in any other class, thus, land cover change analysis was
not possible (Fig. 2).

The farmers in the study area mainly practice agriculture dependent on rain. The major land
cover in the dry season between June and October is bare. High temperatures and low soil water
content attribute to the bare land cover. At the beginning of the rainy season in December, the
vegetation cover increases and reaches a peak in May to June (Fig. 5). Areas in the north of the
study area not affected by floods are vegetated in this time. Hence, images acquired in May to
June indicate that there is vegetation in the northern sections. Images acquired in August indicate

Fig. 5 Classified images of the rainy (May) and dry seasons (August). The masked areas (white)
are due to cloud coverage; the 225-m contour line shows the delineated riparian zone. RapidEye
has a resolution of 5 m, Sentinel-2 10 m, and Landsat 30 m.
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Fig. 6 Areal coverage of land classes in hectares. The spacing between acquisitions indicates the
inconsistent optical image availability.

Table 1 Accuracy assessment of the SVM classification.

Image date Sensor
Overall
accuracy

Kappa
coefficients Image date Sensor

Overall
accuracy

Kappa
coefficients

August 25,
2013

RapidEye 93.8 0.92 May 17, 2015 RapidEye 81.6 0.77

September
28, 2013

RapidEye 94.1 0.93 June 6, 2015 RapidEye 87.9 0.85

February 3,
2014

RapidEye 87.8 0.85 August 10, 2015 Landsat 91.0 0.88

May 10, 2014 RapidEye 93.6 0.92 November 30, 2015 Landsat 82.3 0.76

May 19, 2014 Landsat 70.5 0.61 December 6, 2015 Sentinel-2 89.0 0.85

June 10,
2014

RapidEye 91.5 0.89 December 26, 2015 Sentinel-2 85.6 0.82

August 7,
2014

Landsat 90.0 0.87 May 14, 2016 Sentinel-2 91.7 0.89

August 24,
2014

RapidEye 96.7 0.95 May 24, 2016 Sentinel-2 88.4 0.86

October 15,
2014

RapidEye 85.4 0.82 June 13, 2016 Sentinel-2 87.3 0.84

October 25,
2014

RapidEye 82.1 0.78 June 23, 2016 Sentinel-2 95.0 0.93

November
11, 2014

Landsat 86.1 0.81 July 11, 2016 Landsat 90.8 0.88

December 6,
2014

RapidEye 95.6 0.94 July 23, 2016 Sentinel-2 78.9 0.74

March 31,
2015

RapidEye 84.9 0.81 August 2, 2016 Sentinel-2 84.3 0.8

April 18, 2015 RapidEye 92.7 0.91 August 22, 2016 Sentinel-2 79.5 0.75

April 27, 2015 RapidEye 91.2 0.89 August 28, 2016 Landsat 83.3 0.78
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that the northern parts are bare explained by little or no vegetation since this marks the dry
season.

The maximum flooding extent during the rainy season reaches up to 3 km on both sides of the
river as was experienced in May 2014. However, the El Niño phenomenon caused the excep-
tional flooding (Fig. 5). The flooded zone corresponds to the 225-m contour. The high vegetation
coverage in the middle and fringe areas in May and June indicates the presence of suitable
conditions to support vegetation growth in areas out of the riparian zone (Fig. 5). The riparian
zone has a bare land cover in June due to accumulation of sediments following the rains and
subsequent floods.

The pattern of land cover change over the 3 years is consistent and is determined by the
seasons. It is evident that with increased precipitation, there is a reduction of bare land
cover and an increase in vegetated cover. Consequently, low precipitation results in increased
bare cover class (Fig. 7). Knowledge derived from the seasonal land cover thematic maps are a
basis for operational monitoring of land conditions, which aid in establishing land management
practices to increase agricultural production. Vegetation covers the middle and fringe zones for
most of the rainy season. In the dry season, the riparian zone having close proximity to the river
is vegetated implying the potential existing in this area for crop production. Conversely, the areas
away from the river are bare for most of the dry season. This implies that when it comes to
decisions making on land use for increased food production during the dry season, farms in
the middle and fringe zones would require additional water supply to produce crops in the dry
season.

From the time series of the RapidEye, Landsat, and Sentinel-2 images, frequencies of land
cover classes over the entire period were determined (Fig. 8). The bare land cover through the
investigated period dominates the areas to the northeast, central, and south of the study area. The
region within the riparian zone is frequently vegetated postulating sufficient soil moisture for
continued agriculture.

Information from cumulative seasonal maps aid in detailing locations where agricultural
improvement mechanisms such as setting up of water pumps and irrigation planning can be
spatially located. Areas with a low bare cover detection rate can adopt less cost-effective methods
(such as manual pumps) whereas areas such as to the northeast where bare land cover is
dominant require permanent methods (such as drip irrigation systems) that ensure constant
and continuous availability of water to support vegetation growth (Fig. 8).

The spatial–temporal changes occurring between January to June and July to December are
assessed by computing the cumulative season duration maps of each class from the classification
maps produced (Fig. 8). Observations indicate an increase in bare cover to the south and north-
east in the second half of the year. In the first half of the year, the central and northern regions are

Fig. 7 Relationship of precipitation and percentage of land cover.
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vegetated with no vegetation cover observed in these central and northeast regions during the
second half of the year. The static structures visible in both the wet and dry season vegetation
images located toward the lower north are trees. The extent of water coverage, with maximum
extent was observed in May 2014 when there was excessive flooding (Fig. 5). In the second half

Fig. 8 Detection of (left column) bare cover, (central column) vegetated, and (right column) water
for (top row) all images, (central row) rainy season, and (bottom row) dry season. The legend
indicates the number of images that generated the cumulative seasonal maps.

Kirimi et al.: Assessing seasonal land cover dynamics in the tropical Kilombero. . .

Journal of Applied Remote Sensing 026027-13 Apr–Jun 2018 • Vol. 12(2)



of the year, the water extent is shown to reduce, consistent with the dry season experienced in that
time of the year.

Analyzing land cover changes in the riparian zone aided in the understanding of its unique
seasonal dynamics due to its proximity to the river. This area covers 2500 ha (half of the total
study site). Vegetation increased during the dry season contrary to the areas in the middle and
fringe zones. During the rainy season, the riparian zone has less vegetation as compared to the
middle and fringe zones because it is largely flooded.

Vegetation within the riparian zone was >50% of the total vegetation coverage of the study
area from August to October (Fig. 9). High vegetation coverage in the riparian zone in the dry
season indicates the presence of a high soil water content capable of supporting the growth of
crops. The bare land cover was >50% of the total coverage in April to June representative of
exposure of sediment accumulation following receding floods in the riparian zone. The results
are consistent with a report by Ref. 59 who indicated that rainfed lowland rice is prone to sub-
mergence under floods. The receding floods in the riparian zone expose bare land whereby any
previously existing vegetation is buried under a layer of silt washed down from the surround-
ing farms.

Varying yearly flooding patterns in the riparian zone pose a challenge in the determination of
planting times. From the results (Fig. 5), a delay in planting time is recommended until the floods
recede. In the dry season, the presence of vegetation within the riparian zone infers the agricul-
tural potential of this area. However, in the selection of a suitable crop to plant in the riparian
zone during the dry season, factors such as the high temperatures experienced during the dry
season should be taken into consideration.60

The seasonal land cover dynamics indicates the farmers currently adopt a balance between
risk and chance in crop growth. Given the current reports on changing weather patterns, a chal-
lenge exists of knowledge on expected flooding patterns. Farmers within the study area take a
chance by prepare their fields during the rainy season to maximize the use of the available water
for rice plantations. With this opportunity comes the risk of crop loss in case excess flooding
destroys the planted rice. Based on the current land cover seasonal maps, forecasting to aid in
planning the planting times and spatial locations is recommended.

4.2 Relationship Between Land Cover and Depth to Groundwater

The hourly depth to groundwater observations were averaged to daily readings. Table 2 high-
lights the highest and lowest piezometer readings for the period under study. The riparian zone
had the highest recorded value of depth to groundwater (3.3 m). The lowest depth to groundwater

Fig. 9 Percentage of vegetation and bare land cover within the riparian zone as a function of total
vegetation and total bare land cover of the study area in percentage.
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Table 2 Piezometer information.

Name

Highest
measured
water level

Lowest
measured
water level

Low depth to groundwater
occurrence periods

High depth to groundwater
occurrence periods

PZ01 −1.01 3.33 > − 0.5 <3.0

April 30 to May 21, 2015 October 7, 2015 to
January 18, 2016

April 23 to May 14, 2016

PZ02 −2.79 1.88 > − 0.5 <1.5

April 15 to May 18, 2015 October 18, 2015 to
January 18, 2016

January 13 to March 9, 2016

April 9 to June 3, 2016

PZ03 −3.98 1.80 > − 2.0 <1.5

April 24 to May 27, 2015 August 26, 2015 to
January 1, 2016

February 11 to February 28, 2016
April 14 to May 30, 2016

PZ04 −1.94 2.50 >0.1 <1.5

January 22 to March 1, 2016 August 28, 2015 to
January 5, 2016

April 10 to June 1, 2016

PZ06 −0.89 2.83 >0.1 <2.0

April 15 to June 9, 2015 September 23, 2015 to
January 22, 2016

April 3 to June 12, 2016

PZ10 −0.08 1.30 >0.1 <1.0

March 21 to May 24, 2015 September 27, 2015 to
December 16, 2015

January 20 to February 26, 2016
March 31 to May 12, 2016

PZ12 3.09 3.38 Consistently between 3.15 and
3.25 in June to December 2015

Increased level between 3.1
and 3.15 from January to

June 2016

PZ13 0.20 2.35 >0.5 <2.0

April 29 to May 14, 2015 October 27, 2015 to
January 7, 2016

February 7 to February 12, 2016
April 6 to May 5, 2016

PZ14 −0.04 2.05 >0.2 <1.6

March 23 to April 21, 2015 September 05, 2015 to
January 5, 2016

January 27 to February 23, 2016
March 31 to May 9, 2016
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level at the middle zone was 2.83 m where that at the fringe was 3.38 m. Negative values stipulate
flooding represented by the highest groundwater levels. The highest value was in the riparian
zone at −3.98 m. The middle and fringe zones had −0.89 and −0.08 m as the highest values,
respectively.

Groundwater depths for the middle and fringe show a similar pattern whereas that of the
fringe shows that the water is close to the surface throughout the year (Fig. 10). The fringe
receives groundwater from the mountains as base flow while the groundwater level in the ripar-
ian and the middle zone depends on the river water level. The depth to groundwater is higher for
the riparian zone compared to the middle in the rain season. Rainfall pattern is reflected directly
in the fringe piezometers whereas the response in the middle and riparian fields is very little and
is delayed.45 A steep decrease in depth to ground water is observed in March and January, usually
taking between 1 and 2 months to reach a peak. A slight increase in depth to groundwater is
observed in February coinciding with the reduced precipitation. An increase in precipitation in
March subsequently results in a decrease in depth to ground water. In the dry season, the increase
in depth to ground water has a gentle slope taking ∼7 months to reach its lowest level. The
precipitation and depth to ground water pattern indicate that the groundwater responds to pre-
cipitation patterns. This implies that some portion of the rainwater infiltrates into the ground in
rainy seasons resulting to a fast rise in the water level. The rate of rise of the water level
(recharge) is faster than the rate at which the depth to groundwater increases (groundwater
drains).

Figure 10 presents the ratios of the land cover classes of images with <10% cloud cover
together with the depth to groundwater. The ratio of areas for the water class remained constant
for the images analyzed. Toward the end of May, the depth to groundwater level increased and
bare land cover within the riparian zone increased as flooding recedes. The vegetated regions fall
in the middle and fringe fields. The groundwater depth at the beginning of December was low
ranging from 3.3, 2.7, and 0.9 for the riparian, middle, and fringe zones. The high areal coverage
of bare land is a result of the dry season experienced in the preceding months. By the end of
December, the depth to groundwater was 3.3, 2.8, and 0.7 m. Despite the lower groundwater
toward the end of December, vegetation cover increased, attributed to the occurrence of precipi-
tation. In June 2016, depth to groundwater was 1.26, 0.36, and 0.38 for the riparian, middle, and
fringe zones. Comparing the vegetated and bare cover of 2015 and 2016, it is evident that the

Fig. 10 Groundwater depths in the riparian (PZ 01), middle (PZ 06), and fringe (PZ 10) zones and
the corresponding ratios of land cover. The effects of changes in precipitation and temperature on
depth to groundwater levels are shown.

Kirimi et al.: Assessing seasonal land cover dynamics in the tropical Kilombero. . .

Journal of Applied Remote Sensing 026027-16 Apr–Jun 2018 • Vol. 12(2)



vegetated coverage in 2016 is higher due to earlier recession of flooding water in 2016. In 2015,
the decrease in depth to groundwater level began on May 27 for the Riparian and May 15 for the
fringe. However, in 2016, the decline began on May 23 in the Riparian zone and May 6 in the
fringe zone. Saturated soils had drained excess water by June 23, 2016 and hence the soil water
content was suitable to support vegetation growth. The results show that the land covers respond
to depths to groundwater.

Climate influences groundwater via precipitation infiltration and evapotranspiration rates
depending on temperature.31 Comparison of the precipitation data from the IHI station and climate
data in Ifakara61 indicate that average temperatures are similar as shown in Fig. 11. Precipitation
recorded at IHI is, however, slightly lower by ∼1.2 mm∕day. Increased precipitation reduces the
depth to groundwater, occurring between March and April 2015 and October 2014 to April 2016
(Fig. 12). A moving average trend line indicates that the highest temperature recorded, between
May and August, resulted in a decrease in groundwater level. High temperatures as a proxy of high
evapotranspiration rates affect shallow groundwater as reported in Ref. 62. Consequently, the high
temperature period results in a decrease in groundwater level. Lower temperatures, occurring
between October and December 2015 in the rainy season, result in a rise in groundwater
level. Another episode of low temperature between February and April 2016 subsequently resulted
to a rise in groundwater level. Both temperature and precipitation influence the groundwater levels
in the study area.

Point groundwater information are not sufficient to explain the spatial pattern of the
land cover image and hence, application of kriging interpolation method on the observed
groundwater levels generated groundwater maps containing information at sampled and
nonsampled locations. Variogram parameters that generated the kriged images are shown
in Table 3. The depth to groundwater patterns from March 2015 to June 2016 are shown in
Fig. 12.

The degree of spatial dependence for the groundwater depth raster images generated indi-
cated that in the second half of the year (July to December) had data has a low spatial correlation,
i.e., spatial dependence (Table 3). There was a high correlation for the groundwater depths
observed in the first half of the year. From this analysis, it is evident that during the dry season
when the groundwater level is low, there is a low spatial correlation of the groundwater level
measured at the piezometers distributed in the study area. During the first half of the year, the
groundwater depth rises and a strong spatial dependence is evidenced. Figure 10 shows the pat-
tern of groundwater depth over the study period.

Depth to groundwater reduces in March and a further reduction in depth is observed in May
(Fig. 12). From July to December, the depth to groundwater increases, within this time a vast
amount of land has bare cover and there is a rare occurrence of precipitation (Figs. 10 and 12).
With the onset of the rains in December, the depth to groundwater is observed to increase from
January to June, with the peak observed in the riparian region in April and May. The negative

Fig. 11 Comparison of climate data from IHI and climate data for Ifakara.
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depth to groundwater portrays flooding (Fig. 12). The flooding is observed to commence on the
southwestern side of the study area. There is a reduction in bare class and an increase in vegetated
land cover from January to June.

The areas, particularly to the south of the study area, have a higher rise in water level as
opposed to the northern parts of the study area. The Kilombero River drives the groundwater

Fig. 12 Groundwater levels interpolated using the kriging method and changes in groundwater
level between 2015 and 2016. Negative values indicate flooding.
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in the southern part whereas lateral flow from the Udzungwa Mountains drives the groundwater
in northern part.45 Floods are variable and discernable on the optical images. Lateral flow is
deep-seated and more stable.

The current study showed that a link exists between land cover and depth of groundwater.
High groundwater depths result in a high percentage of vegetated land cover class whereas bare
land cover class mainly occurs in low groundwater depths and after flooding events. However, in
the riparian zone, despite a high depth to groundwater in the dry season, vegetation thrived due to
the high soil moisture availability caused by a high clay content.

A more detailed assessment of thematic land cover was not possible due to the limited num-
ber of cloud-free images. Differentiation of crop types and mapping of the field boundaries was
not possible due to the highly fragmented farm sizes and high variability of crops grown.
Furthermore, the limited number of matching cloud-free images and groundwater level restricted
the analysis of the relationship between land cover and groundwater water depth. To capture the
field boundaries, very high-resolution imagery is required. In addition, for future research, the
use of radar data will ensure consistent high temporal land cover mapping to capture the land
cover dynamics that are not captured by optical images as the radar data are independent of
effects from weather conditions and are thus not affected by the presence of cloud coverage.

5 Conclusions

The results of this study allow a better understanding of the land cover dynamics within the
Kilombero River floodplain near Ifakara, Tanzania. We generated land cover maps and cumu-
lative seasonal land cover maps that depict the variation in land cover distribution over time.
These dynamics are largely driven by water availability as a result of strong rainfall during
the rainy season. We further investigated the dynamics of land cover and depth to groundwater
at three hydrological zones. The first major finding was that in the rainy season, groundwater
level is high, and a large amount of land in the middle and riparian zone are vegetated. The
riparian zone is flooded with a maximum observed extent of 3 km on both sides of the
river during the El Niño rains in 2014. However, the flooding intensities vary from year to

Table 3 Variogram model parameters used for kriging.

Dates Model
Nugget
variance Sill

Degree of spatial
dependence (%) Range

March 15, 2015 Exponential 0.2 0.9 17.0 5199.1

April 15, 2015 Exponential 0.1 0.9 6.3 6498.7

July 15, 2015 Exponential 1.0 0.1 88.2 10469.0

August 15, 2015 Exponential 1.0 0.1 88.1 10469.0

September 15, 2015 Exponential 0.9 0.2 84.1 5199.1

October 15, 2015 Exponential 1.0 0.2 79.6 5199.1

November 15, 2015 Exponential 0.7 0.5 60.0 5199.1

December 15, 2015 Exponential 0.9 0.4 67.8 5199.1

January 15, 2016 Exponential 0.3 1.1 19.4 5199.1

February 15, 2016 Exponential 0.3 0.7 32.1 4957.1

March 15, 2016 Exponential 0.3 0.7 27.3 5199.1

April 15, 2016 Exponential 0.1 1.6 6.8 10412.4

May 15, 2016 Exponential 0.0 1.3 0.0 9193.2

June 15, 2016 Exponential 0.3 1.5 15.3 8803.3
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year. The second major finding was that in the dry season, groundwater level is low, the area
within the riparian zone is vegetated, and the other zones are mainly bare. The availability of soil
moisture supporting vegetation growth in the margins of the riparian zone indicates that the
moisture in soils emanates from the water in the Kilombero River. The high proportion of veg-
etated areas in the middle and fringe zones during the rainy season points to the good moisture
conditions, which favor crop growth. Most sections of the riparian zone are classified as bare
after the rainy season due to accumulation of soil sediments. The cumulative seasonal maps
reveal low vegetation coverage in the central and northeast regions of the study area.
Groundwater responds to precipitation and the rate of groundwater recharge is higher than
the rate of draining.

This research enhanced our understanding of land cover changes and their role in agricultural
production in rainfed agricultural systems by providing spatiotemporal explicit land use infor-
mation. Seasonal land cover information will help in land use planning with respect to suitable
crops and farming practices that could lead to increased yield and therefore an increase in food
security. Future studies investigating the economic capability of the farmers and agricultural
development research institutions to adopt climate-smart agriculture are recommended.
Continued monitoring is recommended to assess the impact of adopted technologies on agri-
cultural yields. The effect of land use on groundwater quality should be assessed in the face of
increasing pressure on water demands as it forms an additional source of water for the growing
population and therefore any contamination points should be controlled and halted.
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