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Abstract. Desert locusts have attacked crops since antiquity. To prevent or mitigate its effects on
local communities, it is necessary to precisely locate its breeding areas. Previous works have
relied on precipitation and vegetation index datasets obtained by satellite remote sensing.
However, these products present some limitations in arid or semiarid environments. We have
explored a parameter: soil moisture (SM); and examined its influence on the desert locust wing-
less juveniles. We have used two machine learning algorithms (generalized linear model and
random forest) to evaluate the link between hopper presences and SM conditions under different
time scenarios. RF obtained the best model performance with very good validation results
according to the true skill statistic and receiver operating characteristic curve statistics. It
was found that an area becomes suitable for breeding when the minimum SM values are
over 0.07 m3∕m3 during 6 days or more. These results demonstrate the possibility to identify
breeding areas in Mauritania by means of SM, and the suitability of ESA CCI SM product to
complement or substitute current monitoring techniques based on precipitation datasets. © The
Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or
reproduction of this work in whole or in part requires full attribution of the original publication, including
its DOI. [DOI: 10.1117/1.JRS.12.036011]
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1 Introduction

Desert locust outbreaks have been a problem since antiquity and periodically have caused dev-
astation over local communities in Northern Africa and Middle East countries. It is well doc-
umented by ancient literature: in the Har-ra list (Assyria—the Ashurbanipal Royal Library, 669
to 626 B.C.), in decorations found in Egyptian tombs (sixth Dynasty, 2420 to 2270 B.C.), as well
as in Biblical, Rabbinical, Greek and Roman literature, while control measures are also reported
during Biblical, Grecian, Roman, Mishnaic, Talmudic, Byzantine, and modern times.1 They
affect local economies and living conditions, decreasing yield production in areas with water
scarcity and extreme weather conditions. Desert locusts are the earliest diverging species among
the genus Schistocerca and the unique one settled in Africa, indicating its high adaptability to the
local conditions. Unlike other species of the same genus, it has kept some of its original traits,
such as the ability to change their behavior.2 In spite of its long pest occurrence, efforts to control
its population have been in vain, at least until the late 20th century.

Schistocerca gregaria (Forskål, 1775) or desert locust is an insect that belongs to the
Acrididae family, having three main stages throughout its life cycle: egg, hopper, and adult.
With breeding purposes, females lay their eggs when certain moist soil conditions are met
from 5 to 10 cm deep.3 Depending on some environmental variables such as soil moisture (SM),
temperature, or wind, the egg development may last between 10 and 65 days.4,5 The newborn
nymph moults five to six times as its body grows to prepare the individual for flying and repro-
duction purposes. After the last moult, the new adults known as fledglings, already have wings
although too soft to fly yet. The next stage is the immature adult, with fully capabilities to fly.
Afterward, those immature adults become sexually mature and capable to copulate and lay eggs
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to complete their life cycle.5 During this final stage, the locusts are very mobile and can travel
great distances.6 Alike to other species in the animal kingdom, desert locusts have a phase
polyphenism that implies drastic changes when population density increases, either in adult
or nymph stage.2,7,8 Even though behavioral gregarization may occur within hours,9 it takes
several generations to fully display gregarious characters.10 The phase transition induces physio-
logical changes in lifespan, metabolism, immune responses, and reproductive physiology.11,12 In
their solitarious phase, locusts are generally bigger10 and they present higher fecundity and
smaller eggs.13

Solitarious desert locust populations are usually constraint into the recession areas, where
annual rainfall is <200 mm.14 However, they are able to increase rapidly their numbers when
suitable conditions are met.4 These insects are very well adapted to arid environments with
erratic but sometimes high intensity precipitation episodes.15 Some environmental events
such as green vegetation blooms or rainfall are closely linked to the desert locust development,
having triggering effects and enhancing outbreaks.16,17 Temperature variability has also been
demonstrated to have effects on some Schistocerca species as described by Ref. 18. This
work indicated that the frequency of locust outbreaks may be altered by changes in climatic
patterns. Among many environmental factors that may affect locusts, SM is the variable that
mostly influences egg-laying location, egg-survival, and egg-hatching rate,19 in addition to
temperature.20 In general, female locusts prefer open and warm sites of dry, soft, and sandy
soils in which over 6 cm of depth have enough moist soil conditions.3,21 Successful breeding
conditions are usually triggered by rainfall, which provides enough moisture to the soil enhanc-
ing egg laying, development, and hatching,16 as well as an adequate vegetation for their hoppers
to feed on.6,14 The success of preventive measures is subjected to the inaccessibility of some
important breeding areas.5 Within the recession area, there are some seasonal breeding areas
in which the lack of rain may cause that some are not infested for a particular year. So that,
even though breeding areas are constraint to the recession area, they may vary in accordance
to suitable ecological conditions.5

Some authors have proposed the use of remote sensing platforms to monitor large and inac-
cessible locust breeding areas,16,22–27 which usually occur away from crops.28 Remote-sensed
vegetation and precipitation are being used to derive potential grasshopper and locust habitats22

by means of satellite platforms as LANDSAT, NOAA, Meteosat, SPOT, TERRA, or AQUA.29

International organizations such as the Desert Locust Information Service (DLIS) from FAO
have been using earth observation methods since the 1980’s to assess favorable environmental
conditions to the desert locust.29

However, monitoring arid environments can present some limitations. The vegetation is usu-
ally sparse and geomorphological features are not always well identified.30,31 The normalized
difference vegetation index (NDVI) is a proxy for vegetation presence32 and it has been widely
used to assess suitable environmental conditions for desert locust.31 Nevertheless, this index is
highly sensitive to the noise of the soil background.33 NDVI values cannot be distinguished from
sparse vegetation because bare soils have often spectral characteristics in the red and near-infra-
red.34 Furthermore, the vegetation is drought tolerant due to adaptive mechanisms such as can-
opy architecture, leaf structure, and leaf angle. Another common proxy to identify suitable
conditions for desert locust is precipitation.35 Rainfall detection probabilities may range
from 70% to 20% in arid and semiarid regions by means of remote sensing, with a high over-
estimation of rainfall occurrences.36

Currently, there is an ongoing initiative “dEsert Locust earLy Survey (SMELLS)” from the
European Space Agency (ESA) to derive SM with forecasting purposes. They propose to divide
the month into three decades in order to provide averaged surface SM, which comes from daily
estimates. According to this initiative, relevant ranges for locust monitoring are settled between
0.10 and 0.20 m3∕m3. Satellite SM estimations stand out as a very useful tool to overcome the
high uncertainty of precipitation in arid and semiarid areas, improving the probability of locust
prediction.37 In spite of being very promising, very few studies have addressed the link between
SM remote sensing and desert locusts.19 Traditional SM measures are ground based so that sur-
vey areas are usually limited for being an expensive and time consuming activity.38,39 Laboratory
and ground-based experiments have demonstrated that SM intervenes in egg development and
interruption under particular conditions of humidity.40 According to the same authors, eggs may
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remain viable in arrested state as long as 1.5 months, and then hatch after return to wet sand. In
addition, locust densities are associated with relative high moisture availability.41 These studies
indicate that SM is a good proxy to identify desert locust, and it can substitute rainfall products.42

Species distribution models (SDM) are numerical tools to analyze the link between species
occurrences and environmental factors. They provide an ecological insight to predict species dis-
tribution over space or time given certain environmental characteristics.43 Their machine learning
methods increase traditional predictive performance and their capacity to incorporate complex
interaction among variables,44 being eligible to work with large ecological datasets.45 The random
forest (RF)46 and generalized linear model (GLM)47 are two commonly used machine learning
algorithms to generalize species distributions. RF has been available for almost 20 years, and
it performs very well in ecological predictions.48 GLMs are mathematical extensions of linear
models that do not force data into unnatural scales, and thereby allow for nonlinearity and non-
constant variance structures in the data.49 They have also been used to analyze ecological relation-
ships given their flexibility in comparison to classical Gaussian distributions.50

The aim of this study is to identify suitable SM conditions for desert locust eggs as well as to
hopper desert locusts in solitarious phase. It is based on SM estimations from satellite remote
sensing imagery and ground-based observations of hopper desert locusts. We have used SDMs to
better understand the link between SM and desert locusts to predict their likely distribution
across landscapes and breeding areas. The study area is Mauritania and the survey period
goes from 1985 to 2015.

2 Materials and Methods

2.1 Study Area

The study site is Mauritania, which is located in the Maghreb region of Western Africa (Fig. 1).
We have chosen this study area to be one of the major breeding and recession regions for desert

Fig. 1 (a) Study area location within the African continent with an ESA CCI SM image (January 5,
2015). (b) The density plot of solitarious hoppers between 1985 and 2015 in the study area. Data
presences come from SWARMS database from FAO.
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locust.51 Mauritania is a vast country of 1;030;700 km2 with large arid plains and only one con-
tinuous water flow, the Senegal River.

According to Koppen classification,52 two climate types are present: hot desert climate
“BWh” and hot semiarid climate “BSh.” BWh is predominant in most of the country, which
spatially coincides with part of the Sahara Desert (north) and the Sahelian belt (south).
Rainfall is scarce and intense, being generally <150 mm∕year in average (Fig. 2). BSh accounts
for the Southernmost strip, where the rainfall average is higher than 200 mm∕year, in addition to
cooler and less fluctuating “day-night” temperatures.

2.2 Survey Data

Schistocerca WARning and Management System (SWARMS) is a database used by the Desert
Locust Information Service (DLIS) at FAO for desert locust global monitoring and early warn-
ing. It compiles desert locust data since 1985 that have been collected by national survey and
control teams of affected countries. It geo-locates field observations on a daily basis although
some uncertainties may be expected.26,53 For this study, we selected hoppers on a solitarious
phase as the target population for two reasons: solitary phase accounts for nonrestricting con-
ditions and hopper stage (wingless nymph) may have lower mobility than adults due to the lack

Fig. 2 Mauritania historical average rainfall (1981 to 2010). Source: USGS/EROS.
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of wings. There were 12,027 solitarious hopper sightings for the time span 1985 to 2015, spa-
tially distributed as seen in Fig. 1. Even though the database contemplates the absence records,
we have not considered them for two reasons. First, during the recession periods, individuals are
mostly solitary (solitarious phase) and many times go unnoticed for survey teams.54 Second, the
number of absence records is very low, which causes unbalance between samples of presences
and absences.

2.3 Satellite Data

The ESACCI SM v03.2 is a multidecadal and global satellite-observed SM dataset generated via
the climate change initiative (CCI) of the ESA. It is a product that combines various single active
and passive sensors into three harmonized products: a merged active, a merged passive, and a
merged from active and passive sensors. Based on the existing literature, these merged products
generally outperform the single-sensor input products.55

For the purpose of this study, we have used the merged active and passive product to be more
complete. It uses the pixel from either the active or passive source, or the average value of both
depending on the performance of the vegetation optical depth from the Advanced Microwave
Scanning Radiometer for EOS (AMSR-E) C-band observations.56 The combination of images
from radar (active) and radiometer sensors (passive) provides information about the volumetric
surface SM (up to 5 cm depth), and it is expressed in m3∕m3 units. Its spatial resolution is
0.25 deg and offers daily coverage worldwide from 1978 up to 2015.55,57,58 This product com-
prises active data retrieved from C-band scatterometers on board of ERS-1, ERS-2, MetOp-A,
and MetOp-B satellites (generated by the “TU Wien”) and passive data obtained from micro-
wave observations by the following sensors: Nimbus 7 SMMR, DMSP SSM/I, TRMM TMI,
Aqua AMSR-E, Coriolis WindSat, GCOM-W1 AMSR2, and SMOS (generated by VU
University Amsterdam in collaboration with NASA) (Table 1). This product has been validated
against ground-based reference measures or alternate estimates from other projects and
sensors.55,57 In general, ESA CCI SM dataset provides good estimations of SM with respect
to land surface models and in situ observations. Nevertheless, it presents some uncertainties
with particular surface conditions such as dense vegetation or organic soils,55 which are not
the case of our study area.

2.4 Methods

The ESA CCI SM v03.2 product was used to geographically compare the seasonal presence of
solitarious hoppers of desert locust by months, with SM values from 1985 to 2015. Breeding
areas in Mauritania vary widely throughout the year according to the National Centre for
Prevention and Control of Desert Locusts in Mauritania (CNLA). During summer months, desert
locusts usually breed in southern parts of the country. Whereas breeding occurs in the center and
the northwestern part from September to December, and from December to May in the northern
areas of Mauritania.59 It is widely accepted that these insects have regional migrations following
certain environmental conditions.60

We have extracted the coordinates of each hopper in solitarious phase and its corresponding
date from SWARMS database. Even though the database does have some absence records, we
did not use them for being very unbalanced in comparison with presences. In addition to that,
those records can be also considered as “pseudoabsences” owing to hoppers in solitarious phase
may go unnoticed at low densities.26 Thus, we found it convenient to randomly generate a grid of
“pseudoabsences” as reported in other studies using SDMs.61,62

Pseudoabsence samples were computed based on two principles. First, they were located
within a maximum of 50-km radius mask created of ever desert locust presence (1985 to
2015), aiming to select areas with environmental and geophysical potentialities and to reduce
geographical bias. We chose this distance for matching visually with the density map (Fig. 1),
where most of the areas with no presences are masked out. Otherwise, it could misguide SDM
predictions.63

Second, date allocation was done using a uniform random arrangement with R-software.
Each pseudoabsence location was assigned a date within the first and the last hopper presence
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Table 1 List of satellite platforms, onboard sensors to measure SM at specific frequency,
producer of the product, and time availability of each single product.55

Platform sensor

Frequency used
for SM retrieval

(GHz) Product name/producer Dataset availability

Radiometers

Nimbus7 SMMR 6.6 VU University Amsterdam
(VUA)/National Aeronautics
and Space Administration
(NASA) [Land Parameter
Retrieval Model (LPRM)]

October 1978 to August 1987

DMSP SSM/I 19.4 VUA/NASA (LPRM) June 1987 onwards

TRMM TMI 10.7 VUA/NASA (LPRM) November 1997 to April 2015

Princeton University (LSMEM) January 1998 to December 2004

AQUA AMSR-E 6.9, 10.7 VUA/NASA (LPRM) June 2002 to October 2011

University of Montana/
Numerical Terradynamic
Simulation Group

June 2002 to October 2011

US National Snow and Ice
Data Center (NSIDC)

June 2002 to October2011

Japanese Aerospace
Exploration Agency (JAXA)

June 2002 to October 2011

Princeton University (LSMEM) June 2002 to September 2011

Coriolis WindSat 6.8, 10.7 VUA/NASA (LPRM) January 2003 to August 2012

U.S. Naval Research
Laboratory

January 2003 onward

SMOS MIRAS 1.4 ESA/Centre Aval de
Traitement des Données
SMOS (CATDS)

November 2009 onward

ESA/EUMETCAST
(for L2-SM-NRT-NN product)

November 2009 onward

VUA/VanderSat (LPRM) November 2009 onward

Aquarius 1.4 NSIDC August 2011 to June 2015

FengYun-3B MWRI 10.7 VUA/NASA (LPRM) July 2011 onward

GCOM W1 AMSR2 6.9, 7.3, 10.7 VUA/NASA (LPRM) July 2012 onward

JAXA July 2012 onward

SMAP 1.4 NASA February 2015 onward

VUA/NASA (LPRM) February 2015 onward

Scatterometers

ERS-1/2 AMI WS 5.3 Vienna University of
Technology (TU Wien/WARP),
ESA

August 1991 to July 2011

MetOp-A/B ASCAT 5.3 EUMETSAT H-SAF,
(TU Wien/WARP)

January 2007 onward
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date of the SWARMS database (1985 to 2015). These pseudoabsence points were generated
randomly and equally weighted to the presences (pseudoabsence and presence weighted
sums are equal) for predicting species occurrences or distribution.64 It may occur that some pre-
sences and pseudoabsences coincide geographically within the same pixel; however, it is very
unlikely that they have the same assigned date. Each pseudoabsence date has been randomly
allocated from 1985 to 2015, which implies that they will likely not have the same SM values.

The duration of locust life cycles is variable, depending on the environmental conditions of
the habitat,65 nevertheless we rely on the following premises to create the variables in our study.
Eggs are laid at 5 to 10 cm depth, and the egg incubation period may range from 10 to 65 days.4

After hatching, nymph phase may last between 24 and 95 days since the egg was laid. Thus,
under the most severe environmental circumstances, the maximum expected egg-hopper devel-
opment time would be 95 days.5 SWARMS database registers the sighting date and phase but not
the age of each individual so that we have established up to 95 days prior the sighting record as
the time analysis. Figure 3 shows the sequence of the proposed method as a flow chart.

Given the coordinates of each presence and pseudoabsence record, the corresponding daily
SM value was extracted based upon the sighting or assigned date, up to 95 days backward. Based
on these antecedent SM conditions, we generated variables dividing the analysis time into differ-
ent time intervals (16, 12, 8, and 6 days) and assess the performance of the model with each of
them. By this method, we aim to cover and differentiate critical events in the locust lifecycle such
as egg-laying, egg-hatching, and early stages of the nymph phase individuals as well as to deal
with punctual missing data (Fig. 3). Some areas of SM imagery had missing data due to the
satellite revisit times used to generate ESA CCI SM v03.2. We have computed the minimum,
mean, and maximum SM values within each time interval to obtain a representative value of such
period. Then, we assess which descriptive statistic provides better information to the model in
terms of performance. If no value was found for a particular time interval, the presence or
absence record is not included in the model. In this way, we mitigate the effect that the missing
information could provoke on the model results. Even though SM may vary greatly on a daily
basis,66 the biological evolution for egg and hopper development needs some days to be altered,5

so that we found convenient this approach to generate the model variables.
Therefore, we have studied four different scenarios: A, B, C, and D. As previously men-

tioned, we have first extracted SM values, on a daily basis, up to 95 days before the presence
or pseudoabsence date record. Each of the proposed scenarios contemplates a different division
in terms of days: A = 16 days, B = 12 days, C = 8 days, and D = 6 days. Hence, we aimed to
obtain one representative SM value per each subdivision of time, within each scenario. In order

Fig. 3 Flowchart of the proposed methodology to study the link of ESA CCI SM with desert locusts
using machine learning approach.
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to acquire this representative SM value, we have computed the minimum, mean, and maximum
out of the daily SM values contained in every time interval.

Thus, Fig. 4 shows variable creation for each scenario (A, B, C, and D) based on SM and
presence and pseudoabsence dates. For instance, scenario (A) contemplates equal time intervals
of 16 days so that (SM1) indicates the SM value on the local pixel between −95 and −80 days
(both included) prior the presence or pseudoabsence date. (SM2) SM values on the local pixel
between −79 and −64 days prior the presence or pseudoabsence date and the rest accordingly as
detailed in Fig. 4. Time interval for scenario (A) is 16 days, which generates 6 variables; 12 days
for (B) with 8 variables; 8 days for (C) with 12 variables; and 6 days for (D) with 16 variables.
Time equals to 0 (t ¼ 0) corresponds to the presence or pseudoabsence sighting date. Within
each scenario, three different alternatives are independently tested (minimum, mean, and maxi-
mum SM value within the given time interval).

Some publications suggest the suitability of machine-learning (ML) approaches to model
species distributions, since they may perform better than the traditional regression-based
algorithms.44 In this study, we have used BIOMOD2 tool67 implemented for R software.68

We tested two different ML modeling techniques to describe and model the link between desert
locust and SM: GLM47 and RF.46 GLM is a very popular modeling approach that has been
widely used to model and predict habitats and species distribution.69,70 The formula object
was set to be “quadratic” (default) and the information criteria for the stepwise selection pro-
cedure was the Akaike information criteria. GLM approach implemented in BIOMOD2 only
runs on presence-absence data, so binomial distribution family was used. RF algorithm is a
flexible and easy to use ML approach that has been demonstrated to have good predictive per-
formances in ecology and species distribution.48 It can be used both for classification and regres-
sion problems. The most important tuning parameters are the “mtry” (number of variables
randomly selected at each split of the tree as it grows) and “ntree” (number of trees). We
have set these two parameters with their default values: “ntree” = 50071,72 and “mtry” (in clas-
sification) = the squared of the number of variables.73 The minimum size of terminal nodes
“NodeSize” and the maximum number of terminal nodes “MaxNodes” were also left with
their defaults values, which are five and null, respectively.74

In spite of the generalized use of some statistics to assess model performances, there is still an
ongoing debate about their use.75,76 We decided to select three broadly used evaluation methods
for cross-comparisons: relative operating characteristics “ROC,”77 Cohen’s Kappa “KAPPA,”78

and true skill statistic “TSS.”75

The ROC evaluation method uses the area under the curve (AUC) to discriminate between
events and nonevents. Its score ranges from 0 (worst score) to 1 (perfect score), and values under
0.5 are considered to indicate random chance of the prediction.79

KAPPA statistic is one of the most used methods to measure model performance on presence-
absence predictions, and it indicates the relative accuracy of the forecast comparing with the
random chance. It ranges between −1 (the worst score) to 1 (perfect score), where values

Fig. 4 Variable names and their distribution back in time for four different scenarios: A, B, C,
and D.
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under 0 indicates no predictive skill. Although these evaluation procedures could be used inde-
pendently, it is recommended to use several so as to assess the accuracy of the statistical models.
This is an index for classifying model prediction accuracy (Table 2).

The Biomod2 package allows the user to randomly subset the original dataset into two sub-
sets, 70% of the data to calibrate the models and 30% to validate the predictions. When found the
best scenario and variables to choose, we repeated the process five times to the best performing
algorithm to obtain a robust test of the model, where each replicate uses a unique random split
70% to 30% of the data.67 Presence and pseudoabsences were set to have the same importance in
the calibration process, with a prevalence value of 0.5. The most effective SDM require data on
both species presence and the available environmental conditions at random where no presences
were reported (known as pseudo‐absence data) in the area.64

Based on model results, the best performing algorithm with the best scenario and represen-
tative statistic of SM values is selected. Then, we applied an optimization process to ensure that
the algorithm we have settled on is presenting the best possible performance.80 We tuned the
algorithm hyperparameters to find their best combination in terms of predictive performance, and
finally an objective comparison of the results. The best tuning parameters were chosen to run the
final model.

We used the response curves to assess the prediction of the model, which are independent of
the SDM algorithm used. The response curves allow comparing the probability of presence
based on ROC, TSS, and Kappa metrics with the variables used in the model. It facilitates
the interpretation of relationships between environmental variables and predicted responses
of species, even though they may not be apparent from the outputs of the model.81 The con-
tribution of each variable to the final model is analyzed. The higher the value is, the more influ-
ential the variable is in the model. A 0 value means no influence at all.

The aim is to evaluate desert locust presence probabilities to locate potential breeding areas,
based on remotely sensed SM conditions.

3 Results

SM monthly averages (Figs. 5 and 6) suggest a spatial correlation with usual breeding areas,
indicating high SM values in the south for the months: July, August, September, and October;
whereas higher values are found in the north and northeastern parts of Mauritania during
December, January, and February. In general, autumn breeding sites (blue dots in Fig. 6) do
not show visual correlation with the monthly mean SM values. Nevertheless, a statistical analysis
was not done on a monthly basis but as detailed in Fig. 4.

GLM and RF algorithms were used with SM variables that relied upon various time intervals
(16, 12, 8, and 6 days) and their maximum, minimum, or mean (Tables 3 and 4) SM values.
Based on ROC, TSS, and KAPPA statistics, we obtained performance scores from an indepen-
dent test dataset. The results showed that RF obtained the best performance for our study,
whereas GLM performed far behind. The highest scores were obtained when the time interval
was 6 days (scenario D) and the representative SM value was the minimum acquired within the
time interval. According to Table 2, the RF algorithm obtained a high or very good performance
with respect to ROC-AUC with 0.95 and good performance for Kappa and TSS statistics with

Table 2 Index for classifying model prediction accuracy.67

Accuracy AUC KAPPA/TSS

Excellent or high 0.9 to 1 0.8 to 1

Good 0.8 to 0.9 0.6 to 0.8

Fair 0.7 to 0.8 0.4 to 0.6

Poor 0.6 to 0.7 0.2 to 0.4

Fail or null 0.5 to 0.6 0 to 0.2
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Fig. 6 (a) Location map of solitarious hopper presences reported from 1985 to 2015, grouped per
months. (b) Frequency histograms of presences based on months, latitude, and longitude.

Fig. 5 SM average per month for the time span 1985 to 2015, units is in m3∕m3.
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0.75. The sensitivity and specificity was over 87%. Slightly lower values are found when using
the maximum or mean SM values across the scenario D, demonstrating the suitability of 6 days
coverage time to build the SM variables of the model. Scenario A (16 days) obtained the worst
model performance when using mean SM values as representative of the given interval.
Nevertheless, this scenario still obtained a fair performance of 0.6 for TSS and kappa statistics,
and ROC-AUC ¼ 0.90 when using the minimum SM value across their time length.

Model performance increases when the time interval of the variables gets smaller and the
representative SM value is the minimum for such period. Therefore, we suggest regarding mini-
mum SM values over 6 days period to link solitarious hopper presences and SM values of the
ground.

RF was the best performing algorithm, using scenario D and the minimum SM values
obtained in each time interval. We have tuned RF algorithm for the two most important hyper-
parameters: the number of trees “ntree” (50, 500, 1000, 2000, and 4000) and the number of
variables randomly sampled as candidates at each split “mtry” (2, 4, 6, 8, and 10). First, we
optimized the number of trees and second the mtry. As shown in Fig. 7, the default parameters
established by Biomod2 for RF (ntree ¼ 500 and mtry ¼ 4) obtained the best model perfor-
mance, whose evaluator metrics did not greatly differ from other tuning options. The poorest
performance was obtained with ntrees ¼ 50 and mtry ¼ 2 (lower value parameters than the
default proposed by BIOMOD2). The increase of ntrees or mtry has not improved model results,
with relatively very small changes in model performance. It is also noticeable how the ROC-
AUC evaluator remains more or less constant across the different attempts, whereas the changes
of TSS and KAPPA are slightly larger.

Therefore, the best algorithm (RF) was optimized after the tuning phase with ntree ¼ 500 and
mtry ¼ 4. The best model results were obtained using the variables created with scenario D and
the minimum SM reached at each time interval. Finally, we ran RF for five iterations to aim for
robust results. Model performance scores are compiled in Table 5.

The metric scores are in accordance with the ones obtained in Table 3 for the same scenario (D)
and chosen variables (minimum SM). In general, testing values and sensitivity are slightly lower,
whereas ROC-AUC and TSS specificity are somewhat higher. In essence, score values do not differ
considerably when running more iterations and averaging their metrics. The impact of SM var-
iables in the final model results (RF, scenario D, and minimum SM) is summarized in Fig. 8.

The most relevant variables for the outcome model were SM1, SM2, SM3, and SM4, which
stand for the minimum SM values obtained between 95 and 90, 89 and 84, 83 and 78, 77 and 72
days before the sighting record, respectively. Figure 8 indicates the greater impact of these men-
tioned variables (mostly over 10%) in comparison with the rest, which do not overcome the 5%
per each. Figure 9 shows the response curves of these four more relevant variables that are over

Fig. 7 Comparison of different RF results using different tuning parameters, with scenario D and
theminimum SM value per interval (best performances in the previous step). X -axis represents the
parameter changes and Y -axis the model performance of each tuning combination according to
ROC, KAPPA, and TSS statistics.
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Table 5 RF results after five iterations using the best scenario (6 days) with the minimum SM
values obtained in each interval. Sensitivity and specificity are expressed in %.

RF

Test Sensitivity SpecificityFive iterations

ROC-AUC 0.946 84.911 89.105

TSS 0.740 85.468 88.461

KAPPA 0.738 87.325 86.508

Fig. 8 Variable importance in % of each variable from scenario D (6 days), using the minimum SM
value obtained in each time interval for RF.

Fig. 9 Response curves for hopper’s desert locust for SM1, SM2, SM3, and SM4 variables for RF.
The Y -axis represents the presence probability of the prediction, while X -axis stands for SM
values.
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5% of importance. The plots suggest some potential thresholds of SM content to increase the
probability of presence. The minimum SM values acquired during SM1, SM2, SM3, and SM4
denote a positive influence in hopper occurrences. It is observed that the range of SM values in
which the probability of presence is over 0.5 varies. Presence probabilities tend to keep steady by
0.5 when SM values reaches 0.15 for SM1, SM2, and SM4. SM3 keeps a high probability over
such figure. Nevertheless, there is a common trend by the 0.07 (m3∕m3) to increase the prob-
ability of presence within 72 and 95 days afterward.

4 Discussion

It is widely assumed that rainfall over 25 mm in two consecutive months is generally enough for
locust breeding and development.82 Nevertheless, remotely sensed precipitation in arid environ-
ments has some limitations such as high rainfall overestimation due to subcloud evaporation.83

Aiming to solve the problems associated with remote sensing precipitation, we have analyzed the
link from ESA CCI SM remote sensing product with field surveys of hopper desert locust from
SWARMS—FAO. In addition, we assess the suitability of this SM product to derive desert locust
breeding sites.

The importance of SM in egg laying and development has been long known, as well as the role
of fresh vegetation, which is greatly determined by water availability in the soil.4 SM monthly
averages suggest a spatial correlation with summer and winter breeding areas. It coincides
with the regional climatic conditions of Mauritania as reported in other works.59,60 Winter rainfall
is usual in the north while summer rain in the south of the country. Nevertheless, typical autumn
breeding areas do not seem to be accounted for the monthly SM patterns. In arid environments,
there is a direct relationship between rainfall and SM84,85 so that problems such as subcloud
evaporation83 may be avoided with the applied methodology. Despite ESA CCI SM only senses
the first 5 cm of the top soil, and desert locusts lay eggs usually at a depth down to 10 cm; this
system seems appropriate due to the strong relationship of the top SM with deeper layers.86

Our analysis reveals the importance of variable creation as a previous step to modeling. We
have tested different time intervals for the variable creation. In addition, we have chosen different
representative SM values for the given time-span (maximum, mean, and minimum) and presence
and pseudoabsence sites. Perhaps, the use of pseudoabsences may be controversial in certain fields
because bring some sort of uncertainty into the results.87 However, their use is generally justified
for providing a set of conditions available in the region that need to be included in the SDM.88

The highest performance was acquired by the RF algorithm when dividing the whole survey
time into ranges of 6 days, and selecting the minimum SM as the variable value. Even though
previous literature70 have used the GLM model with a binomial distribution to identify potential
factors that determine species presences or absences, GLM approach did not perform well in our
study. It was observed that RF performance did not greatly change using hyperparameter values
larger than ntree ¼ 500 and mtry ¼ 4 (default values in BIOMOD 2 for RF). Whereas, lower
ntree and mtry values performed slightly worse in terms of TSS and KAPPA metrics. According
to Ref. 67, our RF model has had an excellent performance based on ROC-AUC metric with
0.946, and a good performance for TSS and Kappa statistics with 0.740 and 0.738, respectively.
The probability of hopper detection (sensitivity) is over 85%, being able to correctly identify
(specificity) over 86% of the pseudoabsence records. The variables with more weight in the
model results were SM1, SM2, SM3, and SM4, whose cover time range from 95 to 72 days
before the sighting record. Locust eggs develop and hatch successfully when there is enough
moisture in the soil,40 whereas insufficient moisture may stop egg development or dry them out.4

Our results indicate that the minimum SM conditions over at least 6 days should remain higher
than 0.07 m3∕m3. This value is in accordance, although slightly lower, with the SM range pro-
posed by Ref. 89, which is between 0.10 and 0.20 m3∕m3. Hopper mortality is closely linked to
food shortage,4 which in arid environments is closely linked with inadequate precipitation.6,41

Thus, remotely sensed SM may also be a good indicator of suitable conditions to infer hopper
presences and locate breeding areas. A good understanding of the geographical relationship
between desert locust populations and their potential breeding habitats can improve desert locust
survey and control operations.41
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The applied methodology offers very promising results to correctly identify breeding areas
based on 30 years of SM values. The ESA CCI SM dataset is the most complete and consistent
global SM data record available.58 To the best knowledge of the authors, there has not been any
previous desert locust analysis using this SM dataset. Given the acknowledged importance of
SM for desert locust and the length of ESA CCI SM dataset, our results may signify a break-
through to complement the ongoing locust monitoring techniques used until today.

5 Conclusions

This paper aimed to assess the significant importance of satellite SM products to locate breeding
areas for desert locusts in solitarious phase. Despite remote sensing techniques greatly evolving
to date, very few works have addressed the SM relationship to identify desert locusts by earth
observation methods. This survey is based on the ESA CCI SM product, the most complete and
consistent available SM dataset. We have used a machine learning approach to assess the rela-
tionship between desert locust presences and antecedent SM conditions and estimate the accu-
racy of our model. This study confirmed the robustness of the applied methodology, where
30 years of locust records and SM values were used to feed the model, but note that some uncer-
tainty is expected due to the use of pseudoabsence data.

The monthly SM values suggest a spatial correlation with usual breeding areas in Mauritania.
So far, desert locust suitable sites have been mainly delimited based on rainfall estimates from
satellite remote sensing. However, some literature marks the high overestimation of these prod-
ucts over dry regions. Therefore, we suggest the use of ESA CCI SM product to overcome that
problem either to complement other rainfall products or to substitute them in certain instances of
high uncertainty.

Furthermore, we have modeled quantitatively the relationship between hopper presences and
SM under different scenarios and variables. The best model performance was obtained by RF,
when using the minimum SM value within 6 days interval, for a maximum survey time of 95
days before the sighting date. The validation phase acknowledged the suitability of this meth-
odology to identify hopper presences with an ROC-AUC of 0.94 and TSS and Kappa of 0.74.
The importance of SM thresholds and survey time has also been addressed: when the minimum
SM value of a certain location overcomes 0.07 m3∕m3 during 6 days or more, the area becomes
favorable as a breeding zone. However, these figures should be taken carefully. Variable impor-
tance showed that the most relevant variables of the model would cover between 95 and 72 days
before the sighting record. It implies, as highlighted in other works, that certain SM levels need
to be maintained over time not just for egg laying but egg development and hatching. So that,
monitoring periods should be longer than 6 days to those favorable areas for a successful egg
development and hatching.

This paper proposes a machine learning approach based on SM time series to predict breed-
ing areas, by means of remote sensing. According to these results, the observed SM during
certain periods stands as a very reliable contributor to accurately predict hopper presences in
Mauritania; consequently, its monitoring may reduce the locust impact on local communities.
Future researches may aim to ensemble other studied environmental variables along with SM
datasets to implement more developed warning systems. This increasing amount of information
that remote sensing platforms are providing will require the use of artificial intelligence
approaches. For instance, the correct use of ensemble SDM may sometimes improve the per-
formance of individual models, which might contribute to solve problems like the exposed in
this work.
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