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Abstract. Inhalation of airborne particulate matter (PM) is associated with a variety of adverse
health outcomes. However, the relative toxicity of specific PM types—mixtures of particles of
varying sizes, shapes, and chemical compositions—is not well understood. A major impedi-
ment has been the sparse distribution of surface sensors, especially those measuring speciated
PM. Aerosol remote sensing from Earth orbit offers the opportunity to improve our understand-
ing of the health risks associated with different particle types and sources. The Multi-angle
Imaging SpectroRadiometer (MISR) instrument aboard NASA’s Terra satellite has demon-
strated the value of near-simultaneous observations of backscattered sunlight from multiple
view angles for remote sensing of aerosol abundances and particle properties over land.
The Multi-Angle Imager for Aerosols (MAIA) instrument, currently in development, improves
on MISR’s sensitivity to airborne particle composition by incorporating polarimetry and
expanded spectral range. Spatiotemporal regression relationships generated using collocated
surface monitor and chemical transport model data will be used to convert fractional aerosol
optical depths retrieved from MAIA observations to near-surface PM10, PM2.5, and speciated
PM2.5. Health scientists on the MAIA team will use the resulting exposure estimates over glob-
ally distributed target areas to investigate the association of particle species with population
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1 Introduction

Numerous epidemiological investigations have provided compelling evidence that inhalation of
airborne particulate matter (PM) reduces life expectancy and contributes to myriad other health
problems including heart disease, stroke, respiratory impairment, lung cancer, diabetes, cognitive
decline, and adverse birth outcomes.1–5 The Global Burden of Disease (GBD) study6–8 ranks ambi-
ent PM2.5 (particles <2.5 μm in aerodynamic diameter) as the top environmental risk factor world-
wide, causing about 4.1 million premature deaths in 2016. Although GBD and many other studies
have focused on human exposure to the total mass of PM2.5, the relative toxicity of specific PM
types—particle mixtures with different size distributions and chemical compositions—remains
less well understood.9,10 As these types often have different sources, this is a major impediment
to targeting interventions that would improve public health.

Airborne PM is a complex mixture of particles with different sizes, shapes, and chemical
compositions, originating from multiple sources and subject to dynamic atmospheric transfor-
mations. The challenges associated with studying the health impacts of different PM types are
due, in part, to the heterogeneity of particle properties and their variability in space and time.
Although surface monitors provide the most accurate means available for measuring PM mass
concentrations and chemical compositions at fixed locations, they are unavailable in many parts
of the developing world. Monitors capable of measuring PM speciation are especially uncom-
mon and, even when available, lack the spatial density needed to assess fine-scale exposure
gradients. As noted by the World Bank,11 “Scarce public resources have limited the monitoring
of atmospheric PM concentrations in developing countries, despite their large potential health
effects. As a result, policymakers . . . remain uncertain about the exposure of their residents to
PM air pollution.”

The US National Academy of Sciences has placed a priority on improving our understanding
of the relative toxicity of different types of PM.12 Surface monitors alone, particularly those
capable of measuring speciated PM, are not sufficient to achieve this objective as they are
too sparsely distributed and expensive to install and maintain. Inaccurate exposure estimates
can result when PM concentrations vary over spatial scales smaller than the distances between
monitors.13 Although PM exposure over a scale of a few hundred meters can be important for
individuals who live near pollution sources (such as major roadways) or who have limited mobil-
ity (e.g., residents of nursing homes), recent geostatistical studies suggest that most PM spatial
variability is adequately sampled at scales ranging from 1 to 4 km.14,15 The US Environmental
Protection Agency (EPA) notes that “the use of central fixed-site monitors to represent popu-
lation exposure” is a key factor limiting our knowledge as to which PM types pose the greatest
health risks,10 and recommends monitoring of urban PM at the neighborhood scale (0.5 to
4.0 km) as it represents conditions where people commonly live and work.16

Satellite remote sensing—in combination with surface monitor measurements and chemical
transport model (CTM) outputs—currently offers a practical approach to frequent, neighbor-
hood-scale mapping of PM2.5 mass concentrations around the world. The US EPA and
National Institute of Environmental Health Sciences highlight the value of remote sensing to
“augment ground-based air quality sampling and help fill pervasive data gaps that impede efforts
to study air pollution and protect public health.”17 PM2.5 mass estimates derived from satellite
observations are proving useful in epidemiological studies.18,19 Because PM speciation monitors
are even less common (and more expensive) than those measuring total mass concentrations,
future advances in satellite capability to characterize particle type, and extension of current meth-
odologies to handle speciation, have the potential to improve our understanding of which PM

Diner et al.: Advances in multiangle satellite remote sensing. . .

Journal of Applied Remote Sensing 042603-2 Oct–Dec 2018 • Vol. 12(4)

https://doi.org/10.1117/1.JRS.12.042603
https://doi.org/10.1117/1.JRS.12.042603
https://doi.org/10.1117/1.JRS.12.042603
https://doi.org/10.1117/1.JRS.12.042603
https://doi.org/10.1117/1.JRS.12.042603


mixtures and sources are most harmful. This information could help prioritize air quality guide-
lines, facilitate cost-effective monitoring and mitigation strategies, and aid research into the
biological mechanisms for documented PM health effects.12

The Weather and Air Quality panel of the 2017 Decadal Survey for Earth Science and
Applications from Space20 includes among its highest priority objectives improvement in the
ability to estimate global air pollution impacts on human health along with the “establishment
and maintenance of a robust, comprehensive observing strategy for the spatial distribution of PM
(including speciation).” Given that the particles responsible for human health risks are situated
near ground level, the Decadal Survey recognizes the need for an integrated strategy that com-
bines space-based, aircraft, and ground-based observations, augmented by data from CTMs.

The past two decades have witnessed major advances in our ability to map aerosol abun-
dances and particle properties from space. Aerosol retrievals over land from instruments,
such as the Multi-angle Imaging SpectroRadiometer (MISR),21 Moderate resolution Imaging
Spectroradiometer (MODIS),22 and Sea-viewing Wide Field-of-view Sensor (SeaWiFS)23

have been successfully used to generate global maps of near-surface fine PM concentrations
and track multiyear trends.24,25 These satellite-based maps of fine PM have been used in the
GBD and many other health impact studies, including several that examined PM2.5 exposure
and lung function, kidney disease, lung cancer, breast cancer, heart attacks, and birth
outcomes.7,8,26–32 These efforts have been made possible by advances in spaceborne instrumen-
tation and associated data processing algorithms.

Current efforts in aerosol remote sensing are aimed at improving our ability to characterize
particle type. Multiangle observing, implemented in satellite instruments such as MISR33 and
Polarization and Directionality of Earth’s Reflectances (POLDER),34 has been shown to provide
an effective modality for achieving this objective.21,35,36 The MISR instrument, built by the Jet
Propulsion Laboratory (JPL) for flight on NASA’s Terra spacecraft, has been collecting Earth
science data since February 2000. In this paper, we briefly review the application of MISR to
aerosol and PM remote sensing. This discussion serves as a prelude to a description of the Multi-
Angle Imager for Aerosols (MAIA),37 which builds upon MISR heritage and is currently in
development at JPL. Key elements of the MAIA investigation include (1) a satellite instrument
that incorporates a number of measurement advances relative to MISR, such as expanded spec-
tral range and polarimetric imaging, (2) integration of space-based and ground-based measure-
ments and CTM outputs to generate high-resolution maps on a 1-km spatial grid of speciated PM
in a selected set of globally distributed target areas, and (3) linkage of the resulting PM exposure
data to human health records to assess the impact on disease. This paper is intended to familiarize
the scientific and public health communities and potential data users with the principal elements
and strategies to be employed by the MAIA investigation, and to provide an overview of the
current development status of the project.

2 Multi-angle Imaging SpectroRadiometer

2.1 Background

The MISR instrument33 was launched into polar, sun-synchronous orbit aboard NASA’s Terra
spacecraft on December 18, 1999. Routine Earth observations began on February 24, 2000.
MISR uses nine separate cameras to image the Earth at nine discrete view angles: 0 deg
(nadir) and 26.1 deg, 45.6 deg, 60.0 deg, and 70.5 deg forward and backward of nadir.
Pushbroom imagery at 275-m- to 1.1-km spatial resolution over a 400-km-wide swath is
acquired in four visible/near-infrared (VNIR) spectral bands (446, 558, 672, and 866 nm) in
each camera by making use of spacecraft motion and linear detector arrays. MISR was designed
to improve our understanding of the Earth’s climate, ecology, and environment. The suite of
validated geophysical data products38 is generated and archived for public distribution at the
NASA Langley Atmospheric Science Data Center (ASDC). An extensive bibliography of
peer-reviewed publications describing, applying, and validating MISR data for studies of aerosol
climate, air quality, and health impacts, radiation and cloud–climate interactions, cloud-tracked
winds, and surface biospheric and cryospheric science is available on the MISR website.39
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2.2 Aerosol Data Product Generation

Among the objectives of the MISR investigation is global mapping of aerosols. Direct radiative
effects of aerosols, both in magnitude and sign, depend principally on the aerosol optical depth
(AOD), single scattering albedo, scattering phase function, and the albedo of the underlying
surface. Aerosols also have indirect climate and hydrological impacts through their effects
on the albedos, lifetimes, and microphysical properties of clouds, and play a major role in
human and environmental health.

Multiangle radiance observations are valuable for enhancing the aerosol signal relative to
surface reflection and providing sensitivity to the aerosol scattering phase functions, which
are governed by particle size, shape, and composition.40–42 Radiative-transfer-based algorithms
are applied to radiometrically calibrated, georectified, and cloud-screened MISR multiangle,
multispectral imagery to generate the aerosol product. Over land, two main algorithms work
together. The first, known as heterogeneous land, utilizes spatial contrasts to derive an empirical
orthogonal function representation of the surface contribution to the measured multiangle
radiances.43 The second, known as homogeneous land, uses similarity in the angular shape
of surface bidirectional reflectance factors (BRFs) among the four spectral bands as a constraint
on the aerosol retrievals.44 Both algorithms make use of the multiangular nature of the MISR
observations. By employing a lookup table consisting of 74 mixtures of aerosol particles having
prescribed microphysical and optical properties and using several goodness-of-fit metrics to
compare modeled top-of-atmosphere radiances to the MISR observations, the retrieval algorithm
provides sensitivity to both AOD and aerosol types.35

2.3 Application to Air Quality and Human Health

Comparisons of MISR AODs with independent ground-based sunphotometer AODs from the
Aerosol Robotic Network (AERONET)45 show a high positive correlation,46,47 including over
arid land and urban areas.48–50 As a result, MISR is one of several satellite instruments contrib-
uting to widely used global maps of PM2.5.

24,25,51 MISR’s sensitivity to particle type enables
separation of anthropogenic aerosols from dust, which has led to improved estimates of
ground-level PM2.5 concentrations in the arid western United States compared with single-
angle approaches.52,53 These multivariate regression models were initially developed to explore
MISR’s ability to quantitatively characterize ground-level concentrations of PM2.5 components
such as sulfate, nitrate, organic carbon (OC), and elemental carbon (EC). Later, a more flexible
generalized additive model (GAM) using MISR fractional AOD (partitioned by particle proper-
ties) scaled by vertical profiles of aerosol loading from the GEOS-Chem transport model was
able to explain 70% of the variability in sulfate concentrations measured by surface monitors.54

Particle size and shape information from MISR retrievals has been used to associate anthropo-
genic pollution with significant decadal rise in AOD and ground-level PM2.5 over urban centers
and densely populated rural areas in India.55,56

Fig. 1 Example comparison of 17.6-km (V22) and 4.4-km (V23) MISR AOD retrieval.

Diner et al.: Advances in multiangle satellite remote sensing. . .

Journal of Applied Remote Sensing 042603-4 Oct–Dec 2018 • Vol. 12(4)



Validation of MISR aerosol retrievals using the operational 17.6-km resolution product dem-
onstrated high accuracy over land for AOD <0.5 and systematic underestimation (though high
correlation) at high aerosol loading.46–50 Hierarchical Bayesian modeling and statistical analysis
of this product suggested potential benefits of going to higher spatial resolution.57,58 Given the
value of finer spatial detail for studies of urban air quality, the MISR retrieval algorithm was
recently adapted to operate on a 4.4-km spatial grid, and prototyping of the updated code dem-
onstrated significant improvements in terms of accuracy, coverage, and mapping of spatial
gradients.59 Consequently, the operational aerosol product was upgraded from 17.6-km (version
22) to 4.4-km spatial resolution (version 23), and the V23 product was made publicly available in
late 2017. An example of the improvement in spatial resolution and coverage is shown in Fig. 1.
These data are from a Terra overpass of southeastern Texas and western Louisiana on February
14, 2013. The 4.4-km resolution product does a superior job in pinpointing elevated AODs over
Houston and the Red River Valley.

Prototype versions of MISR’s 4.4-km aerosol product have been used over parts of southern
and central California to estimate daily-averaged PM2.5, PM10, and speciated PM2.5 concentra-
tions. Through leave-one-out cross-validation against the EPA’s federal reference method mea-
surements, the product was shown to capture PM2.5 spatial variability at the grid scale and to
separate PM2.5 and PM10 size modes in the greater Los Angeles area.60 Another recent study
applied GAMs to 15 years of the prototype 4.4-km product, and showed that the GAMs are able
to explain 66%, 62%, 55%, and 58% of the variability in daily-averaged PM2.5 sulfate, nitrate,
OC, and EC concentrations.61

3 Multi-Angle Imager for Aerosols

3.1 Background

NASA selected the MAIA investigation in 2016 as part of its Earth Venture Instrument program.
The MAIA instrument builds upon MISR’s legacy and adds new measurement capabilities for
determining concentrations of total fine (PM2.5) and coarse (PM10 − PM2.5) particles, along with
the amounts of hydrated nonorganics, OC, black carbon (BC) or EC, and mineral dust in the fine
particle mixtures. An integrated satellite/surface-level data and modeling strategy62 is used to
generate daily mean PM values on a 1-km grid. This approach enables further separating
the nonorganics into sulfate and nitrate contributions. The main challenges that MAIA aims
to address are to demonstrate that current satellite-based strategies for mapping total PM2.5

mass can be extended to include speciation, and that the approach can be implemented on
an operational basis.

MAIA’s primary objective is to assess the impacts of different types of airborne PM on
human health. The planned investigation consists of several elements: (1) the MAIA satellite
instrument, (2) algorithms and software to generate PM maps using data from the MAIA instru-
ment, surface monitors, and CTMs, and (3) epidemiological studies using the MAIA PM maps
and geocoded health data to associate different types of PMs with adverse health outcomes. By
increasing the density of spatial sampling and the coverage of PM in the targeted regions, MAIA
overcomes a major impediment faced by prior studies that have examined the health impacts of
specific PM types,63–67 namely their limited ability to accurately assess exposure due to the small
number of ground-based speciated PM monitors. To support other atmospheric science research,
MAIA plans to collect measurements over areas that are of value for studying aerosol and cloud
impacts on Earth’s climate, and over extreme events such as wildfires, dust storms, and erupting
volcanoes. Demonstration in Earth orbit of the new imaging technologies used in the MAIA
instrument will also benefit NASA’s planning for future missions.

3.2 Instrument Design

The MAIA instrument is designed to combine multispectral, polarimetric, and multiangular
capabilities into a single, integrated imaging system capable of mapping total and speciated
PM at the neighborhood scale. At the heart of the instrument is a pushbroom camera mounted
on a two-axis gimbal.
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3.2.1 Spectral coverage

MAIA’s camera includes spectral bands in the ultraviolet (UV), VNIR, and shortwave infrared
(SWIR), which improves sensitivity to aerosol particle properties compared with MISR’s VNIR-
only bands. UV wavelengths are useful for detecting absorption by hematite and aluminum
oxide in dust particles, nitrated aromatic and polycyclic aromatic hydrocarbons in organic aero-
sols (e.g., brown carbon), and BC or EC (soot).68,69 The use of VNIR bands for fine aerosols
draws upon MISR, MODIS, and POLDER heritage. The SWIR is sensitive to coarse aerosols,70

and a band located in a strong water vapor absorption feature provides enhanced cirrus
screening.71 Channels within and near the O2 A-band are included to explore sensitivity to aero-
sol layer (and cloud) height.72,73 Table 1 summarizes the MAIA spectral band set.

3.2.2 Polarimetry

As shown in Table 1, three of the MAIA bands are polarimetric, providing additional sensitivity
to particle size and compositional proxies, such as refractive index.74–76 By constraining these
particle properties, polarization also works in conjunction with radiance to constrain aerosol
absorption.77 To capitalize on the benefits of polarimetry in future instruments, the aerosol com-
munity has established an uncertainty requirement of �0.005 in degree of linear polarization,78

which is more than three times stricter than POLDER performance. The MAIA camera achieves
this level of accuracy at a spatial resolution of 1 km (compared to 6 km with POLDER) by using
a polarization modulation technique enabled by a pair of photoelastic modulators and a pair of
achromatic quarter-wave plates.79,80 This results in a time-varying oscillation in the plane of
linear polarization at a frequency near 27.5 Hz. The readout integrated circuit enables rapid
sampling of the modulated signals during each pushbroom image frame. Silicon detectors
are used in the UV/VNIR and mercury–cadmium–telluride detectors in the SWIR. Above
the detector array is a set of spectral filters and wiregrid polarization analyzers. A similar system
operating in the UV/VNIR has been implemented in JPL’s Airborne Multiangle
SpectroPolarimetric Imager (AirMSPI).81 The second-generation AirMSPI-2 extends the spec-
tral range into the SWIR.82 MAIA makes use of heritage from both airborne instruments.

Table 1 MAIA spectral bands.

Band
center (nm)

Bandwidth
(nm) Polarimetric Purpose (s) Legend for spectral band purposes

365 37 1 1. Aerosol spectral absorption and height

391 39 1 2. Aerosol fine mode size distribution

415 39 1 3. Aerosol refractive index

444 53 x 1, 2, 3, 8 4. Water vapor absorption

550 43 2, 8, 9 5. Bracket absorption bands

646 72 x 1, 2, 3, 8 6. Aerosol and cloud height using O2 A-band

750 18 2, 5 7. Aerosol coarse mode size distribution

763 6 6 8. Cloud screening and characterization

866 52 2, 5, 8, 9 9. Surface BRF characterization

943 46 4

1044 97 x 1, 3, 5, 7, 8

1610 73 7, 8

1886 83 4, 8

2126 114 7, 8, 9
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3.2.3 Multiangle imaging, areal coverage, and spatial resolution

The MAIA camera is a four-mirror f∕5.6 optical system with cross-track and along-track focal
lengths at the center of the optical field of view of 57 and 61 mm, respectively. As the MAIA
orbit is not yet known, this design accommodates any orbit altitude between 600 and 850 km.
Unlike MISR, which contains multiple cameras pointed at discrete along-track view angles,
MAIA’s single camera is mounted on a biaxial gimbal assembly that can point the camera
field of view to any along-track and cross-track position within a bidirectional field of regard.
A mini dual-drive actuator (MDDA) drives each gimbal axis. The MDDA has been used on
MISR and other satellite instruments, and provides each gimbal axis with 100% redundancy
and resilience to single-point mechanical or electrical faults.

The targeting nature of the MAIA instrument enables routine multiangle observations of a
globally distributed set of study sites. The along-track (scan) gimbal has a �58- deg range of
motion, while the cross-track (pan) gimbal has a�39- deg range of motion, which when added to
the �9- deg cross-track field of view provides a �48- deg cross-track field of regard. The pan
capability permits access to targets that are not directly situated on the subspacecraft track, mak-
ing it possible to observe each target, on average, at least three times per week. Images of the
same area can be observed at a set of discrete view angles in a “step-and-stare” sequence. A
“sweep” mode of operation in which the scan gimbal moves continuously over its accessible
range is also possible.

For most targets, images would be acquired using the step-and-stare mode (Fig. 2). In this
mode, the gimbals orient the camera to view the target’s leading edge, beginning at the most
oblique forward view angle. Pushbroom imagery is acquired while the camera remains fixed at
this angle, after which the scan gimbal moves to the next (smaller) forward view angle and
imagery of the same area is reacquired. This sequence repeats until observations are acquired
at all commanded angles. The pan actuator compensates for Earth rotation between views.
Observing at five view angles would yield target lengths >330 km from a 600-km orbit and
>420 km from an 850-km orbit. The number of view angles is selectable, with more angles
resulting in a shorter along-track distance seen in common by all views. At nadir, the camera
design covers a cross-track swath width of 192 km for an orbit altitude of 600 km, increasing to
272 km at 850-km altitude. Even at the lowest altitude, the target dimensions cover major met-
ropolitan areas. Footprint sizes are on the order of 200 m at nadir and increase with view angle,
particularly in the along-track direction. At the highest orbit altitude and most oblique view
angle, the along-track footprint size remains below 1100 m, and is oversampled by a factor
of 4.5 as a result of the pushbroom frame rate.

3.2.4 Instrument system

A conceptual layout of the MAIA instrument is shown in Fig. 3. A cylindrical barrel serves as a
radiator to dissipate heat from the camera electronics. Another radiator, positioned to view deep
space, dissipates heat from the focal plane, which is passively cooled to 225 K to limit dark

Fig. 2 Example MAIA step-and-stare sequence, showing the case of five discrete view angles.
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current in the SWIR detectors. Other parts of the instrument include the structural supports, the
biaxial gimbal assembly, the instrument electronics, an onboard calibrator (OBC), and a dark
target (DT). The OBC consists of a glass diffuser and an array of wiregrid polarizers, and is
illuminated by sunlight as the spacecraft traverses one of the orbital poles. The DT is a
light-shielded cavity for measurement of dark levels. The biaxial gimbal enables periodically
pointing the camera at these calibrators, and the data acquired are used in ground data processing
to update the polarimetric and dark offset calibrations.

3.3 Science Operations

MAIA is to be launched into a low-Earth, sun-synchronous, polar orbit at an altitude in the 600-
to 850-km range. The orbit altitude and mean local time of equator crossing will be established
once the host spacecraft has been selected. Mid- to late-morning overpass time is preferred to
allow for fog burn-off and boundary layer mixing and because fewer clouds are expected in the
morning than in the afternoon.83 In addition, because the accessible area within the instrument
field of regard increases with orbit altitude, target revisit frequencies generally increase as orbit
altitude increases. NASA is planning to select the host spacecraft in late 2018, and launch is
expected to occur no earlier than mid-2021. The baseline mission duration is 3 years.

Science data would be collected, on average, over one target per orbit, resulting in about 100
acquisitions per week. Typical volume per target of the instrument data is estimated at 29 Gbit,
slightly larger than the volume generated in one orbit by MISR, despite the fact that MAIA
observes discrete targets, while MISR observes the illuminated side of the Earth continuously.
This is a result of the larger number of spectral bands in MAIA, the collection of polarimetric
data, and the use of onboard spatial averaging in MISR. Primary target areas (PTAs) are major
population centers designated for conducting epidemiological investigations by the MAIA
Science Team. PTAs would be observed in a step-and-stare mode and are selected to include
major population centers covering a range of PM concentrations and particle types; surface-
based aerosol sunphotometers (e.g., from AERONET45) for aerosol retrieval validation; PM
mass, size discrimination, and chemical speciation monitors associated with various measure-
ment networks84,85 to enable development of statistical and machine learning regression models
that relate retrieved column-integrated aerosol properties to near-surface PM; and health data
geocoded by home addresses, zip codes, census block groups, or similar locations of study sub-
jects. Secondary target areas (STAs) are regions of interest for air quality or other aerosol and
cloud research (e.g., climate science) and would make use of either the step-and-stare or sweep
mode, depending on the measurement objective. STAs do not have the same requirements on
surface monitor availability as PTAs and the feasibility of higher-level data processing beyond
generation of calibrated and georectified imagery (see § 3.4.1) would be assessed on a case-by-

Fig. 3 Conceptual layout of the MAIA instrument.
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case basis. Calibration/validation target areas (CVTAs) would be observed routinely for instru-
ment calibration and stability monitoring, and aerosol/PM validation. As the MAIA instrument
does not contain an absolute radiometric calibrator, the prelaunch camera calibration will be
routinely updated via vicarious calibrations over Railroad Valley, Nevada. The vicarious
calibration technique has been widely adopted by many satellite sensor investigations and
uses surface and atmospheric measurements acquired at the time of satellite overpass to compute
top-of-atmosphere radiance and to update the instrument radiometric response. MAIA observa-
tions of noninstrumented but stable Earth targets, such as the Libya-4 desert site, will also be
used to maintain the radiometric calibration uncertainty to within�4% over bright targets (�6%

over dark targets). A candidate set of PTAs, STAs, and CVTAs is shown in Fig. 4. Specialized
acquisitions over targets of opportunity may be acquired over episodic events, such as volcanic
eruptions, major wildfires, or dust storms.

The candidate PTAs and STAs shown in Fig. 4 include historically understudied areas (e.g.,
Africa). The list is subject to future updates, as observability of some targets will depend on the
orbit altitude of the host spacecraft and negotiations for access to the requisite surface monitors
and health data are still in process.

3.4 Data Processing and Products

MAIA data products follow the NASA hierarchy from level 0 (raw instrument data) to level 1
(calibrated and georectified imagery), level 2 (geophysical products at the same location as level

Fig. 4 Candidate set of PTAs, STAs, and CVTAs and representative cities.
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1 source data), and level 4 (integration of measured and modeled results). As spatial gridding and
map projection are incorporated into level 1 processing in a similar manner as is done for
MISR,86 MAIA does not identify separate level 3 products. Data processing software developed
at the MAIA science computing facility at JPL (with algorithmic approaches and software par-
tially inherited from the MISR and AirMSPI projects) will be delivered to the NASA Langley
ASDC for product generation.

3.4.1 Level 1 calibrated and georectified imagery

Level 1 calibrated and georectified radiance and polarization image products will be map-pro-
jected to the surface terrain altitude for step-and-stare acquisitions and to the surface ellipsoid for
sweep observations. For those target areas that will be subjected to higher-level aerosol and PM
processing, a decision tree-based algorithm capitalizing on MISR and MODIS experience87–89

will be used operationally to detect cloud-covered pixels.

3.4.2 Level 2 aerosol

The level 2 MAIA aerosol processing concept is envisioned to employ a nonlinear optimization
algorithm to adjust the aerosol properties to match the full set of multiangular, multispectral, and
polarimetric data provided by the MAIA instrument. This algorithm has been prototyped using
AirMSPI data.90 For MAIA, acceptable limits on aerosol microphysical and optical properties
would be derived by configuring the CTM regionally and analyzing the aerosol climatology for
each PTA. A pre-established surface BRF database based on the Multi-Angle Implementation of
Atmospheric Correction (MAIAC) algorithm91,92 would further constrain the retrievals.
Constraints on the spatial and spectral variations of aerosol properties across neighboring pixels
and temporal variations of surface reflection properties76,90 within few days of target revisits will
be imposed to stabilize the algorithm. The MAIAC surface database, which has been screened
for clouds, potentially adds a supplementary layer of cloud screening.93 This approach results in
retrieval of both total AOD as well as fractional AODs associated with fine, coarse, spherical,
nonspherical, absorbing, and nonabsorbing aerosols on a 1-km grid. Predicted signal-to-noise
ratios (SNR) in the bands used for aerosol retrievals range from approximately 190 to 880 over
dark targets (worst-case surface reflectance ∼0.02). Noise performance requirements have been
specified to limit the effect of random instrument noise on the retrievals and to provide SNRs
similar to those achieved with MISR.

3.4.3 Level 2 PM

The next step in the retrieval process transforms the retrieved total and fractional AODs to mass
concentrations of PM10, PM2.5, and major PM2.5 components including sulfates, nitrates, OC,
BC or EC, and mineral dust. Reporting of BC or EC depends on the type of surface monitor
available in a given PTA. Dust refers to resuspended inorganic material, such as soil, road dust,
construction dust, or fly ash. There are several key differences between the level 2 AOD and PM
products that must be accounted for in this transformation. First, AOD is a column-integrated
quantity, whereas for studies of the impact of airborne PM on human health, the particles of
greatest interest are near the surface. Second, PM concentrations are typically reported at con-
trolled relative humidity (RH), whereas the MAIA AODs correspond to the ambient RH. Third,
epidemiologists are interested in the average concentration of PM over a 24-h period, whereas
the MAIA satellite flies over its targets at a specific time of day. Finally, the physical and optical
characteristics of the particles that are captured in the AOD fields are only indirectly related to
the chemical composition.

Transformations from total and fractional AOD at the time of satellite overpass to 24-h aver-
aged total PM mass and PM species fractions, if derived solely based on MAIA observations
alone, are likely to be fraught with systematic biases and uncertainties. However, previous stud-
ies have shown that geostatistical regression models (GRMs) derived from AOD, fractional
AOD, and other environmental attributes, such as temperature, RH, wind speed, land cover
type, and vertically resolved aerosol speciation from the CTM, along with collocated
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measurements from surface monitors, can be used to empirically calibrate the satellite data at
locations where surface monitors are not present and to account for the differences in how the
AOD and PM products are defined.53,94–96 An ensemble approach to GRM generation is being
explored, using both a Bayesian framework as well as various machine learning methodologies,
e.g., artificial neural networks, support vector machines, and random forests.97,98

To generate level 2 maps of speciated PM2.5, MAIA would build upon current practice and
include data from PM speciation monitors in addition to those that measure total PM2.5 and PM10

in generating the GRMs. Sources of such data include the Chemical Speciation Network (CSN)
and Interagency Monitoring of Protected Visual Environments (IMPROVE) network,84 Surface
PARTiculate mAtter Network (SPARTAN),85 other existing monitors within the PTAs, and addi-
tional ground monitors to be deployed by the MAIA project. Current plans are to expand the
SPARTAN network with filter-based samplers in the MAIA PTAs. To deal with the several-
month latency associated with the availability of CSN, IMPROVE, and SPARTAN data, monthly
averaged species fractions from the same month in previous years, supplemented by ancillary
information, such as temperature and RH, will be used to generate interim estimates of speciated
PM2.5 at the monitor locations. Once the actual data become available, MAIA level 2 products
will be reprocessed.

Deployment of low-cost light-scattering-based particle sensors such as PurpleAir (PA)99 is
also under consideration to supplement existing government-sponsored PM2.5 and PM10 net-
works. Field and laboratory tests conducted by the South Coast Air Quality Management
District’s (SCAQMD) Air Quality Sensor Performance Evaluation Center (AQ-SPEC) indicate
that while the PA tends to overestimate PM mass, a high degree of correlation with EPA’s refer-
ence methods is found,100 enabling correction for systematic biases in the PA data. JPL has
deployed several PA sensors (on loan from SCAQMD) in Bakersfield, Fresno, and Visalia,
California for further evaluation.

3.4.4 Level 4 gap-filled PM

The level 2 PM maps are populated with data only where cloud-screened aerosol retrievals using
MAIA instrument data have been generated. Furthermore, level 2 maps are not generated on
days for which there are no satellite overpasses. To generate the spatially and temporally
gap-filled PM exposure estimates that are needed for the epidemiological investigations, the
MAIA project plans to produce a daily gap-filled level 4 PM product in which spatial gaps
due to cloud cover or other dropout are filled and PM estimates are generated on nonoverpass
days. Three sources of data serve as input to generation of this product: the level 2 instrument-
based PM product, interpolated maps generated from surface monitor measurements, and PM
mass and species fractional concentrations predicted by a CTM. Complete spatial and temporal
coverage for each PTA would be obtained by fusing the satellite retrievals, ground-level con-
centration measurements, and CTM outputs in postretrieval processing.

The level 4 PM estimates are envisioned to be weighted averages determined by the relative
predictive ability of each input source. The weights may vary across space and time, and are
derived from uncertainty estimates associated with each of the inputs. Uncertainties associated
with the level 2 satellite-based product would be generated as part of the retrieval algorithm.
Interpolated values from surface monitors will be most accurate for locations and times closest
to the monitor position and sampling period, and high uncertainties would be assigned where
geographical factors, such as surface elevation changes, would make the interpolations unreli-
able. For the CTM, MAIA plans to use the mesoscale Weather Research and Forecasting model
coupled with chemistry (WRF-Chem) model,101,102 coupled with wildfire smoke emissions from
the Fire Locating and Modeling of Burning Emissions system103 and nested within the GEOS-
Chem global model of atmospheric composition driven by meteorological observations from the
Goddard Earth Observing System.104 WRF-Chem outputs will be generated on a 4-km grid and
GEOS-Chem on a 25-km grid. To account for biases that are known to plague even state-of-the-
art CTMs,105 WRF-Chem outputs will be improved throughout the mission using model output
statistics that are analyzed through comparison with MAIA level 2 speciated PM maps and
data from surface monitors. For example, a recent study106 calibrated GEOS-Chem outputs
using speciation monitoring data combined with meteorological and land use variables using
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a backward propagation neural network, which allows for complex and nonlinear associations
between model inputs. This model was used to predict daily PM2.5 and constituents mass con-
centrations on a downscaled 1-km grid. Accuracy of the predictions was assessed using k-fold
cross validation. The mean total R2 at left out monitors was 0.85, 0.71, 0.69, 0.83, and 0.81 for
PM2.5, EC, OC, nitrate, and sulfate, respectively.

As with MISR, archiving and distribution of MAIA data products will be the responsibility of
the ASDC. To protect individual privacy, none of the publicly available geophysical data prod-
ucts generated by the MAIA investigation and stored at the ASDC will contain any health data.
Health records accessed by epidemiologists and public health experts on the MAIA team will be
handled in accordance with well-established legal and ethical requirements for confidentiality,
privacy protection, and data security.

3.5 Science Investigation

Various epidemiological studies are planned for the different MAIA PTAs depending on the
predominant PM species present, the type of health records available, and previous studies
of the effects of air pollution in each area. Well-established epidemiological methodologies,
such as time-series, case-crossover, and cohort-study designs107–109 will be used.

Information about the candidate set of PTAs (see Fig. 4) is shown in Table 2. The MAIA
science team plans to focus on health effects associated with a range of PM concentrations and
different time scales of exposure. Acute exposure takes place over a period of several days and is
generally associated with premature mortality and increased hospital visits due to both cardio-
vascular and respiratory diseases. These studies are conducted by analyzing vital statistics
records (e.g., death certificates) and records of hospital admissions or emergency room visits.
Subchronic exposure studies are primarily aimed at birth outcomes and pregnancy complica-
tions, such as low birth weight and preeclampsia. These outcomes are usually investigated
by analyzing birth records contained in an area’s vital statistics data, or by establishing a
birth cohort. Chronic exposure studies usually track individual-level health effects over multiple
years, and are important as they document morbidity and mortality risk increases and are often
used in GBD estimates. These are generally done with an established cohort or by analyzing
existing health records combined with long-term residency data.111

Table 2 Characteristics of the candidate PTAs.

Candidate PTA

Representative
PM2.5 concentration110

(μgm−3)

Study type

Acute Subchronic Chronic

Northeast US 9 x x x

Northeast Canada 9 x

Southeast US 13 x

Southwest US 17 x x

Italy 17 x x

Israel 20 x x x

Taiwan 26 x

Chile 27 x x

South Africa 46 x

Ethiopia 70 x x

China 80 x x

India 118 x

Diner et al.: Advances in multiangle satellite remote sensing. . .

Journal of Applied Remote Sensing 042603-12 Oct–Dec 2018 • Vol. 12(4)



As noted earlier, the baseline MAIA mission is 3 years in duration. Many epidemiological
studies conducted around the world have reported associations between acute (daily) PM expo-
sure and mortality, hospital admissions, and emergency department visits using <3 years of data
in densely populated regions.112–115 Adverse impacts on prenatal or neonatal development, e.g.,
restricted intrauterine growth, preterm delivery, low birth weight, congenital heart defects, and
infant mortality,5,116,117 have been associated with PM exposure during specific pregnancy
trimesters.118,119 Hence, investigations into birth outcomes targeting trimester specific effects
can even utilize <1 year of data if the population of pregnant women residing in the area is
large enough.120–122 Long-term studies relating chronic exposure to cardiovascular disease
have also benefited from only 2 to 3 years of data, and several have obtained statistically sig-
nificant results using only a single year.65,123–128 Although this may seem surprising, PM spatial
patterns and the rank order tend to be fairly stable from year to year, and results show that the
inferred health impacts from shorter-term exposures are consistent with studies using longer
exposure periods.65 These epidemiological studies targeting chronic health outcomes typically
make use of large cohorts (groups of people, who have been exposed to air pollutants at different
levels or compositions over long periods of time).

Health studies with geocoded subject locations at high spatial resolution (address level) en-
able the most accurate estimation of PM exposure-related health effects. MAIA’s resolution ena-
bles PM retrievals on a 1-km grid for sampling within the neighborhood scale. Although sulfate
has relatively low spatial variability at urban-to-regional scales,129 nitrate and primary OC vary
over smaller spatial scales. BC aerosols are very heterogeneous due to their generation from
traffic fuel combustion and biomass burning.129,130 Recent research highlights the value of
1-km satellite-based aerosol data for health effect studies.96,131–133

4 Conclusions

Building upon the success of MISR and other satellite instruments in providing aerosol obser-
vations that have contributed to numerous health studies, the MAIA investigation aims to take
these efforts further by delving more deeply into assessing the contributions of different types of
airborne particles to human health. Although much of the development effort is concerned with
design and fabrication of the satellite instrument, the investigation also heavily relies on surface
monitors and the CTM to generate PM maps needed to carry out the mission objectives.
Although PM monitoring for regulatory purposes is largely concerned with absolute particle
mass concentrations, epidemiological studies focus on the response associated with relative
differences in exposure to ambient PM. Consequently, the MAIA data processing approach
is designed at each step to eliminate systematic biases in the PM products, beginning with cal-
ibration of the instrument imagery, validation of the column AOD products, application of empir-
ically derived GRMs to transform AOD to PM, and use of satellite and surface observations to
remove biases in the CTM that provides a key element of the gap-filling strategy. The impact of
random errors is mitigated by the statistical advantage of observing entire major metropolitan
areas from space, and acquiring health information associated with hundreds of thousands to
millions of individuals. With the inclusion of epidemiologists on the science team, MAIA is
the first competitively selected NASA satellite mission with applications/societal benefits as
its primary objective.
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