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Abstract. Although many studies exist on the estimation and monitoring of above-ground bio-
mass (AGB) of forest ecosystems by methods of remote sensing, very little research has been
carried out for ecosystems of low primary production, such as grasslands, steppes, or savannas.
Our study intends to approach this gap and investigates the correlation between space-borne
radar information and AGB at the scale of 10 tons per hectare and below. Additionally, we intro-
duce the integration of passive brightness temperature as an additional covariate for biomass
estimation, based on the hypothesis that it contains information complementary to microwave
backscatter of the active sensors. Our findings show that large-scale estimates of AGB can be
conducted for grasslands and savannas at high accuracy (R2 up to 0.52). Additionally, we found
that the integration of passive radar can increase the quality of AGB estimates in terms of
explained variance for selected cases. We hope that these indications are a starting point for
more integrated approaches toward biomass estimations based on Earth observation methods.
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1 Introduction

Satellite imagery has become the primary source for biomass estimates of regions.1 It is used for
the assessment of agricultural yields,2–4 monitoring resources over long time periods,5–7 and
forecasting carbon stocks and emissions.8–10 In particular, the effects of climate change and
desertification became a focus of Earth observation in sub-Saharan Africa.11–13 As grasslands
cover nearly one-fifth of the global land surface, their contribution to the carbon stock is
expected to be between 10% and 30%.14,15 And recent studies indicate that especially carbon
losses caused by land-use changes and deforestation of African grasslands and savannas are 3 to
6 times larger than previously thought.16 Monitoring of grassland ecosystems is, therefore, of
crucial interest for the evaluation of carbon emissions.17 The use of synthetic aperture radar
(SAR) satellite data has been found to be of special value because of its wavelength and the
sensitivity of the signal toward ramified structures and voluminous canopies.18 A stable relation-
ship between SAR backscatter and above-ground biomass (AGB) has been observed and
exploited in numerous studies.19–24 Many of them report signal saturation between 100 and
250 tons per hectare (t/ha) above which the measured SAR backscatter no longer increases
correspondingly.25,26 To overcome this limit, approaches based on radar polarimetry,27 multifre-
quency exploitation,28 integration of optical29 or LIDAR data,30 and SAR interferometry31 have
been proposed. However, while most of the studies are concentrating on tropical and boreal
forest biomass, only a few studies deal with biomass estimation in arid or semiarid regions
with herbaceous ground layer and sparse vegetation cover.32–34 This aspect is primarily an
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outcome of SAR backscatter alone not significantly representing biomass variations below
5 t∕ha as well as other surface characteristics, such as roughness and soil moisture, which
are superimposing the signal at these levels.35–37 One further constraint is that coverages of
cross-polarized acquisition modes (HV or VH), which are found to be most sensitive toward
biomass, are often not large enough to cover whole regions at the same acquisition conditions
(date, incidence angle).38–40

One way to make use of the sensitivity of microwaves toward different scattering mecha-
nisms is the utilization of sensors that employ different frequencies.41 While combinations of
short and long microwaves have been successfully applied for forest biomass estimates,42,43 only
Srivastava et al.44 and Herold et al.45 confirmed their potential for thin vegetation layers.
Integrating passive radar for large-scale mapping is mostly limited to soil moisture46 or surface
temperature.47 Ferrazzoli et al.48 demonstrated their sensitivity toward vegetation biomass
because of the water content plants and also Eom mentions their potential to detect changes
in vegetation,49 but none of these studies created spatial predictions from these data. Only
Liu et al.50 mapped terrestrial biomass between 1993 and 2012 at the global scale based on
space-borne passive radar and report an estimated decrease of 0.07 pgC∕yr, mostly resulting
from deforestation in the tropics, but also because of changes in savannas and shrublands.

In this letter, we propose a method to derive AGB estimates for large parts of Sénégal, rang-
ing between tropical, semiarid, and arid climate zones based on the integrated use of imagery of
radar measurements of sensors of different wavelengths. We investigate their contribution for
wide-area biomass estimations and want to initiate discussions about the potential for automated
long-term monitoring of resources in sub-Saharan African countries.

2 Data and Methods

2.1 Satellite Data

Three types of satellite data were used in this study: (1) ENVISATAdvanced Synthetic Aperture
Radar (ASAR) as wide Swath (WS) mode products at a spatial resolution of 150 m,
(2) Advanced Land Observing Satellite (ALOS) Phased Array L-band Synthetic Aperture
Radar (PALSAR) in wide beam (WB) mode products at a spatial resolution of 100 m, and
(3) Special Sensor Microwave Imager (SSM/I) in V and H polarizations, representing surface
brightness temperature [BT], at a spatial resolution of 12.5 km.51 Because of the unavailability of
a consistent polarization, SSM/I data were acquired in both horizontally (H) and vertically (V)
receiving polarization so that it could be combined with other data of both configurations.
Table 1 shows the data used in this study. Using the revisit frequency of SSM/I of one day,
a mean raster was calculated for the 31 days of December of the respective year.

Although field data are available for the years 1985 to 2013 (see Sec. 2.2), the selection of
satellite imagery was restricted by the availability of images from all three sensors during the dry
season. This limited the usable satellite data to the years 2006, 2009, and 2010.

2.2 Field Data

Biomass collection was carried out on a yearly base at the time of maximum phytomass, which
occurs between the end of September and late October before the seeds are grown. Forty-eight
representative sites were selected in Sénégal based on the intersection of topographic and phy-
togeographic maps (see spatial distribution in Fig. 2, prediction maps). These sites were con-
sistently used for sampling since 1987. Each identified site has a size of 9 km2 and was divided
into nine units of 1 km2. A collection of biomass data was then conducted within each of these
units by identifying homogeneous vegetation patterns (subunits) at the local level. Depending
on the vegetation pattern of the subunits (homogenous, gradient, and mosaic), a representative
number of stratified measurements was undertaken as described in the following.

For herbaceous units, linear transects of 200 m were drawn, as suggested by Poissonet
et al.,52 and both destructive and nondestructive allometric measures were taken (fr = relative
frequency of the layer along the transect, pm = average productive green weight [g∕m2], and
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ms = dry matter rate). This allows the characterization of different spatial compositions, such as
homogeneous landscapes, gradients, and mosaics. The herbaceous biomass was then calculated
by the following equation: PH½kg∕ha� ¼ fr � pm �ms � 10.53 Vegetation communities in the
study area consist of open woodlands, mainly dominated by tree species of the Combretacea
(Combretum collinum, Combretum glutinosum, and Guiera senegalensis), Caesalpiniaceae
(Burkea Africana and Cordyla pinnata), Apocynaceae (Saba senegalensis), and Fabaceae
(Pterocarpus lucens) families.54,55

Woody biomass of individual trees was determined within squared plots of 50 × 50 m by
measuring their diameter at breast height (DBH, 1.30 m) to be inserted in the following allo-
metric equation: Pi ¼ a � DBHb, where a and b are constants depending on the tree species.53

The sum of all trees within a plot determines the woody biomass of an area PL was then added to
the herbaceous biomass PH to get the full AGB of this area. A detailed description of the data
collection methodology is given by Yameogo et al.53 and the background on the used regressions
is documented by Cissé et al.56 Biomass data used in this study were also used in studies on
monitoring sub-Saharan biomass57 and the establishment pastoral early warning system based on
medium resolution optical satellite imagery at a spatial resolution of 1 km.58

After the removal of sites with missing values or sites outside the area covered by the
satellite imagery, a total number of 63 measurements remained (21 per investigated year)
for correlation analysis (see Sec. 2.4) ranging from 740 to 12,380 kg of AGB per hectare
[kg/ha] with a mean of 4043, a median of 3183, and a standard deviation of 2730 kg∕ha.
We additionally calculated Moran’s I59 to test for spatial autocorrelation. The results indicate
slight spatial dependencies of AGB (2006: 0.42, 2009: 0.39, and 2010: 0.31), which can be
explained by the climatic latitudinal gradient within the study area and the increased
continental effects in west–east direction.

2.3 Data Preparation

SAR data were radiometrically calibrated to radar brightness (beta naught) by applying the scal-
ing constant as described by Henry et al.60 and Shimada et al.,61 respectively. To compensate for
topographic variations and their impact on backscatter intensity, incidence angle normalization
was performed using the 1 arc second shuttle radar topography mission digital elevation model,62

resulting in terrain-flattened Gamma naught.63 Range-Doppler terrain correction was applied to
all SAR images to compensate for topographically induced geometric distortions.64 Backscatter

Table 1 Satellite data used in this study.

Sensor Date Frequency [GHz] Polarization

ENVISAT ASAR December 19, 2006 5.3 (C-band) HH

ALOS PALSAR December 23, 2006 1.27 (L-band) HH

SSM/I December 2006 85 (W-band) H

SSM/I December 2006 85 V

ENVISAT ASAR December 20, 2009 5.3 VV

ALOS PALSAR December 31, 2009 1.27 HH

SSM/I December 2009 91 H

SSM/I December 2009 91 V

ENVISAT ASAR November 29, 2010 5.3 VV

ALOS PALSAR November 18, 2010 1.27 HH

SSM/I December 2010 91 H

SSM/I December 2010 91 V
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data were converted to the dB scale for better contrasts in the low-value ranges. SSM/I products
were directly used as provided by the NSIDC due to their extensive and accurate internal
calibration.65,66

All raster processing was performed in the sentinel application platform provided by
the European Space Agency (ESA).

2.4 Correlation Analysis

To analyze correlations between AGB measured in the field and the radar values from the
images, backscatter intensities of ENVISAT and ALOS PALSAR were extracted at the sampling
sites within a radius of 1.5 km (about 7 km2) and averaged to one mean value per SAR sensor
and site. Pixels within this radius represent nearly the same area as defined in the sampling
process of the field reference data (9 km2). This grants that both the independent and dependent
variable refer to a similar area. Furthermore, the influence of speckle at the local scale is reduced.
As for SSM/I data, one radar brightness value is extracted for each sampling site. Although it
technically represents a clearly larger area, increasing the representative area of the SAR sensors
by the radius of 1.5 km reduced the ratio between the pixel sizes of active radar and passive radar
systems used in this study from 1:6000 to 1:22.

The extracted radar values were correlated with the AGB measurements of the correspond-
ing sites and years using an exponential regression in R software package.67 The relationship
between backscatter and AGB is described by an exponential function as y ¼ a � ebx, where y
represents AGB, x shows the image variables, and a and b are the equation coefficients.
Although there are also linear,23,24 logarithmic,42 and power law-based68 approaches, the
majority of studies reports best results based on nonlinear exponential regressions, which
also reflects our observations.5,20,28,39,69 Furthermore, the conversion of SAR data to a dB
scale already eliminates the logarithmic nature of the relationship between AGB and back-
scatter intensity.25

In addition to the single measurements of each sensor (Table 2, a, b, and d), several recombi-
nations of the different sensor’s values were derived to generate a variety of predictors to be
inserted as further independent variables of the regression (Table 2, c, e–i). This is based on
the assumption that the information retrieved at different wavelengths is complementary for
the description of the present biomass. Combining these data for the regression helps to analyze

Table 2 Equations for prediction of AGB from nonlinear regression.

Scatter
plot Sensor or combination Variable Regression R2

cd Samples R2
val RMSE

a ALOS PALSAR (A) HH 25748.06 � e0.123�A_mean 0.332 n ¼ 63 0.191 2465.4

b ENVISAT (E) HH & VV 37664.61 � e0.181�E_mean 0.369 n ¼ 63 0.231 2370.7

c ENVISAT and ALOS
PALSAR

E-[5*(E/A)] 79136.86 � e0.182�fE−½5�ðEAÞ�g 0.375 n ¼ 63 0.325 2431.2

d SSM/I (S) H only 13.1988 � e0.001947�SSM∕IH 0.129 n ¼ 63 0.061 2612.3

e ENVISAT and SSM/I E/S 2006 H 46335.01 � e583.855�ðESÞ 0.498 n ¼ 21 0.257 1569.6

f ALOS PALSAR
and SSM/I

A/S 2006 H 23196.87 � e378.979�ðASÞ 0.501 n ¼ 21 0.229 1599.6

g ENVISAT and ALOS
PALSAR and SSM/I

PC1 2006 447.734 � e−0.007�PC_1_2006 0.515 n ¼ 21 0.248 1552.7

h ENVISAT and ALOS
PALSAR and SSM/I

PC1 2009 1456.50 � e−0.003�PC_1_2009 0.302 n ¼ 21 0.172 1547.0

i ENVISAT and ALOS
PALSAR and SSM/I

PC1 2010 6368.85 � e−0.003�PC_1_2010 0.341 n ¼ 21 0.141 2521.5
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how well these joint measures are suitable to improve the prediction accuracy. Furthermore, it
helps to overcome the difference in spatial resolution between active and passive radar data by
simply extracting the values at similar footprints (see Sec. 2.3) without the need for spatially
upsampling or downsampling one of each dataset, which was found to potentially have
unwanted side effects on the quality of results.70–72

To also create spatial predictor variables that are based on all three input sensors, a principal
component analysis (PCA) was conducted as an acknowledged method of sensor combination.73

However, because active and passive radar produce data of different range and units (see
Sec. 2.3), all images were transformed into an eight-bit integer format. Based on these rasters,
a PCA was performed for each investigated years using all three satellite scenes available. The
first principal component (PC1) of each year was used for the regression analysis (maps g, h, and
i), which showed an explained variance of the 0.502 (2006), 0.515 (2009), and 0.418 (2010),
respectively. Although the rasters of ALOS and ENVISATwere found to be spatially correlated,
the integration of SSM/I data introduced newly emerging patterns in PC1. This integrated spatial
representation of all three sensors is believed to contribute to the prediction accuracy of the
regressions because it features wavelengths of various sizes that might interact with different
parts of the vegetated surface.

To test the strength of the relationship between AGB and the independent variables, the coef-
ficient of determination (R2

cd) was calculated for each regression as shown in Table 2. Greater
values indicate a stronger relation, whereas 0 means no correlation between the dependent
variable (AGB) and the independent variable (radar information) and 1 meaning that the inde-
pendent variable can be used to fully explain the variance of the dependent variable.

3 Results and Discussion

3.1 Statistical Prediction of Above-Ground Biomass

Figure 1 shows selected scatter plots of the relationship between active and passive radar infor-
mation, with the measured biomass as shown in Table 2. As all scatter plots show, a strong
relationship exists between observed biomass and the layers retrieved from satellite imagery
and a clear trend is visible. However, it has to be noted that many more combinations of con-
figurations and derivatives were tested (examples of combinations are presented by Omar et al.42)
and that the selection shows the variables with the highest correlations that were found.

In general, ALOS and ENVISAT regressions alone already deliver a coefficient of determi-
nation (R2

cd) of 0.3 with slightly higher correlation for the ENVISAT. The results indicate that
microwaves of shorter wavelength (ENVISAT, λ ¼ 5.6 cm) are more sensitive toward the rough-
ness and volume of fine vegetation surfaces, such as grasslands or small bushes, while larger
wavelengths (ALOS, λ ¼ 23.5 cm) are partly able to penetrate canopies and ground vegetation
layers and typically interact stronger with objects of comparable size, such as large branches or
stems of savanna trees.28,44,45

As shown in scatter plot c, combining short- and long-wave information of ALOS and
ENVISAT potentially increases the significance of the correlation, even if only to a small degree.
This can be explained with the observation that horizontally and vertically polarized microwaves
interact with different parts of the vegetation layer.74,75

For scatter plot d, only SSM/I data were used. It shows that passive radar data alone cannot
predict the distribution of AGB to a sufficient degree. Looking at the maps of Fig. 2, the overall
distribution is rather inverted compared with the other cases. Additionally, the low spatial res-
olution of 12.5 km might not be sufficient to represent the spatial scale of biomass variations at
the ground. Our assumption, however, is that it can be employed as a complementary source of
information to depict patterns that are not fully related to active SAR backscatter measures of
ALOS and ENVISAT.

For this reason, we calculated the ratio between active and passive information to be used in
the correlation. Plots e and f demonstrate how a combination of both could statistically increase
the predictions of AGB. As shown, both regression lines match the measured AGB values quite
well, resulting in R2

cds of 0.49 and 0.50. Especially the high R
2
cd of plot f results from the fact that
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the regression line captures both low and high values to a better degree. Accordingly, the capabil-
ity of ALOS to predict large AGB values combined with the large-scale information of SSM/I is
a suitable combination for savanna landscapes consisting of both trees and grasslands. It has to
be noted that they are based on horizontal polarization images of December 2006 only because
this was the only year when horizontal polarizations were available for all three sensors.
Accordingly, the high correlation might result from the reduced number of samples but also
could indicate that estimates benefit from uniform polarization characteristics.

The highest coefficient of determination was achieved for the PCA of the year 2006
(R2

cd ¼ 0.515), while the correlations of the PCAs of the other 2 years were distinctively
lower. PCAs of the years 2009 and 2010 produced significantly lower R2

cd. This can be partially
explained by the distribution of samples in the scatter plots: While plot h lacks a clear trend and
has larger outliers, samples were nearly split into two populations in plot i. The description of
both distributions by an exponential function was not successful. As later shown in the prediction
maps in Fig. 2, this resulted in an underestimation of high AGB values in case h and an over-
estimation in case i. This leads to the conclusion that, if suitable configurations and measure-
ments without outliers are present, merging active and passive SAR information via PCA can
lead to very high correlations. If there are inconsistencies in either the microwave imagery or the
measured AGB, merging sensors might not improve the result compared with single-sensor cor-
relations. Another possible reason for the different accuracies between these three years could be
that SSM/I data from 2006 were acquired at a wavelength of 85 GHz, whereas the data from
2009 and 2010 was only available at 91 GHz.

Fig. 1 Scatter plots of linear correlations between AGB [kg/ha] (y -axis) and radar variables
(x -axis) as shown in Table 2.
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3.2 Spatial Prediction of Above-Ground Biomass

The regressions shown in Table 2 were applied to the whole study area using the input rasters as
variables in a raster calculator. Accordingly, the resulting AGB predictions (Fig. 2) show bio-
mass variations at the detail level of the sensor with the highest spatial resolution, while still
containing contributions from other sensor’s variations involved in the regression. The maps
support the indications made above that microwave information can generally be a very suitable
proxy for the spatial distribution of biomass, even in sparsely vegetated areas. The low biomass
areas in the northern center of the study area coincide with the Ferlo rangelands, a pastoral sav-
anna with variable rainfall, and lack of permanent water availability.76 Highest AGB values are
found along the Sénégal river along the border between Sénégal and Mauritania, as well as in the
denser savannas in the Tambacounda region of in the subhumid south.77 Although all maps show
similar patterns, it is also evident that some of them tend to overestimate or underestimate the
measured biomass. Although the purely SAR-based estimates (maps a, b, and c) lie within
a similar range of values, especially the measurements that involve SMM/I predict generally
lower AGB values in the study area, especially maps e and g, respectively. Map i can be con-
sidered a special case because no clear trend between the sampled data for 2010 and the micro-
wave observations was found [see Fig. 2(i)] and a large proportion of samples is clearly
underestimated by the regression.

3.3 Validation

Because of the limitations regarding data availability of both satellite and field data, no inde-
pendent validation could be performed based on points that were not used in the regressions. As
a consequence of the limited sample size (n ¼ 21 for some cases) and the required trade-off
between bias and variance inherent in our data, we selected leave-one-out cross validation

Fig. 2 Spatial prediction of AGB in the study area (marked red in the overview map). The letters
refer to the equations in Table 2, which were based on different combinations of the used radar
images.

Braun, Wagner, and Hochschild: Above-ground biomass estimates based on active and passive. . .

Journal of Applied Remote Sensing 046027-7 Oct–Dec 2018 • Vol. 12(4)



over a k-fold cross validation.78,79 The results are shown in Table 2 in the columns R2
val and root

mean square errors (RMSE). Compared with a 10-fold cross validation, leave-one-out produced
significantly lower R2s, but the RMSE of between 1500 and 2500 kg per hectare were similarly
estimated. Compared with the scatter plots in Fig. 1, the validation scores might be a bit pes-
simistic, yet we considered leave-one-out the more suitable and honest measure regarding the
sample size and distribution of our data.80 One major thing to note is that the lowest RMSEs are
produced by the regressions based on both active and passive radar images. This furthermore
underlines the potential of passive radar data to be integrated into AGB predictions, despite its
significantly lower spatial resolution.

It became evident in this study that the availability of a sufficient number of representative
samples is essential for a robust validation of the models. Having the samples split-up into in-
dependent training and testing subsets would clearly increase the robustness of the validation
scores and finally increase the significance of the study.

3.4 Discussion

This study showed how satellite microwave imagery can be used to estimate AGB over large
areas. Although most studies focus on tropical forest biomass, the estimates in ecosystems of low
primary productivity, such as savannas or grasslands of the African Sahel zone, are still under-
represented in the literature. Our findings show good correlations with explained variances
between 0.31 and 0.52, respectively. Accordingly, the combination of radar information
from active and passive sensors can introduce high potentials because different types of scatter-
ing mechanisms and surface emittance are combined. This might be of particular interest for sub-
Saharan countries, which often consist of a wide range of climate zones along their latitudinal
gradient. The contribution of passive radar brightness temperature on the estimation quality of
AGB is indicated by selected results, but clearly more research has to be carried out to prove its
large-scale applicability.

Although the PCA of the year 2006 reached the highest R2s in this study which partially
confirms our hypothesis that combinations of active and passive radar, as well as short and
long wavelength SAR data, lead to increased accuracies, the scores of the PCAs of 2009
and 2010 were significantly lower. We identified two possible reasons for this. First, the temporal
difference between the acquisition of ALOS and ENVISAT is the shortest for 2006 (see 1),
which reduces phenological variations and potentially leads to illtrained regressions. Second,
negative western Sahelian rainfall anomalies were reported for the year 2006, leading to
a more pronounced seasonality and therefore more distinct vegetation patterns.81 Despite the
promising results, we identified several points of concern to mention: starting with data selec-
tion, the temporal gap between the data collection (September and October) and the utilized radar
imagery (November and December) was unavoidable because of unavailability of both
ENVISAT and ALOS imagery at an earlier point of the investigated years. Yet, we see little
potential for larger errors as the rainy season lasts until November in the northwest and the
starting of the dry season has no immediate effect on aboveground vegetation.82 It should
still be attempted to keep the image acquisitions as close to the field measurements as possible.

Another critical point is the extreme difference in pixel sizes of active and passive radar data.
This discrepancy has been lowered by averaging SAR backscatter within a radius of 1.5 km
around each sampling sites, thus reducing the impact of extreme values on the regression.
In case of speckle, this might be desirable, but as shown in Fig. 1, underestimation of high
AGB values was a general problem and it could partially its origin here.

Furthermore, the combination of SAR bands of both horizontal and vertical polarization is
not ideal. Whenever possible, X∕C-band and L-band of the same polarization should be com-
bined to make the best use of their complementary information. The missions of Sentinel-1 and
ALOS-2, which were both launched in 2014, might serve as an ideal constellation as they both
acquire images at regular intervals and with extensive coverage.

Due to the limited number of reference data collected in the field, a robust validation was not
possible and the temporal difference between sampling and image acquisition was comparably
large. For future studies, we pledge systematic field campaigns that take stratified and spatially
representative samples and are aligned with the observation plans of the respective satellite
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missions. This could clearly reduce the error caused by phenological dynamics.83 As a conse-
quence of the limitations described above, it can also be expected that the different number
of samples used for the regression had an impact on its R2, as well as the number of outliers.
This again supports the necessity of a well-considered study design.

4 Conclusion and Outlook

Our approach showed that there are also good correlations between spaceborne SAR backscatter
and low biomass conditions, which have values below 10 t∕ha. However, our regressions
showed clear underestimations for values above 5 t∕ha. A statistical evaluation on the range
and distribution of the collected AGB values is needed to select the suitable regression technique.
While we used an exponential model to fit the data distribution, other cases might be more
successful with linear, logarithmic, or multivariate techniques, as the logarithmic nature of the
relationship between AGB and radar backscatter has often been demonstrated.25

Future SAR missions bring large potential regarding the multifrequency prediction of AGB:
in addition to the missions of Sentinel-1 and ALOS-2 mentioned above, high-resolution
SAR satellites are planned which fulfill both the criteria of large wavelengths (TanDEM-L,
NovaSAR-S84,85) and temporal resolution (ICEYE-186) to complement long-term passive
radar missions. Despite the limitations of this study, we want to encourage other researchers
to include passive radar information in biomass estimates and to further develop methods
for areas with low primary production because there is a large need in monitoring seasonal
variations and effects of climate changes on these systems.87–89
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