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Abstract. Vegetation water content (VWC) is an important land surface parameter that is used
in retrieving surface soil moisture from microwave satellite platforms. Operational approaches
utilize relationships between VWC and satellite vegetation indices for broad categories of
vegetation, i.e., “agricultural crops,” based on climatological databases. Determining crop type–
specific equations for water content could lead to improvements in the soil moisture retrievals.
Data to address this issue are lacking, and as a part of the calibration and validation program for
NASA’s Soil Moisture Active Passive (SMAP) Mission, field experiments are conducted in
northern central Iowa and southern Manitoba to investigate the performance of the SMAP
soil moisture products for these intensive agricultural regions. Both sites are monitored for
soil moisture, and the calibration and validation assessments had indicated performance issues
in both domains. One possible source could be the characterization of the vegetation. In this
investigation, Landsat 8 data are used to compute a normalized difference water index for
the entire summer of 2016 that is then integrated with extensive VWC sampling to determine
how to best characterize daily estimates of VWC for improved algorithm implementation.
In Iowa, regression equations for corn and soybean are developed that provided VWC with
root mean square error (RMSE) values of 1.37 and 1.10 kg∕m2, respectively. In Manitoba,
corn and soybean equations are developed with RMSE values of 0.55 and 0.25 kg∕m2.
Additional crop-specific equations are developed for winter wheat (RMSE of 0.07 kg∕m2),
canola (RMSE of 0.90 kg∕m2), oats (RMSE of 0.74 kg∕m2), and black beans (RMSE of
0.31 kg∕m2). Overall, the conditions are judged to be typical with the exception of soybeans,
which had an exceptionally high biomass as a result of significant rainfall as compared to
previous studies in this region. Future implementation of these equations into algorithm
development for satellite and airborne radiative transfer modeling will improve the overall per-
formance in agricultural domains. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.13.014516]
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1 Introduction

Microwave-based soil moisture remote sensing is impacted by the overlying vegetation layer,
which is typically characterized by its vegetation water content (VWC).1 Agricultural regions in
particular have a large seasonal dynamic for vegetation biomass and water content as compared
to nonagricultural regions. The SMAP passive algorithm products have been validated and sat-
isfy the accuracy requirements of the mission for vegetation with VWC < 5.0 kg∕m2.2–4
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The operational algorithms use a long-term average (climatological) vegetation parameterization
based on MODIS data in order to facilitate a low latency in the soil moisture estimate.5

This approach introduces some uncertainty if the actual vegetation conditions deviate from
the climatology. Previous experiments have addressed the vegetation parameterization by con-
ducting physical sampling to provide accurate estimates of vegetation conditions at the time of
the experiment. For instance, the Soil Moisture Experiments in 2002, SMEX02, established
equations for corn and soybeans for central Iowa during the field campaign in early June of
2002.6 Follow-up experiments furthered this analysis for short time periods of intensive obser-
vation periods,7–9 but most focused only on a limited two- to three-week period of time and
did not include peak biomass conditions of agricultural crops. These methodologies usually
take advantage of high-resolution optical datasets such as Landsat, to produce 30 m vegetation
index maps. From these maps, relationships can be developed to estimate VWC. In sparsely
vegetated regions, the normalized difference vegetation index (NDVI) can be used effectively.
For more densely vegetated regions, such as in the U.S. Corn Belt, a more resilient index is
necessary. Reference 6 demonstrated that the normalized difference water index (NDWI) in cen-
tral Iowa is a suitable measure for dense vegetation, especially corn. However, that study did not
have the peak biomass conditions that can be observed during the reproductive stages of corn and
soybeans.

Estimating the water content of a crop at peak biomass and peak moisture content presented
challenges for the design and implementation of Soil Moisture Active Passive Validation
Experiment 2016 (SMAPVEX16). SMAPVEX16 provides a reference dataset for not only
peak corn and soybean water content, but canola, spring wheat, black beans, and oats.
Vegetation sampling was incorporated into the experimental design with the ultimate intention
of producing a high-resolution (30 m), daily VWC map for the study region to serve as a ground
truth map for the algorithm improvement efforts. This study will review the collection, results,
and analysis that led to this high-resolution dataset, which is critical to the microwave satellite
community for soil moisture retrieval.

2 Study Sites

During the summer of 2016, an experiment focused on the monitoring of surface soil moisture,
and vegetation was conducted at two locations that serve as core validation sites for the SMAP
mission (Fig. 1). The experiment was the second such postlaunch validation experiment, entitled
the SMAP Validation Experiment in 2016 (SMAPVEX16), with the first taking place
around Tombstone, Arizona.10 These domains were established to coincide with the SMAP
Core Validation Sites operated by the USDA Agricultural Research Service near Ames, Iowa
(42.03 N, 93.62 W; South Fork), and Agriculture and Agri-food Canada (AAFC) near Winnipeg,
Manitoba (49.90 N, 97.14 W).11

The South Fork experimental watershed covers an area of ∼1300 km2 and has a subhumid
climate with an average annual precipitation of 800 mm.12 The crop land portion is dominated by
two row crops, corn, and soybeans. In 2016, the crop proportions were 55% corn and 27%
soybeans, with an approximate annual crop rotation of corn-corn-soybean. The average field
size is ∼800 m × 800 m (quarter section in the Public Land Survey System). The soil texture
is dominated by loam and silty clay loam (Des Moines Lobe), and the soil is not well drained
with a landscape-featuring kettles.13 Tile drainage is growing in the region as a means of
reducing excess soil moisture.14 The study areas were defined as 36-km boxes, based on the
NASA EASE-Grid 2.0.15,16

The Red River Watershed of southern Manitoba experiences extremes in soil moisture con-
ditions. In the period from 1966 through 2016, 32% of crop loss insurance payments were for
drought/heat and 39% were for excess moisture according to Manitoba Agricultural Services
Corporation.17 The watershed is dominantly utilized for annual cropping with some areas
also used for forage and pasture. A typical rotation is a cereal crop alternating with an oilseed
or pulse crop. Field sizes are variable and can range from as little as 20 ha (45 acres) up to as
much as 260 ha (640 acres) with 65 ha (160 acres) being common.
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The SMAPVEX16-MB intensive sample site is located in the vicinity of Carman and Elm
Creek, Manitoba, within the Red River Watershed. More than 85% of the site is dominated by
annual crops consisting of canola, soybean, corn, spring wheat, winter wheat, oats, and edible
beans. Only a small fraction (<5%) is under grassland and pasture. The soil texture varies
significantly across the site. The east side is composed of fine-textured soils developed on
glaciolacustrine sediments of the Red River Plain that formed from Glacial Lake Agassiz
deposits.18 These soils experience frequent shrinking and swelling during the dry–wet cycles
due to the presence of smectite clays.19 The surface soil texture changes abruptly on the

Fig. 1 (a) SMAPVEX16 study sites and landcover, in 36-km EASE-2 grid cells in (b) Manitoba,
Canada, and (c) Iowa.
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west side of the site to loamy fine sands developed on lacustrine beach deposits of the Lower
Assiniboine Delta.18 The topography across the site is mainly flat to gently undulating with
slopes from 0% to 2%. The soils are generally imperfectly to poorly drained which, together
with the flat topography, accentuates flooding issues during periods with excess moisture.

3 Methods of Analysis

The computation of VWC maps for croplands is a multistep process that must be done in
sequence. First, a land cover classification must be conducted. Next, a field campaign must
be designed and executed to collect the physical ground truth of water content. Optimizing col-
lection during Landsat 8 overpasses is desirable, but cloud cover is often a problem in the central
plains of the U.S. One way to increase probability of cloud-free pixels is to locate the study area
in a region that is on the border of two Landsat swaths, which is the case for the South Fork study
region, resulting in twice as many scenes to select from. Next, the atmospherically corrected
reflectances can be computed to a vegetation index for each overpass day. Linear interpolations
of the vegetation index are then produced to provide a daily estimation of vegetation index for
each day of physical sampling. The locations of field sampling can then be identified in the
imagery and the vegetation index extracted for comparison. Regression equations are then com-
puted for each dominant crop type so that the vegetation index can be converted to a physical
estimate of VWC. These equations are then applied to the daily vegetation index maps to pro-
duce daily VWC maps, which can be used for analysis of aerial and satellite product algorithms.
Below is a more detailed accounting of this process for the SMAPVEX16 study regions.

During SMAPVEX16, aircraft overflights were conducted during two separate intensive
observation periods at each study site. In Iowa, flights and field sampling occurred from
May 25 to June 5, and August 3 to 16. In Manitoba, intensive sampling occurred from June
13 to June 20 and July 10 to July 22. Field teams were deployed during aircraft overflight
days to collect physically based soil moisture samples for calibration of the aircraft-based
L-band radiometer and radar (passive active L-band system). On nonoverflight days, vegetation
sampling, surface roughness sampling, and land cover classification surveys were conducted.
More detailed information on vegetation sampling will be presented below.

3.1 Land Cover Classification

Land cover was classified separately within each 36-km study area. Land cover for Manitoba
was generated by AAFC, at a 30-m resolution, using a decision tree-based methodology on
Landsat 8 and RADARSAT-2 imagery, supported by ground truth data,20 which became avail-
able at the end of the calendar year.

Land cover for Iowa was classified using a supervised classification scheme, prior to the
release of the 2016 USDA-NASS cropland data layer (CDL). The maximum likelihood classi-
fication was trained by using ground truth observations of 1290 farm field polygons. Two
Landsat 8 scenes, acquired on July 22 and August 23, 2016, were masked for clouds and nonrow
crops and classified using a training and testing dataset. Nearly the entire domain of the Iowa
study site was surveyed during SMAPVEX16 to determine crop type and row direction per
major parcel. Quality assessment bands included with the Landsat 8 surface reflectance data
product were used to create cloud masks. Cloud-contaminated pixels in the classified August
image were filled with results from the July image. Nonrow crop areas were extracted from
the 2015 CDL and overlaid on the classification results. A confusion matrix at 10,000 points
showed good agreement with ground truth with an overall accuracy of 0.942 (Table 1).

Landsat 8 images acquired over the domains were often cloudy. The clearest images for the
summer of 2016 were downloaded and processed (Table 2). A 30-m grid was created in ArcGIS,
representing Landsat pixel boundaries. With the grid overlaying recent 1-m resolution aerial
RGB imagery, grid cells were manually selected around each of the 970 vegetation sampling
points, avoiding mixed pixels, and pixels near field edges. Grid cell centroids were used to
extract Landsat pixel values from each scene. Surface reflectances for the near-infrared bands
(RNIR) and a shortwave-infrared band (RSWIR, approximate center wavelength 1.61 to 1.65 μm)
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were extracted. Using the data quality flags to determine whether a pixel was cloud free,
reflectance values (up to 9) around each sampling point were averaged. NDWI was calculated:

EQ-TARGET;temp:intralink-;e001;116;378NDWI ¼ RNIR − RSWIR

RNIR þ RSWIR

; (1)

and linearly interpolated between image dates, to give daily estimates at each ground sampling
point. We learned from Ref. 6 and other studies that NDWI is a more appropriate vegetation
index for VWC, compared with the NDVI, because the shortwave-infrared band is directly sen-
sitive to foliar water content, whereas leaf chlorophyll strongly absorbs in the red band used in
NDVI. The respective sensitivities of NDWI and NDVI to changes in VWC were validated with
ground-based reflectances obtained with the Cropscan Multispectral Radiometer MSR-16.

3.2 Cloud Filling

Cloud-contaminated pixels within the study areas were filled to obtain complete coverage on
each date. Three NDWI images for Manitoba, and five for Iowa, showed the expected behavior
of VWC increasing and then decreasing over the growing season. Noncrop pixels did not require
cloud-filling since they were assigned constant VWC values, per land cover type, for the whole
season.

For Manitoba, the three images were quite clear, with <1% of crop pixels cloud-contami-
nated. These areas were filled with the average NDWI from the other pixels in that scene with
the same land cover for each date.

For Iowa, clouds were common. Ground sampling confirmed crop emergence in the June 4
image, though cloud cover was significant. March 16 was the closest available clear image show-
ing pre-emergent crop fields. Crop fields were predominantly bare soil in both images,
so the March image was used in place of the June 4 image.

The June 20 image was exceptionally clear. The few pixels identified as cloudy by the quality
assessment bands occurred near water and were filled in with clear pixels from a prior year

Table 2 Landsat 8 images acquired over study areas with minimal cloud cover.

Iowa Manitoba

Overpass date day of year (DOY) Overpass date DOY

March 16 76 April 29 120

May 19 140 July 18 200

June 4 156 September 20 264

June 20 172

July 22 204

August 23 236

September 8 252

Table 1 Land cover classification confusion matrix at 10,000 points, for Iowa study area.

Corn Soybeans User accuracy

Corn 7142 324 0.957

Soybeans 254 2277 0.900

Producer accuracy 0.965 0.875

Overall accuracy 0.942
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image. This was done for a few cloudy pixels in the March 16 image, as well. The July and
August images both had scattered clouds. Both images were acquired at points in the growing
season when corn and soybean VWC was high. NDWI for both images were similar. Therefore,
the clouded pixels of the July image were assigned the pixel values from the August image.

Less than 1% of pixels in the July/August mosaic and the September 8 image remained
cloud-contaminated. For these, the crop-specific relationships developed using clear pixels
were used in conjunction with the most recent image to estimate their value. The magnitude
of errors associated with cloud contamination was assumed very small for this study because
of the restrictions placed on the Landsat scenes that were used.

3.3 Field Sampling Protocols

Vegetation characterization was an extensive part of the field campaign, requiring many teams to
collect data across the spatial domain to account for potential cloud coverage during the Landsat
overpass dates. Vegetation biomass and water content were collected in several fields in each
domain. In Iowa, sampling occurred between May 25 and June 5, and August 3 and 16.
In Manitoba, sampling occurred between June 13 and July 22. Field sampling teams sampled
∼10 fields each in intensive observation period, at the beginning and end of each. During the
May intensive observation period, the crops were just starting to emerge from the soil, so there
was little to no vegetation to collect, which was noted as 0.0 kg of water per square meter
(kg∕m2). Sampling teams entered a field and selected a site 100 m into the field, to get beyond
the edge rows. The second and third sampling sites were selected by walking 100 m diagonally
across the field from the first site. At each site, a random row was selected, and the row spacing
and direction were recorded. Row density was determined by measuring a meter down a row and
counting the plants within that meter. These measurements were conducted three times at each
site, for a total of nine measurements per field. Then, three plants were selected at each site and
their characteristics were recorded. As an example, for corn, these characteristics included stem
diameter above the bottom node, stem diameter below the top node, height, and leaf count.
The plant was then cut into pieces and separated into different labeled bags for transport to
the weighing facility. Vegetation was weighed dried and weighed again by each plant component
sample for three days at 70°C. Initial samples were dried for longer to confirm that three days of
drying were sufficient. Corn ears were dried for up to seven days, as significant weight loss was
observed daily until day 7.

4 Results

First, NDWI imagery was generated for the Landsat overpass days, which were cloud-free or
were cloud-filled as described above. Then, daily imagery of NDWI was computed between the
scenes for each day between the first and last available scenes. For the locations where sampling

Fig. 2 VWC versus the retrieved NDWI values for the Iowa domain for (a) corn and (b) soybean.
Data from SMEX02 and SMEX05 are also included for reference.
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was conducted, the NDWI value was retrieved for the day samples from this daily dataset.
When physically sampled vegetation was compared to the retrieved NDWI values for the
sampling dates, regression equations from the data, shown in Figs. 2 and 3, were developed for
each crop for each domain. Table 3 contains the regression equations for the Iowa study domain
as an example. The regression equation was selected to be linear for interpolation purposes, as
this was the most appropriate regression option given the data. The two intensive observation
periods are separated in time, observing the early and peak periods of the growing season, and it
is desirable to include other data for the vegetation stages of the crops. Luckily, two previous
large-scale field experiments were conducted in Iowa in 2002 and 2005 that monitored VWC.
Results from the SMEX02 and SMEX05 experiments are also plotted in Fig. 2 to demonstrate

Fig. 3 Interpolated NDWI with measured VWC for six crop types in Manitoba: (a) soybean,
(b) wheat, (c) canola, (d) oats, (e) corn, and (f) black beans.

Table 3 The regression equations for VWC in Iowa. If VWCsoy∕corn <¼ 0, VWC is set equal to
0.0 kg∕m2.

Crop Equation

Iowa

Corn VWCcorn ¼ 10.184 � NDWIþ 1.0026

Soy VWCsoy ¼ 3.3909 � NDWIþ 1.342

Manitoba

Corn VWCcorn ¼ 10.3103 � NDWI − 0.97944

Soy VWCsoy ¼ 1.61879 � NDWIþ 0.10125

Canola VWCcanola ¼ 6.85295 � NDWI − 0.69693

Oat VWCoat ¼ 7.44985 � NDWI − 1.033

Wheat VWCwheat ¼ 4.111 � NDWIþ 0.46821

Black beans VWCblack beans ¼ 6.83 � NDWI − 0.794
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the linearity of the relationship.6,7 These experiments had similar data collection protocols and
designs to SMAPVEX16 and captured transitional soybean and corn plants after emergence to
the beginning of the reproductive stages of each crop. These equations can then be used for any
classified pixel in the domain for an observed or interpolated NDWI.

For Manitoba, crop growth was sufficiently advanced that bare soil conditions were not
present, so NDWI values were typically greater from the beginning. NDWI was paired with
physically sampled VWC, to establish correlations per crop type for both study areas (Fig. 3).

Once the regression equations were established between the crop type and NDWI values,
they could be applied to the daily NDWI images, and examples are shown in Fig. 4. Once
this was complete, the root mean squared error values (RMSE) for each crop type in each domain
could be calculated and are shown in Table 4.

These RMSE values are consistent with but larger than values observed during the SMEX02
campaign;6 however, that campaign occurred earlier in the year, and the crop biomass was gen-
erally less in total value. In addition, 2016 had a higher maximum VWC compared to 2002 and
2005 (see Fig. 3).

5 Discussion

VWC mapping as it relates to soil moisture retrievals is most important during the growing
seasons for agricultural domains as this captures the temporal change in the VWC signal.
Previous analysis has shown that NDWI is a better estimator of VWC than NDVI because

Fig. 4 Maps of study areas showing change in VWC from (a, c) DOY 170 (June 18) to (b, d) DOY
200 (July 18). Domains are 36 km EASE-grids, which have different physical dimensions varying
by latitude.
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of the saturation level, but those studies were limited in biomass, usually occurring during
the vegetation stages of agricultural crops.6,21,22 The SMAPVEX16 campaign was specifically
designed to capture the peak biomass of agricultural crops to provide the most complete analysis
of corn and soybean growth conducted during large-scale field experiments on soil moisture.

Figure 5 shows a comparison between VWC from field sampling and from remotely sensed
NDWI in Iowa from the SMEX02/SMEX05/SMAPVEX16 experiments. It is observed that
both crops have saturated NDWI from remote sensing at 1 and 4 kg∕m2 for soybean and
corn, respectively, while the measured VWC increased to 8 kg∕m2 for soybean and 9 kg∕m2

for corn (Fig. 5). Remotely sensed VWC of 1 and 4 kg∕m2 are approximately the mass of
water in the stems and reproductive organs in another study.23 Saturation of remotely sensed
NDWI is related to maximum leaf area index and foliar vegetation cover, similar to NDVI.
Saturation of NDWI was not observed in the Manitoba study site, because the availability
of the aircraft in the 2016 campaign limited observations only during the earlier vegetative
growth stages.

VWC is the sum of foliar and stem water contents, where NDWI is sensing the changes in
foliar water content.8,23–25 Stem water content may be estimated by different methods: by
empirical relationships with leaf area index,8,24 by land cover maps,25 or by plant height.23

Whereas separately estimating foliar and stem water contents may not improve the accuracy of

Fig. 5 Comparison of sampled VWC versus estimated water content from remotely sensed NDWI.

Table 4 Root mean squared errors for the crop volumetric water content for
Iowa and Manitoba study domains.

Iowa Manitoba

Crop RMSE in kg∕m2 RMSE in kg∕m2

Corn 1.37 0.59

Soybean 1.10 0.25

Canola — 0.88

Wheat — 0.59

Oat — 0.74

Black beans 0.31
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estimated VWC compared to measured VWC, it presents a reasonable method for extrapolating
VWC from NDWI to other crops and vegetation cover types without resorting to major field
experiments.

6 Conclusions

This study demonstrates a methodology to achieve daily estimates of VWC for agricultural
domains in the northern plains of North American with reasonable accuracy. Regression relation-
ships were developed for the major crops in two experimental watersheds in Iowa and Manitoba,
and magnitudes of the errors were generally <25% of the total plant water content, which is
typical of such studies. In particular for soybeans in Iowa, this study captured fields that
had very high crop biomass. The high resolution (30 m) images can be used for modeling
and for remote-sensing retrievals from aircraft platforms to help solve the complex issues of
signal downscaling for agricultural domains where important physical processes occur at scales
smaller than a remote-sensing pixel (∼9 km for SMAP).
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