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Abstract. Spectral noise causes distorted spectra, shifting the central wavelength and thus
reducing the accuracy of surface parameter retrieval. A hybrid method combining mathemati-
cal-morphology and wavelet-transform (WB)-based filters was used to remove spectral noise.
First, a generalized mathematical-morphology (GM) filter was used to remove large-amplitude
noise, and then the processed spectra were smoothed using the WT-based filter to remove small-
amplitude noise. The simulated noise spectrum and 76 measured canopy spectra for winter
wheat were denoised with three filters: the combination filter (CF), GM, and WT. In the simu-
lated experiments, five evaluation indices were calculated to evaluate the denoising effects. For
measured spectra, qualitative analyses were performed based on spectral characteristics.
Quantitative evaluations were conducted by deriving various vegetation indices from denoised
spectra to retrieve wheat’s biophysical and biochemical parameters. The results indicated that the
CF removed both large- and small-amplitude noise efficiently, improving signal-to-noise ratio
and peak signal-to-noise ratio of simulated noise spectrum and retrieval accuracy of leaf water
content (LWC) significantly. Meanwhile, it better maintained the waveform and smoothness of
spectrum, improving the retrieval accuracies of leaf area index and chlorophyll data slightly. The
coefficient of determination (R2) of developed model between the modified normalized differ-
ence water index and LWCwas improved from 0.428 to 0.622 using the CF, 0.555 using the GM,
and 0.549 using the WT. The R2 and root mean square error between the measured and retrieval
LWC were improved from 0.364 and 0.027 to 0.611 and 0.018 using the CF, whereas the cor-
responding values were 0.504 and 0.022 for the GM, and 0.478 and 0.023 for the WT. © The
Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or
reproduction of this work in whole or in part requires full attribution of the original publication, including
its DOI. [DOI: 10.1117/1.JRS.13.016503]
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1 Introduction

Hyperspectral remote sensing data provide the advantage of detailed spectral information.
However, the spectra of objects are often altered by interference from various noise sources
during spectral measurement. Noise in the spectral dimension tends to conceal the true spectral
characteristics of ground objects, affecting the accuracy of quantitative applications of hyper-
spectral images.1–3 Thus, spectral noise is one of the principal obstacles to further the application
of hyperspectral remote sensing data. The need to develop effective methods to eliminate noise
interference and recover the intrinsic spectral signatures of objects is urgent and significant. In
recent years, several algorithms have been proposed to remove spectral noise. Based on their
various background theories, these denoising algorithms can be generally divided into three cat-
egories: Savitzky–Golay (SG) filters, wavelet-transform (WT)-based filters, and mathematical-
morphology filters.
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Based on the principle of least-squares fitting, SG filters steadily reduce noise using poly-
nomials fitted to the original signal with a small error component.4–6 Krishnan and Seelamantula7

applied the SG filter to smooth real-world electrocardiogram signals and addressed the problem
of selecting optimal length SG filter. Schettino et al.8 used an SG filter to detect current-trans-
former saturation in electrical power system engineering and found that the SG filter removed
signal noise and improved the robustness of the detection process. However, the SG filter tended
to distort the detailed spectral information.9

The WT is a method of localization analysis of time and frequency, which employs a linear
combination of wavelet basis functions to represent a signal.10,11 WTs decompose the input sig-
nal into a series of distinctive frequencies that represent different characteristics of the signal and
have the capability to reflect the nonstationarity of the signal. With the benefits of multiscale and
multiresolution operation, WTs have been widely applied in many studies, including for
hyperspectral image denoising,12,13 compression,14 classification,15 and image fusion or
enhancement.16,17 Guo et al.18 employed a WT filter to the harmonic detection systems. Just
once, transform and reconstruction were used to remove a variety of complex noise from har-
monic spectrum. Experiments showed that the WT filter could be used for different harmonic
detection systems. Rasti et al.12 used three-dimensional wavelets to remove noise from hyper-
spectral images, enhancing the spectral features and increasing the accuracy of image classifi-
cation. Huang et al.19 used a wavelet threshold denoising algorithm to eliminate the noise of
Pound–Drever–Hall signals, further improving the signal-to-noise ratio (SNR) of signal and
static-strain measurement resolution. However, selecting the wavelet functions and the decom-
position scale of the signal was complicated and difficult.20,21 In addition, signal drift causes
obvious changes in wavelet coefficients,22 and noise removal using a WT generates pseudo-
Gibbs phenomena at the spectrum’s endpoints, resulting in signal loss.23

Mathematical-morphology filters are a type of nonlinear filters found on set theory. The basic
principle of mathematical-morphology filters is that geometric features and correlations between
different parts of the signal are extracted with the aid of a structural element, which can be
regarded as a probe acting on the signal. Based on purely mathematical foundations and
first principles, these filters have been used extensively in the fields of image analysis and signal
processing.24 Li et al.25 used multiscale morphology for weak microseismic signal detection.
Their method decomposed a signal into multiscale components and thus obtained more signal
information at selected scales. Dhane et al.26 performed five filters using mathematical-morphol-
ogy operations for removing the impulse/random noise from camera-captured digital wound
image. The test results demonstrated that the mathematical-morphology filter could obtain
higher peak signal-to-noise ratio (PSNR) between the reference original and the filtered image.
However, mathematical-morphology filters are unable to remove white noise effectively.27

The measured vegetation spectrum usually contains large- and small-amplitude noise, espe-
cially in the spectral range of water absorption. Single filter usually does not remove different
kinds of noise effectively.27,28 To remove spectral noise, including small-amplitude noise (such
as white noise) and large-amplitude noise (such as pulse noise) effectively, a hybrid method that
combines GM filter with WT filter was used to remove noise from spectra in this study. The
simulated noise spectrum based on standard vegetation spectrum collected from the United
States Geological Survey (USGS) spectral library and the measured canopy spectra of winter
wheat were denoised. The performance of the combination filter (CF) was assessed comprehen-
sively through qualitative and quantitative analyses.

2 Materials and Methods

2.1 Experimental Data

2.1.1 Simulated noise spectrum

One standard vegetation spectrum of grass was collected from USGS spectral library and added
with noise in the simulated experiments. The spectrum covers a spectral range of 395 to 2560 nm
at spectral resolutions of 2 and 5 nm in the visible and near-infrared spectral range, respectively.
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To obtain simulated spectrum containing large- and small-amplitude noise, the salt-and-pepper
noise and multiplicative noise29 were added to the standard vegetation spectrum together.
The standard vegetation spectrum and simulated noise spectrum are shown in Fig. 1.

2.1.2 Measured canopy spectra of winter wheat

The canopy spectra of winter wheat and corresponding biophysical and biochemical parameters
were used in this experiment. Measurement was conducted in 2001 at Beijing Precision Farming
Experimental Station, located in the town of Xiao Tangshan, Changping District, Beijing (40°11′
N, 116°27′E), China.30 All canopy spectra were measured from a height of 130 cm under clear
sky conditions between 10:00 and 14:00 Beijing Local Time. An ASD FieldSpec Pro spectrom-
eter (Analytical Spectral Devices, Boulder, Colorado) fitted with 25-deg field-of-view fiber
optics was used to measure the canopy spectra of winter wheat. The spectral range of this spec-
trometer is from 350 to 2500 nm with sampling intervals of 1.4 nm between 350 and 1050 nm,
and 2 nm between 1050 and 2500 nm, and with spectral resolutions of 3 nm at 700 nm and 10 nm
at 1400 nm.31 To reduce the influence of random noise on spectrum, the final spectrum of each
sample was determined from the mean of 20 measurements.

Winter wheat samples were obtained immediately after completing wheat spectrum measure-
ments. Then, biophysical and biochemical parameters were determined in the laboratory:32

wheat leaf water content (LWC) was calculated by drying fresh samples at 60°C in an oven.
Leaf area index (LAI) was calculated using the dry weight method, by drying and weighing
50 to 100 leaves after measuring their leaf areas. Leaf area was then estimated according to
the dry weight of leaves and calibrated using a CI-203 laser instrument. Chlorophyll (CHL)
concentrations were measured using spectrophotometry. In total, 76 samples and the correspond-
ing biophysical and biochemical parameters were used for the experiment. The specific meas-
urement time and growth stages of wheat are shown in Table 1.

Fig. 1 View of standard vegetation spectrum and simulated noise spectrum.

Table 1 Measurement time and corresponding wheat growth stages.

Measure time April 4 April 14 April 26 May 4 May 13

Growth stages Erecting Jointing Boosting Heading Grain filling

Sample numbers 7 18 18 20 13
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2.2 Theory of Mathematical Morphology

The basic operational steps of mathematical morphology include dilation and erosion, whereas
all other operations, such as opening and closing, are derived from these two operations. In
addition, diverse combinations of opening and closing operations are used to form the traditional
morphology filter and the GM.

Suppose the discrete input signal fðnÞ is defined as F ¼ f0;1; · · · ; Ng and the structural
element gðnÞ is defined as G ¼ f0;1; · · · ;MgðN ≥ MÞ, then the erosion and dilation
operations33 are defined as follows:

Dilation:

EQ-TARGET;temp:intralink-;e001;116;609ðf � gÞðnÞ ¼ maxffðn −mÞ þ gðmÞg; (1)

Erosion:
EQ-TARGET;temp:intralink-;e002;116;570ðfΘgÞðnÞ ¼ minffðnþmÞ − gðmÞg; (2)

where n ¼ f0;1; · · · ; N − 1g and m ¼ f0;1; · · · ;M − 1g.
After determination of both erosion and dilation, the opening and closing operations can be

obtained. The opening and closing operations are defined as follows:

Opening:

EQ-TARGET;temp:intralink-;e003;116;488ðf ∘ gÞðnÞ ¼ ½ðfΘgÞ � g�ðnÞ; (3)

Closing:
EQ-TARGET;temp:intralink-;e004;116;449ðf • gÞðnÞ ¼ ½ðf � gÞΘg�ðnÞ; (4)

where ∘ stands for the opening operation and • for the closing operation. The erosion and opening
operations retain negative impulses and remove positive impulses, and the dilation and closing
operations follow the opposite pattern.34,35 Due to shrinkage of the opening operation, the output
amplitude of the opening–closing filter process is small. However, expansion of the closing oper-
ation increases the output value of the closing–opening process.36 To obtain better denoising
effects and eliminate the statistical deviation present in a single instance of opening–closing
or closing–opening the filter, the following combination is usually adopted:37

EQ-TARGET;temp:intralink-;e005;116;343YðnÞ ¼ 1

2
fFOC½fðnÞ� þ FCO½fðnÞ�g; (5)

where FOC½fðnÞ� is the opening and closing filter, with the subscript OC representing an opening
operation before a closing operation, and FCO½fðnÞ� is the closing and opening filter, with the
subscript CO representing an opening operation after a closing operation.

The traditional morphology filter uses a single structural element to remove noise from the
signal. However, the denoising effect of a single structural element is limited when there are
multiple types and intensities of noise in the signal; therefore, GM filters were proposed.38

A GM filter is constructed by means of different structural elements, rather than just one
kind of structural element, the definitions of which can be expressed as25

EQ-TARGET;temp:intralink-;e006;116;205GOC½fðnÞ� ¼ fðnÞ ∘ g1ðnÞ • g2ðnÞ; (6)

EQ-TARGET;temp:intralink-;e007;116;174GCO½fðnÞ� ¼ fðnÞ • g1ðnÞ ∘ g2ðnÞ: (7)

The average value of these two types of GM filters is thus defined as39

EQ-TARGET;temp:intralink-;e008;116;136TðnÞ ¼ 1

2
fGOC½fðnÞ� þ GCO½fðnÞ�g; (8)

where g1ðnÞ and g2ðnÞ refer to the different structural elements, GOC½fðnÞ� is the opening and
closing filter with different structural elements, and GCO½fðnÞ� is the closing and opening filter
with different structural elements.
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2.3 Theory of the Wavelet-Transform-Based Filter

If the generating function ψðtÞ satisfies Eq. (9) and belongs to L2ðRÞ, which is the space made up
of all quadratic integration functions, ψðtÞ is called a “base wavelet” or “mother wavelet.”
The wavelet basis function is a set of function sequences fψa;bðtÞg obtained by calculating
the scale and transition of the same mother function

EQ-TARGET;temp:intralink-;e009;116;668Cψ ¼
Z þ∞

−∞

jψðtÞj2
t

dt < þ∞: (9)

For the continuous case, the wavelet sequence is defined as

EQ-TARGET;temp:intralink-;e010;116;612ψa;bðtÞ ¼
1ffiffiffiffiffiffijajp ψ

�
t − b
a

�
; (10)

where a; b ∈ R and a ≠ 0, here, a and b are the scaling and translation factors, respectively.
For the discrete case, the parameter a takes the discrete value aj0, and the parameter b takes

the discrete value kaj0τ0, and thus, the wavelet sequence is defined as

EQ-TARGET;temp:intralink-;e011;116;534ψ j;kðtÞ ¼ ja0j−j∕2ψða−j0 t − kτ0Þ: (11)

For arbitrary fðtÞ ∈ L2ðRÞ, continuous WT is defined as the inner product of the signal fðtÞ and
wavelet function ψa;bðtÞ, with the specific expansion:

EQ-TARGET;temp:intralink-;e012;116;477Wfða; bÞ ¼ hfðtÞ;ψa;bðtÞi ¼
Z þ∞

−∞
fðtÞ 1ffiffiffiffiffiffijajp ψ

�
t − b
a

�
dt; (12)

where a ≠ 0 and ψa;bðtÞ is a complex conjugate function. In mathematics, the inner product
represents the similarity of two functions, and therefore, the above equation can be illustrated
as the degree of similarity between fðtÞ and ψa;bðtÞ.

For ψðtÞ ∈ L2ðRÞ, where ψðtÞ meets the conditions of Eq. (9), and a ¼ aj0, b ¼ kaj0τ0, then
the discrete WT is defined as

EQ-TARGET;temp:intralink-;e013;116;370Wfðj; kÞ ¼ hfðtÞ;ψ j;kðtÞi ¼ a−j∕20

Z þ∞

−∞
fðtÞψða−j0 t − kτ0Þdt; (13)

if a0 ¼ 2 and τ0 ¼ 1, then the above equation represents the dyadic discrete WT.
Based on multiresolution analysis, WT decomposes signal into two components, including

detail and approximation coefficients.20 At each scale, the input signal is decomposed by high-
pass filters to record high-frequency components and low-pass filters to extract the low-fre-
quency components for the next scale decomposition. For example, as shown in Fig. 2, the signal
S was decomposed to four layers, and the signal S can be represented as the sum of CA4, CD4,
CD3, CD2, and CD1, that is, S ¼ CA4 þ CD4 þ CD3 þ CD2 þ CD1. The CA1, CA2, CA3, and
CA4 are the approximate coefficients that represent the low-frequency components. The CD1,
CD2, CD3, and CD4 are the detail coefficients that represent the high-frequency components.

The signal denoising process based on WT-based filter with soft or hard thresholding is as
follows:

Fig. 2 Schematic diagram of four-layer wavelet decomposition of signal.
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i. The signal with noise is decomposed into several layers by multiscale one-dimensional
(1-D) wavelet decomposition function, and the approximate and detail coefficients of
each layer are extracted successively.

ii. The heuristic threshold selection with soft or hard thresholding was used to set the adaptive
threshold for each scale of detail coefficient, including CD1, CD2, CD3, and CD4. If the
SNR is very small, the Stein’s unbiased risk estimate is very noisy. If such a situation is
detected, the fixed thresholding is used. The soft and hard thresholding are as follows:40

Hard threshold estimation:

EQ-TARGET;temp:intralink-;e014;116;474ŵj;k ¼
�
wj;k; jwj;kj ≥ λ
0; jwj;kj < λ

; (14)

Soft threshold estimation:

EQ-TARGET;temp:intralink-;e015;116;417ŵj;k ¼
�
signðwj;kÞ � ðjwj;kj − λÞ; jwj;kj ≥ λ
0; jwj;kj < λ

; (15)

where λ ¼ ∂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 logðNÞp

, N is the signal length, and ∂ is the standard deviation of
noise (Fig. 3).

iii. Based on the approximate coefficients of the last layer and the detail coefficients of each
layer after thresholding, the denoised spectrum is reconstructed by the multiscale 1-D
inverse WT.

2.4 Proposed Method

As the opening operation can remove positive pulse noise and the closing operation can remove
negative pulse noise, the GM filter effectively removes large-amplitude noise from the signal but
it has a poor denoising effect on small-amplitude noise.28,41 The WT uses multiscale analysis of
local signal features and enlarges subtle trends, removing small-amplitude noise (such as white
noise) effectively. However, when dealing with large-amplitude noise, the WT decomposes par-
tial noise into low-frequency information, and thus the noise is not removed completely.27 For
these reasons, the mathematical-morphology filter and WT were combined for this study.
A flowchart of the proposed method is presented in Fig. 4.

The parameter settings have a strong influence on the effectiveness of filter. Previous studies
have shown that ball or disk structural elements for mathematical-morphology filters,42,43 and the
Symlet wavelet and Daubechies wavelet methods for WTs, effectively remove noise from the
signal.44,45 In addition, a structural element with a small size can detect detailed signal infor-
mation but has a weak denoising capacity. Although a large structural element has strong noise-
removal ability, it lacks the ability to detect detailed information.46 The size of the structural
element is usually determined according to experimental results and the characteristics of
the original signal.47 In our experiments, ball, disk, diamond, rectangle, and square structural

Fig. 3 (a) The hard and (b) soft threshold method to estimate the wavelet coefficients.
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elements were used for comparative analysis. In addition, based on the Daubechies wavelet and
Symlet wavelet methods, denoising results of the WTwith four-layer wavelet decomposition are
discussed below.

To evaluate the denoising effects of different filters used in the simulated experiments, five
evaluation indices between simulated noise spectrum and standard vegetation spectrum were
calculated. To evaluate the application effectiveness of three filters on measured spectra, a subset
of 51 canopy reflectance spectra with the corresponding measured biophysical and biochemical
parameters were selected randomly from 76 total samples to develop models between vegetation
indices and biophysical and biochemical parameters. The remaining 25 samples were used for
accuracy validation.

2.5 Evaluation Criteria

In the simulated experiments, the normalized correlation coefficient (NCC),48,49 coefficient of
determination (R2), root mean square error (RMSE), SNR, and PSNR50 between the smoothed
spectrum and standard vegetation spectrum were calculated to evaluate the denoising results. For
measured canopy spectra of winter wheat, NCC was used to estimate the waveform similarity of
the spectra before and after denoising, to assess the results qualitatively, whereas wheat biophysi-
cal and biochemical parameters were retrieved using different hyperspectral vegetation indices
derived from denoised spectra to quantitatively assess the results. From seven bands in the visible
and near-infrared (VNIR) spectral range and four bands in the shortwave infrared (SWIR) spec-
tral range, seven hyperspectral vegetation indices were calculated. These vegetation indices are
commonly used to retrieve biophysical and biochemical parameters. The normalized difference
vegetation index (NDVI),51 structure-insensitive pigment index (SIPI),52 and modified chloro-
phyll absorption in reflectance index (MCARI2)53 were used for retrieval of LAI and CHL. The
LWC was retrieved from the normalized difference spectral indices (NDSI1370),

54 difference
spectral indices (DSI1100 and DSI1940),

54 and modified normalized difference water index
(NDWI*), which is obtained by multiplying the enhanced vegetation index (EVI) and normalized
difference water index (NDWI2500).

55–57 Specific definitions of the vegetation indices and evalu-
ation indices used are as follows:

EQ-TARGET;temp:intralink-;e016;116;99NDVI ¼ ρ800 − ρ670
ρ800 þ ρ670

; (16)

Fig. 4 Flowchart of the proposed method.
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EQ-TARGET;temp:intralink-;e017;116;735SIPI ¼ ρ800 − ρ445
ρ800 − ρ680

; (17)

EQ-TARGET;temp:intralink-;e018;116;703MCARI2 ¼ 1.5½2.5ðρ800 − ρ670Þ − 1.3ðρ800 − ρ550Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðρ800 þ 1Þ2 −

�
6ρ800 − 5

ffiffiffiffiffiffiffiffi
ρ670

p �
− 0.5

r ; (18)

EQ-TARGET;temp:intralink-;e019;116;650NDWI� ¼ EVI × NDWI2500; (19)

where EVI is 2.5×ðρ860−ρ680Þ
ρ860þ6×ρ680−7.5×ρ470−1

and NDWI2500 is ρ860−ρ2500
ρ860þρ2500

.

EQ-TARGET;temp:intralink-;e020;116;612NDSI1370 ¼
ρ1370 − ρ2500
ρ1370 þ ρ2500

; (20)

EQ-TARGET;temp:intralink-;e021;116;571DSI1100 ¼ ρ1100 − ρ2500; (21)

EQ-TARGET;temp:intralink-;e022;116;545DSI1940 ¼ ρ1940 − ρ2500; (22)

where ρ represents the spectral reflectance and its subscript indicates the wavelength (nm). For
example, ρ800 represents reflectance at a wavelength of 800 nm.

EQ-TARGET;temp:intralink-;e023;116;496SNR ¼ 10 × lg

� P
n
i¼1 f

2
iP

n
i¼1 ðfi − siÞ2

	
; (23)

EQ-TARGET;temp:intralink-;e024;116;450PSNR ¼ 10 × lg

�ðfiÞ2max × lengthðfÞP
n
i¼1 ðfi − siÞ2

	
; (24)

EQ-TARGET;temp:intralink-;e025;116;409NCC ¼
P

n
i¼1 sififfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffihP

n
i¼1 s

2
i

ihP
n
i¼1 f

2
i

ir ; (25)

where si and fi are the wheat spectral reflectance of band i before and after denoising, respec-
tively. They also represent the spectral reflectance of band i for smoothed spectrum and standard
vegetation spectrum, respectively. Here, n denotes the band number of spectrum.

EQ-TARGET;temp:intralink-;e026;116;319R2 ¼ 1 −
P

n
i¼1 ðyi − xiÞ2P
n
i¼1 ðyi − yÞ2 ; (26)

where xi and yi represent the vegetation index and measured biophysical and biochemical
parameters, respectively. They also represent the retrieved and measured biophysical and bio-
chemical parameters, respectively. Here, y denotes the mean value of measured wheat biophysi-
cal and biochemical parameters.

EQ-TARGET;temp:intralink-;e027;116;226RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðyi − ŷiÞ2
s

; (27)

where yi and ŷi represent the measured and retrieved wheat biophysical and biochemical param-
eters, respectively. They also represent the standard vegetation spectrum and the smoothed spec-
trum, respectively. Here, n is the number of wheat samples or band number of standard
vegetation spectrum.
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3 Results and Analysis

3.1 Experimental Results on Simulated Noise Spectrum

The simulated spectrum with noise was denoised by different filters. The comparison of denois-
ing effects for different filters is shown in Table 2 and Fig. 5. SNS represents the simulated noise
spectrum. WT1 and WT4 stand for a WT using three-layer Symlet wavelet function; WT2 and
WT3 stand for a WT using three-layer Coiflet and Daubechies wavelet function, respectively.
GM1, GM2, GM3, and GM4 stand for a GM using ball-diamond, ball-square, disk-rectangle, and
ball-line structural elements, respectively. CF1 stands for a combination filter using GM1 and
WT1, and so on.

As shown in Fig. 5, although WT removed small-amplitude noise effectively and the
denoised spectra from WT are relatively smooth, the large-amplitude noise was not removed
completely. GM removed large-amplitude noise, but the smoothed spectrum showed many bro-
ken lines. The denoised spectrum from CF removed both large- and small-amplitude noise,
maintaining the waveform and smoothness of spectrum better.

As shown in Table 2, based on the standard vegetation spectrum, the SNR and PSNR calcu-
lated using simulated noise spectrum are 13.769 and 19.223 dB, respectively. Moreover, the R2,
RMSE, and NCC are 0.901, 0.077, and 0.979 before denoising, respectively. The NCC and R2

were improved slightly by the three filters, which demonstrate that the denoised spectrum
becomes more similar to standard vegetation spectrum. Compared with GM and WT, the
SNR and PSNR calculated using CF were highest, reaching 28.886 and 34.593, respectively,
with 25.723 and 31.411 for GM, 21.525 and 27.136 for WT. In addition, the RMSE for CF
was lowest with 0.013, whereas RMSE for GM and WT were 0.019 and 0.031. Thus, CF
has better denoising ability, improving SNR and PSNR of simulated noise spectrum
significantly and maintaining the waveform and smoothness of standard vegetation spectrum
in the meantime.

Table 2 Comparison of denoising effects of different filters.

Filter RMSE SNR (dB) NCC R2 PSNR (dB)

SNS 0.077 13.769 0.979 0.901 19.223

CF1 0.013 28.886 0.999 0.997 34.593

GM1 0.019 25.723 0.999 0.994 31.411

WT1 0.031 21.525 0.997 0.984 27.136

CF2 0.016 27.184 0.999 0.996 32.833

GM2 0.020 25.167 0.999 0.993 30.806

WT2 0.030 21.736 0.997 0.985 27.351

CF3 0.027 22.867 0.998 0.988 28.460

GM3 0.055 16.691 0.989 0.950 22.163

WT3 0.031 21.619 0.997 0.984 27.232

CF4 0.015 28.066 0.999 0.997 33.771

GM4 0.022 24.421 0.998 0.992 30.098

WT4 0.031 21.525 0.997 0.984 27.136

Note: SNS represents the simulated noise spectrum; WT1 and WT4 stand for a WT using three-layer Symlet
wavelet function, WT2 and WT3 stand for a WT using three-layer Coiflet and Daubechies wavelet function,
respectively. GM1, GM2, GM3, and GM4 stand for a GM using ball-diamond, ball-square, disk-rectangle,
and ball-line structural elements, respectively. CF1 stands for a combination filter using GM1 and WT1,
and so on.
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3.2 Qualitative Analysis of Noise Removal from Measured Spectra

The sources of spectral noise include variations in light intensity and sensor errors.58 When inci-
dent energy is strongly absorbed by atmospheric water vapor and becomes too weak, the sensor
is not able to detect the signal. Thus, field spectra usually contain more noise than spectra mea-
sured in the laboratory.59 The original canopy spectrum (OS) of winter wheat is shown in Fig. 6.
This wheat spectrum contains little noise in the VNIR spectral range (400 to 1100 nm) and the
spectrum is relatively smooth, as the spectrometer has a high SNR in this spectral range.
However, due to the low SNR of the spectrometer and strong water absorption of regions around
1400, 1900, and 2000 nm,60 the spectrum in the SWIR spectral range (1100 to 2500 nm) contains
large-amplitude noise, which appears as “bulges” or “burrs.”

Since the OS of winter wheat contains less noise in the VNIR spectral range, NCC values for
the CF, GM, and WT are very close to 1 between the original and denoised spectra. For all three
filters, the denoised and original spectra overlap in the VNIR spectral range, indicating that none
of the filters have a negative influence on the original data in the VNIR spectral range. A com-
parison of the spectra before and after denoising in different spectral ranges is shown in Fig. 7.
Due to the spectra before and after denoising overlay in the VNIR spectral range, to present the
result clearly, only the smoothed spectrum from the CF and original spectrum are compared and
analyzed in Fig. 7(a). As shown in Fig. 7(a), the smoothed spectrum from the CF and original
spectrum almost align within non-noisy spectral regions, reflecting the ability of the CF to main-
tain spectral signatures. After denoising, the red-edge region (680 to 760 nm) of the wheat spec-
trum was well preserved. Furthermore, the CF also removed obvious burrs in the form of peaks
and valleys in the SWIR spectral range.

Figure 7 shows that all filters could remove large-amplitude noise in the SWIR spectral
range, restoring the intrinsic features of original spectrum. However, there were some differences
between the denoised spectra obtained using different filters. Compared with the original spec-
trum, the denoised spectra from the CF and WT are relatively smooth. On the other hand, the
denoised spectra from the GM showed many broken lines, especially in the spectral range of

Fig. 5 Local view of spectra with different filters applied: denoising results using Daubechies
wavelet with disk-rectangle morphological filter from (a) 400 to 1600 nm, (b) 1600 to 2500 nm,
denoising results using Symlet wavelet with ball-square morphological filter from (c) 400 to
1600 nm and (d) 1600 to 2500 nm.
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1800 to 1950 nm. The GM with a disk structural element produced more obvious broken lines
under various parameter settings. In addition, as shown in Figs. 7(b) and 7(c), the spectral values
of the smoothed spectrum obtained using the WT became negative at some wavelengths, which
is inconsistent with the measured reflectance spectrum whose values are always positive.

Therefore, although all denoising methods maintained the original spectrum stably in the
VNIR spectral range, the CF shows better performance with large-amplitude noise in the SWIR
spectral range, removing such noise while maintaining or restoring the spectral shape and value.

3.3 Quantitative Analysis of Noise Removal from Measured Spectra

The biophysical and biochemical parameters of winter wheat were retrieved using the denoised
spectra. Regression analysis was conducted between the measured and retrieved biophysical and
biochemical parameters of winter wheat to verify the denoising accuracy.

Fig. 7 Local view of spectra with different filters applied: denoising results from (a) 400 to
1300 nm, (b) 1340 to 1420 nm, (c) 1800 to 1950 nm, and (d) 2450 to 2500 nm.

Fig. 6 OS of winter wheat.
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The experimental results are listed in Tables 3–6, where different subscripts on the filter
names represent different parameters settings. OS means that the original spectra were used
to calculate related vegetation indices. GM4 and GM5 stand for a GM using disk-rectangle
and ball-square structural elements, respectively. WT4 and WT5 stand for a WT using the
four-layer Daubechies and Symlet wavelet function, respectively. CF4 stands for a CF using
GM4 with WT4. CF5 stands for a CF using GM5 with WT5.

3.3.1 Retrieval of leaf area index and chlorophyll

Some models of the regression analysis between NDVI and CHL are shown in Table 3 and
Fig. 8. The relationships between the retrieved and measured values of CHL are presented
in Table 4 and Fig. 9.

Based on regression analysis, NDVI-LAI, MCARI2-LAI, NDVI-CHL, and SIPI-CHL
exhibit a significant logarithmic relationship.61–64 As shown in Fig. 8, the distribution of 51
sample points after denoising was nearly the same as that before denoising. The accuracy of

Table 3 Accuracy of the models developed between vegetation index, LAI, and CHL using differ-
ent filters.

Filter

NDVI-LAI MCARI2-LAI NDVI-CHL SIPI-CHL

R2 R2 R2 R2

OS 0.5100 0.4390 0.4587 0.3249

CF4 0.5233 0.4726 0.4801 0.3435

GM4 0.5103 0.4394 0.4597 0.3248

WT4 0.5089 0.4370 0.4570 0.3224

CF5 0.5235 0.4716 0.4800 0.3442

GM5 0.5100 0.4390 0.4588 0.3249

WT5 0.5091 0.4373 0.4577 0.3221

Note: OS represents the original spectra; WT4 and WT5 stand for a WT using four-layer Daubechies and
Symlet wavelet function, respectively. GM4 and GM5 stand for a GM using disk-rectangle and ball-square
structural elements, respectively. CF4 stands for a combination filter using GM4 and WT4, and so on.

Table 4 Retrieval accuracy of LAI and CHL using different filters.

Filter

LAI (NDVI) LAI (MCARI2) CHL (NDVI) CHL (SIPI)

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

OS 0.6085 0.5920 0.5786 1.4835 0.4663 0.6838 0.3544 0.7799

CF4 0.6041 0.5977 0.5879 1.4464 0.4790 0.6690 0.3713 0.7572

GM4 0.6082 0.5924 0.5794 1.4831 0.4669 0.6830 0.3544 0.7799

WT4 0.6095 0.5913 0.5793 1.4863 0.4657 0.6846 0.3534 0.7788

CF5 0.6050 0.5969 0.5894 1.4460 0.4793 0.6690 0.3702 0.7595

GM5 0.6085 0.5922 0.5788 1.4847 0.4664 0.6836 0.3544 0.7799

WT5 0.6089 0.5917 0.5790 1.4867 0.4658 0.6842 0.3528 0.7768

Note: OS represents the original spectra; WT4 and WT5 stand for a WT using four-layer Daubechies and
Symlet wavelet function, respectively. GM4 and GM5 stand for a GM using disk-rectangle and ball-square
structural elements, respectively. CF4 stands for a combination filter using GM4 and WT4, and so on.
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the model was not enhanced significantly when using spectra denoised with the generalized
morphology or WT, and the R2 remained basically unchanged from that before denoising.
The relationship between retrieved and measured LAI and CHL showed the same pattern.
However, for the CF, the accuracy of the developed model was slightly improved. As
shown in Table 3, the R2 of NDVI-LAI, MCARI2-LAI, SIPI-CHL, and NDVI-CHL using
denoised spectra from the CF reached 0.5235, 0.4726, 0.3442, and 0.4801, respectively, whereas
the corresponding R2 values were 0.5100, 0.4390, 0.3249, and 0.4587 using the original spectra.
The relationship between the retrieved and measured values of biophysical and biochemical
parameters was also enhanced, as shown in Table 4 and Fig. 9.

The coefficients of determination between the vegetation indices and biophysical and bio-
chemical parameters remained unchanged or improved slightly, primarily for the following rea-
sons: (1) the bands used in NDVI are in the VNIR spectral range, which is rarely influenced by
noise and (2) the CF removed small-amplitude noise in the VNIR spectral range, so the R2 was
slightly improved. This finding shows that the proposed algorithm is capable of removing small-
amplitude spectral noise, and thereby restoring spectral information to some extent.

Table 5 Accuracy of developed model between vegetation index and LWC for different filters.

Filter

NDWI-LWC DSI1100-LWC DSI1940-LWC NDSI1370-LWC

R2 R2 R2 R2

OS 0.428 0.333 0.266 0.411

CF4 0.615 0.539 0.486 0.588

GM4 0.538 0.522 0.448 0.455

WT4 0.542 0.481 0.444 0.514

CF5 0.622 0.551 0.506 0.612

GM5 0.555 0.530 0.502 0.494

WT5 0.549 0.511 0.500 0.543

Note: OS represents the original spectra; WT4 and WT5 stand for a WT using four-layer Daubechies and
Symlet wavelet function, respectively. GM4 and GM5 stand for a GM using disk-rectangle and ball-square
structural elements, respectively. CF4 stands for a combination filter using GM4 and WT4, and so on.

Table 6 Retrieval accuracy of LWC for different filters.

Filter

LWC (NDWI) LWC (DSI1100) LWC (DSI1940) LWC (NDSI1370)

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

OS 0.364 0.027 0.231 0.044 0.214 0.045 0.406 0.026

CF4 0.610 0.018 0.518 0.021 0.475 0.023 0.640 0.018

GM4 0.442 0.023 0.343 0.031 0.353 0.030 0.536 0.021

WT4 0.439 0.024 0.283 0.038 0.267 0.040 0.391 0.025

CF5 0.611 0.018 0.506 0.021 0.453 0.024 0.625 0.018

GM5 0.504 0.022 0.387 0.028 0.367 0.029 0.592 0.019

WT5 0.478 0.023 0.366 0.030 0.392 0.029 0.434 0.023

Note: OS represents the original spectra; WT4 and WT5 stand for a WT using four-layer Daubechies and
Symlet wavelet function, respectively. GM4 and GM5 stand for a GM using disk-rectangle and ball-square
structural elements, respectively. CF4 stands for a combination filter using GM4 and WT4, and so on.
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3.3.2 Retrieval of wheat leaf water content

The specific results of retrieving LWC were listed in Tables 5 and 6. Taking the NDWI� as an
example, the regression models were established between NDWI� and LWC, as shown in
Fig. 10. Figure 11 shows the LWC retrieval results using NDWI�.

The NDWI� and LWC exhibited a significant logarithmic relationship, as shown in Fig. 10.65–68

The distribution of sample points after denoising was more concentrated than before. Before denois-
ing, the R2 between NDWI� and LWC was 0.428. After denoising with three filters, the R2 reached
0.549, 0.555, and 0.622, corresponding to the WT, GM, and CF, respectively. Among these, the
relationship between NDWI� and LWC was most obviously improved after denoising with the CF.

As shown in Fig. 11, there was no strong relationship between retrieved and measured values
of LWC before denoising, as the R2 and RMSE were only 0.364 and 0.027, respectively. After
denoising with the three filters, this relationship improved. For the WT, the maximum R2 value
was 0.478 with an RMSE of 0.023. Using the GM, the values of R2 and RMSE obtained were
0.504 and 0.022, respectively. For the CF, R2 and RMSE between the retrieved and measured

Fig. 8 Model developed between CHL and NDVI: (a) OS of winter wheat, (b) combined filter (CF5),
(c) generalized morphology filter (GM5), and (d) WT-based filter (WT5).

Fig. 9 Measured versus retrieved values of CHL using NDVI: (a) OS of winter wheat and (b) com-
bined filter (CF5).
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values of LWC were 0.611 and 0.018, respectively, representing a strong improvement over
those obtained before denoising. These results show that the regression analysis models obtained
using the CF were more reliable than those obtained before denoising and that the CF can pro-
vide higher retrieval accuracy for LWC.

Fig. 10 Model developed between wheat LWC and NDWI∗: (a) OS of winter wheat, (b) CF5,
(c) GM5, and (d) WT5.

Fig. 11 Measured versus retrieved values of wheat LWC using NDWI�: (a) OS of winter wheat,
(b) CF5, (c) GM5, and (d) WT5.
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Furthermore, the relationships between LWC and other vegetation indices, including
NDSI1370, DSI1100, and DSI1940, were also improved after denoising with the CF. The reason
for this improvement is that these vegetation indices are calculated mainly using bands in the
SWIR spectral range, which contain large-amplitude noise. After denoising with the CF, large-
amplitude noise is removed effectively and the spectral characteristics are restored.

4 Discussion

Filtering parameters have a strong influence on the performance of a filter. According to the
characteristics of different signals, many experiments have been carried out to select the optimal
parameters for the three major filter types. For the mathematical-morphology filter, structural
elements are important parameters. Our experimental results show that mathematical-morphol-
ogy filters with ball, square, rectangular, or disk structural elements can remove large-amplitude
noise, but the denoised spectra are distorted to varying degrees, appearing as many broken lines.

Optimization of theWT is focused on selection of wavelet functions and the number of wave-
let decomposition layers. Two different wavelet functions, the Daubechies and Symlet wavelet,
were used to denoise the wheat canopy spectra. Each wavelet function utilized four-layer wavelet
decomposition of the original spectra. As shown in Figs. 12(a) and 12(b), canopy spectra
denoised using the WT with certain parameters become negative around 1380 and 1850 nm.
This result does not agree with the measured reflectance spectra of winter wheat, which always
have values >0. Moreover, this phenomenon is relatively rare in previous research on noise
removal from simulated data.69 This finding also indicates that there are differences between
the simulated data and measured field spectra.

The same parameters used with the WTwere adopted for the CF. As shown in Figs. 12(c) and
12(d), when the CF was used to remove spectral noise, the denoised spectra were always pos-
itive. Also, the spectral curves are smoother than those obtained with the GM, without the
appearance of broken lines in denoised spectra. This result shows that the CF enhanced the
accuracy of denoised spectra and achieved more effective noise removal.

Fig. 12 Local view of spectra obtained using different denoising methods: (a) WT with different
parameters from 1330 to 1420 nm, (b) WT with different parameters from 1800 to 1980 nm, (c) CF
with different parameters from 1330 to 1430 nm, and (d) CF with different parameters from 1800 to
1960 nm.
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No single filter can eliminate noise from a signal completely, particularly in the case of com-
plex noise patterns. However, the CF is able to remove large-amplitude spectral noise in our
experiments, which is consistent with previous research. For example, the CF could denoise
photoplethysmography signals efficiently, retaining the wave form of the signal well.22 This filter
removes not only large-amplitude noise but also small-amplitude noise.70 Therefore, it is suitable
to apply the CF to removal of spectral noise from winter wheat for restoration of the original
spectral characteristics.

5 Conclusion

Spectral noise interferes with the absorption characteristics of objects, limiting the quantitative
applications of hyperspectral remote sensing data. A CF was proposed in this study to remove
spectral noise. Two commonly used filters, the GM and WT, were used for comparative analysis.
The simulated experiments were conducted using simulated spectrum obtained by adding noise
to USGS standard vegetation spectrum. Five evaluation indices were calculated to make com-
parison of different denoising results. Moreover, the measured canopy spectra of winter wheat
were denoised by three filters. To evaluate the denoising effects of different filters, regression
analysis models were established between vegetation indices and measured biophysical and bio-
chemical parameters. From the viewpoint of practical application of hyperspectral data, the accu-
racy of the models was validated by retrieving the biophysical and biochemical parameters.

In the simulated experiments, compared with the GM and WT, the CF removed both large-
and small-amplitude noise, improving SNR and PSNR of simulated noise spectrum greatly and
maintaining the waveform and smoothness of standard vegetation spectrum in the meantime. For
measured canopy spectra of winter wheat, the VNIR spectral range (400 to 1100 nm) contained
little noise, and all three filters were able to maintain the detailed features of the original spectra.
The NCCs in this range were close to 1. In contrast, large-amplitude noise is present in the SWIR
spectral range (1100 to 2500 nm). All three filters can suppress large-amplitude noise effectively,
confirming their ability to remove spectral noise. However, there are differences between the
denoising results of the three filters. The spectra denoised using the GM lack smoothness, exhib-
iting many twists and turns. Although the WT can produce relatively smooth spectra, negative
values present in the denoised spectra are inconsistent with typical vegetation spectra. The CF
can remove noise in the SWIR spectral range effectively and exhibits smooth denoised spectra,
improving the retrieval accuracy of LWC. Compared with the R2 of 0.428 before denoising, the
R2 of the model developed between NDWI� and LWC is improved to 0.622 using the CF, to
0.555 with the GM, and to 0.549 with the WT. In addition, the R2 and RMSE values between
retrieved and measured LWC are 0.364 and 0.027, respectively, before denoising, whereas the
corresponding values are 0.504 and 0.022 after denoising with the GM, and 0.478 and 0.023
with the WT, respectively. Compared with the GM and WT, the CF obtains the highest retrieval
accuracy of LWC, with an R2 of 0.611 and RMSE of 0.018.

However, this research also identified some shortcomings that must be further explored and
addressed. The proposed method focuses on spectral noise removal. Further applications of the
CF should be studied and more validation experiments designed. The applicability of this
method to other applications, such as hyperspectral image denoising, needs to be confirmed,
including whether it might improve the accuracy of spectral unmixing or image classification
through spectral noise removal.
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