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Abstract. To better assess spatial variabilities in subtropical secondary forest biomass, the goal
of the present study was to employ small-footprint, discrete-return light detection and ranging
and unmanned aerial vehicles, integrated with structure from motion (UAV-SFM) data, to accu-
rately estimate the stand characteristic parameters of subtropical forests. The Lorey’s height,
density, basal area, volume, and aboveground biomass (AGB) of 30 plots (∅10 m) were mod-
eled using an array of SFM point cloud metrics and image color metrics (forestry vegetation
coverage and color index set). Further, the individual models developed using stepwise multi-
regression analysis and a branch-and-bound algorithm were employed to examine the best mod-
els. Overall, the results indicated that the coefficient of determination (R2) for Lorey’s height
(R2 ¼ 0.58 to 0.95), volume (R2 ¼ 0.29 to 0.71), and AGB (R2 ¼ 0.27 to 0.64) were signifi-
cantly enhanced compared with the density (R2 ¼ 0.18 to 0.48), and basal area (R2 ¼ 0.24 to
0.52). Utilizing independent stand-level data from ground inventory, our results revealed that,
overall, the model fit was significant for most stand characteristic parameters, with relationships
close to a 1:1 line, thereby indicating no significant bias [relative root mean square error
ðrRMSEÞ ¼ 5.32% to 27.04%]. Our image metrics had a statistically significant association with
Lorey’s height (rRMSE decreased by 0.08%), volume (rRMSE decreased by 0.58%), and AGB
(rRMSE decreased by 3.11%), which provided additional explanatory power in the regression
analysis. This research demonstrated the potential of UAV-SFM as a technology to accurately
assess subtropical forest carbon while providing an improved elucidation of the positive
effects of image color metrics. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.14.022204]
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1 Introduction

Forests comprise indispensable components of terrestrial ecosystems while serving as primary
global carbon sinks, which play a critical role in offsetting global warming.1,2 Researchers have
suggested that the carbon emissions from forests generated by deforestation and decomposition
account for 17% of the global total. Therefore, the protection of forest carbon sinks is an essential
measure toward dealing with global climate change.3 Due to the complexity and dynamic char-
acteristics of forest ecosystems, assessments of multiscale forest carbon storage have typically
been highly ambiguous. The estimation of forest carbon reserves typically relies on accurate
data of aboveground biomass (AGB), which is generally believed to contain the majority of
forest carbon reserves.4–6
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Initial surveys of forest AGB were conducted through the destructive sampling of trees.
A strong correlation was found between the parameters of forest spatial structures [e.g., tree
height, diameter at breast height (DBH), etc.] and AGB.7,8 The typical biomass of tree species
may be more precisely calculated through the establishment of an allometric growth equation.
The estimation of biomass by integrating stand characteristic parameters with allometric growth
equations has emerged as the primary method for gauging forest inventories, and thus, their
carbon storage capacities.9

Remote sensing technologies have unique advantages for capturing forest characteristic
parameters, which have been widely utilized over the last few decades.10–12 With continuous
advances in sensors and associated platforms, as well as the enrichment and improvement of
various spectral, spatial, and temporal resolutions, forestry researchers can use remote sensing
data in combination with ground survey data to obtain accurate profiles of spatial structures of
forests.

Numerous studies have revealed that optical remote sensing (particularly hyperspectral
remote sensing) may accurately estimate the biomass of forest vegetation;13 however, there
were limitations in sampling frequency and a saturation of optical data.14–17 The emergence
of light detection and ranging (LiDAR) greatly improved the accuracy of the estimation of
characteristic forest parameter and biomass, as it has the capacity to penetrate the tree canopy
and reconstruct vertical forest structures. LiDAR has been verified as suitable for the estimation
of parameter and biomass inversion of various forest types and has considerable reliability.18–20

However, it has several shortcomings, such as costly data acquisition and lack of spectral
information.19,21,22

With the rapid development of computer technologies in recent years, unmanned aerial
vehicle (UAV) aerial photogrammetry has been rapidly propagated for forestry applications.
Due to the high flexibility and low cost of UAV platforms, they have gradually become an impor-
tant means of data acquisition for forest ecosystem surveys.23,24 The application of low-cost
UAV-DAP point clouds in forest inventories was introduced by Wallace et al. in 2011.25

Currently, several studies have undertaken corresponding experiments with the application of
UAV digital aerial photogrammetry (DAP) as relates to the acquisition of stand characteristic
parameters and estimation of biomass, which may be approximated by LiDAR. Puliti et al.26

acquired high spatial and temporal resolution images from a fixed-wing UAV in southeastern
Norway to obtain high-resolution DAP image data. The UAV-DAP metrics were extracted from
DAP point clouds, after which the linear models were fitted with metrics for predicting stand
characteristic parameters, such as Lorey’s height, DBH, etc. Otero et al.27 investigated the use
of UAV imagery for retrieving structural information on mangrove stands in Malaysia, which
suggested that UAV were most useful for the retrieval of canopy height and biomass data from
forests that were relatively homogeneous with a single dominant layer.

To date, most of these studies involved small experimental areas (e.g., well-managed, single-
layered, even-aged stands, or woodland forests), and there have been few studies that employed
the spectral information contained in UAV images in combination with structural metrics for the
estimation of forest biophysical parameters.28,29 The types and structures of sample plots were
relatively simple and adopted a fixed method for the construction of models, where the specific
color data of UAV images were not fully applied.30,31

For this paper, a natural secondary forest in the northern subtropical zone of Zijin Mountain
(Niushan) in the eastern suburb of Nanjing, Jiangsu Province, China, was selected as a research
zone for the exploration of technical methods toward estimating common stand characteristics
through the integration of high-resolution UAV images and LiDAR point cloud data. The
purpose of this study was to: (1) elucidate experimental strategies toward the construction of
vegetation canopies through LiDAR and DAP three-dimensional (3-D) point clouds, which
normalize height data and extract characteristic metrics related to the height and density of
canopy point clouds; (2) estimate Lorey’s height, density, basal area, volume, and AGB based
on an optimal (highest decision coefficient) model; and (3) extract vegetation coverage and color
indices from digital UAV images, clarify their participation in modeling, and discuss their impact
on modeling accuracy. In sum, we compared the color and noncolor models and developed a
color metrics prediction model to obtain a better overall understanding to support subtropical
forest management operations.
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2 Materials and Methods

2.1 Study Area

The study area was a subtropical secondary forest research zone, located in the eastern suburb of
Nanjing City, Jiangsu Province, China, which is an extension of Zijin Mountain (Niushan).
Specifically, the location is in the northeast portion of Nanjing Forestry University (Fig. 1),
with the geographic coordinates of 118.80°E and 32.07°N. The total area was 13.90 hm2,
with a length of 510 m from north to south, and width of 720 m from east to west. The terrain
belongs to the southern Jiangsu hills, where the northwest slope is steep, the southeast is
relatively flat, and the elevation ranges from 16 to 40 m.

Fig. 1 Study area and sample plots. (a) Jiangsu Province in China, (b) Nanjing Forestry University
in Jiangsu, and (c) the study area and sample plot distribution (c). Coordinate system:
GCS_Xian_1980.
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The study area was rich in vegetation with a coverage of >80%. The main forest types were
deciduous broadleaved forest with evergreen components. The primary tree species were beech
(Zelkova errata), paper mulberry (Broussonetia papyrifera), privet (Ligustrum ucidum), wing-
celtis (Pteroceltis atarinowii), with a small percentage of China savin (Juniperus chinensis), and
cryptomeria (Cryptomeria japonica var. sinensis).

2.2 Methods

For this study, a 3-D forest canopy height model (CHM) was developed based on a sequence of
high-precision digital elevation models (DEMs), acquired from LiDAR point clouds, combined
with structure from motion (SFM) point clouds, extracted from UAV digital image pairs.
Characteristic and color metrics [color index set and forestry vegetation coverage (FVC)] and
forest characteristic metrics prediction models were extracted, which were related to height and
canopy point cloud density. The specific steps were as follows (Fig. 2): first, UAV images were
generated through image registration and feature matching to form image sequences, whereas
digital 3-D point clouds and orthophoto images were simultaneously generated via a SFM algo-
rithm and image mosaic. Second, LiDAR point cloud data were employed to produce ground
points through a spatial filtering algorithm, combined with orthophoto images and a spatial inter-
polation algorithm, to create a DEM of the research area. Third, following denoised processing,
the aligned SFM point clouds were normalized by the LiDAR-generated DEM to obtain above-
ground heights and normalized SFM point clouds. Finally, the point cloud metrics in CHM were
extracted, and the color metrics (vegetation coverage and color index) were extracted from the
orthophoto images at the sample level. Correlation analysis was then performed using field data,
and the prediction model of each characteristic variable was established through the multiple
linear regression method. Finally, by comparing the estimation accuracy of the models, with
and without color metrics, the influences of the UAV image color data on the model were
explored.

Fig. 2 Flowchart showing the technical process.
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2.3 Field Data

A total of thirty 78.54 m2 (∅10 m) plots were randomly established within the study site, which
encompassed a range of species compositions, ages, and site indices (Fig. 1). The plot data were
collected in August 2013, and the center coordinates of the sample plots were located using
Trimble GeoExplorer 3000 handheld GPS units augmented with satellite-based augmentation
systems to enhance the accuracy and integrity of the GPS data, which resulted in submeter
accuracy.32

For each plot, all live trees with a DBH > 5 cm, species, diameter, height, height to crown
base, and crown width in both cardinal directions were measured. Small trees (DBH < 5 cm) and
dead wood were also tallied for the total stem number. However, they were not used in the
biomass calculations. The DBH was measured for all trees with a diameter tape, whereas all of
the tree heights were measured using a Vertex IV hypsometer. Several plot-level forest metrics
were calculated based on individual tree data, including basal area (cross-sectional area of the
trunk at 1.3 m aboveground) and Lorey’s height (i.e., the basal area weighted height).

The DBH and height measurements were loaded into the Chinese Forest Carbon
Measurement and Monitoring database program for the derivation of (by province) species-
specific information and allometric equation data33 in Table 1. Allometric equations developed
with tree inventory data from local or nearby provinces were selected for this research, and the
tree-based biomass estimates were summed per plot to determine the plot-level biomass com-
ponents. According to the equations, interannual variations of stand characteristic parameters
were minimal,34–36 and calculations were made directly from sample plot data. A summary of
the derived ground stand characteristic parameters is shown in Table 2.

2.4 LiDAR Data and Processing

The LiDAR data acquisition took place on August 18, 2012, operating at a flight altitude of
800 m aboveground level and a flight speed of 2.8 m∕s. The sensor used in this study was
an Optech Airborne Laser Terrain Mapper (ALTM) 3100 laser sensor (Optech Canada,
Toronto, Canada). The pulse transmitting frequency of the ALTM3100 sensor was 50 kHz, and
the scanning frequency was 40 Hz (scanning angle þ15 deg.). The laser spot radius was 30 cm,
and the average point distance was 0.83 m. A 1-m DEM was created in two steps from the point
cloud data.

Table 1 One-variable volume formula of Jiangsu Province.

Tree species Formula Remark

Cunninghamia lanceolata V ¼ A × DB × ðE × D þG × lgDÞC A ¼ 0.000058777042, B ¼ 1.9699831
C ¼ 0.89646157, E ¼ −2.2426

F ¼ 0.2021, G ¼ 6.6922

Metasequoia
glyptostroboides

V ¼ A × DB × ½ðE þ F × eðG×DÞÞH �C A ¼ 0.000058777042, B ¼ 1.9699831
C ¼ 0.89646157, E ¼ 1.000438

F ¼ −0.00024755, G ¼ −0.07897864
H ¼ 7101.252

Platycladus orientalis A ¼ 0.000091972184, B ¼ 1.8639778
C ¼ 0.83156779, E ¼ 1.000084

F ¼ −0.0000671125, G ¼ −0.1223273
H ¼ 29416.66

Populus and Quercus A ¼ 0.000050479055, B ¼ 1.9085054
C ¼ 0.99076507, E ¼ 0.9236004
F ¼ 0.0502109, G ¼ −0.09686479

H ¼ −37.80742

Salvadoraceae,
Erythrinavariegata Linn.,
Salix, other

A ¼ 0.000050479055, B ¼ 1.9085054
C ¼ 0.99076507, E ¼ 6.569053

F ¼ −4.565682, G ¼ −0.03200782
H ¼ 1.697762

Note: D, DBH.
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First, the data were filtered to remove the aboveground returns, and second, the DEM was
created by calculating the average elevation from the remaining (ground) LiDAR returns within a
particular cell (cells that contained no points were filled via interpolation from neighboring
cells). Normalized point clouds were subsequently extracted for each plot using the coordinates
of the lower left and upper right corners.

2.5 UAV Data

UAV red–green–blue (RGB) imagery was collected for both sources on August 20, 2012.
The images were acquired using a Trimble UX5 (Trimble Navigation, Sunnyvale, California)
small fixed-wing UAV platform, which was equipped with a Canon EOS 5D Mark II RGB
camera (Canon, Japan) and APS–C CMOS image sensor payload. In the flight planning phase,
we employed a flight simulation software package to obtain an appropriate flight plan. Flight
altitude as well as longitudinal and lateral overlap of the images were set to 800 m, 70%, and
30%, respectively. However, the actual flight altitude differed slightly from the defined flight
altitude due to wind. All images were collected at noon, and simultaneously, 18 ground control
points were set within the study area and located by the trimble real-time kinematic. Image
preprocessing was performed using the SFM algorithm, as implemented in Pix4D (Version
4.2.26) (SenseFly, Switzerland) to generate the point clouds. The SFM point clouds were nor-
malized using the LiDAR-DEM. The total number of LiDAR point clouds in the study area was
22,730 (equivalent to ∼0.17 points∕m2), and the number of SFM point clouds was 772,916
(∼5.56 points∕m2). The spatial operation premise was satisfied by the uniform interpolation of
a 1 × 1 m2 raster.

2.6 Point Cloud Metrics

Modeling data metrics were extracted from the normalized point clouds. Referring to the results of
the LiDAR point cloud research,37,38 this study selected high-level quantile groups (p10, p25, p30,
p60, p75, and p90), namely, the quantile of the vertical distribution of forest canopy heights
(10, 25, 30, 40, 60, 75, 85, and 90 quantile) and corresponding density variable groups (d10,
d25, d30, d40, d60, d75, d85, and d90). The standard deviation ratio of the point cloud heights
to mean values was derived from the percentage of point clouds above the percentile height level in
all point clouds; the average normalized height value (average height, hmean); the maximum value
of normalized height (maximum height, hmax); the minimum value of normalized height (mini-
mum height, hmin); and height variation (coefficient, hcv). Simultaneously, to avoid any disturbance
from the lower vegetation on canopy analysis, point clouds under 2 m in height were removed.

2.7 Image Color Metrics

2.7.1 Forest vegetation coverage

The FVC was obtained from the orthophoto image of the study area, where the process was as
follows. Initially, a UAV image sequence was generated as a true color orthophoto image using

Table 2 Summary of plot-level forest parameters.

Plot-level forest parameters (unit)

Statistics (n ¼ 30)

Range of variation Average

Lorey’s height (m) 7–31.65 22.99

Density (n/ha) 1146–3950 2560

Basal area (m2∕ha) 2.48–13.23 6.41

Volume (m3∕ha) 66.36–488.97 274.36

AGB (t/ha) 34.25–156.89 88.16
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image mosaic technology. Second, the visual interpretation was obtained through the sampling
of typical features in the study area (combined with field investigations) and classification of
vegetation and nonvegetation by supervised classification. ENVI5.1 software was employed for
classification, where the overall accuracy of the classification results was 92%, and the Kappa
coefficient was 0.89, with results shown in Fig. 3. Finally, FVC was utilized to calculate the ratio
of the number of vegetation pixels to the total number of pixels in each plot.39

2.7.2 Color index set

Since the color value was a critical feature of the SFM point clouds, the color features of the SFM
point clouds were stored as RGB data for each point. In contrast to traditional satellite and aerial
remote sensing, the vegetation index was calculated in the near-infrared, where the red bands
represented vegetation. Due to the lack of near-infrared bands, the UAV images could only
extract vegetation information by mining the visible light color data. Currently, the color index
set based on traditional digital camera images included primarily the excess green (EXG) index,
excess green minus excess red (ExG–ExR) index, and normalized green–red difference index
(NGRDI).40,41

1. NGRDI
The formula for calculating the NGRDI is as follows [Eq. (1)]:

EQ-TARGET;temp:intralink-;e001;116;194NGRDI ¼ ðG − RÞ∕ðGþ RÞ: (1)

In the above formula, G and R are the DN values of the green and red bands.
The NGRDI eliminated the influence of different irradiances on the vegetation spectral
characteristics by normalizing the differences between the green and red bands. The
NGRDI values ranged from −1 to þ1.

2. EXG index, EXR index, and ExG–ExR index
By subtracting the EXG index from the EXR index, the ExG–ExR index could be

obtained. The calculation formulas are as follows [Eqs. (2)–(10)]:

Fig. 3 Classification results of vegetation and nonvegetation in the study area.
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EQ-TARGET;temp:intralink-;e002;116;735ExG − ExR ¼ 3g − 2.4r − b: (2)

In the above formula, ExG and ExR are excess-green and excess-red indices, respec-
tively. The calculation formulae are as follows:

EQ-TARGET;temp:intralink-;e003;116;688ExG ¼ 2g − r − b; (3)

EQ-TARGET;temp:intralink-;e004;116;645ExR ¼ 1.4r − g: (4)

In the above formulae, g, r, and b are green, red, and blue band coordinates, respec-
tively, and the three are one, in which:

EQ-TARGET;temp:intralink-;e005;116;611R ¼ R � ∕ðR � þG � þB�Þ; (5)

EQ-TARGET;temp:intralink-;e006;116;568G ¼ G � ∕ðR � þG � þB�Þ; (6)

EQ-TARGET;temp:intralink-;e007;116;546B ¼ B � ∕ðR � þG � þB�Þ: (7)

In the above formulae, R�, G�, B� are normalized DN values in red, green, and blue
bands, i.e.,

EQ-TARGET;temp:intralink-;e008;116;511R� ¼ R∕Rmax; (8)

EQ-TARGET;temp:intralink-;e009;116;470G� ¼ G∕Gmax; (9)

EQ-TARGET;temp:intralink-;e010;116;448B� ¼ B∕Bmax: (10)

In the above formulae, Rmax, Gmax, and Bmax are the maximum values of the three-
color components, typically 255 in 24-bit storage and 65,535 in 32-bit storage. By sub-
tracting the two, the vegetation and background can be well distinguished. Referring
to previous research results, the EXG index, ExG–ExR index, NGRDI, and green leaf
index (GLI) were selected as modelling factors (Fig. 4), and GLI was the green-band
coordinate value G.

Fig. 4 Images of the sample area in the original RGB format prior to manipulations, EXG index
values, EXG–EXR index, and GLI values.
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2.8 Metrics Selection and Modeling Analysis

For this study, a total of four categories and 25 metrics were involved in the development of
the model (Table 3). A multivariate linear regression technique was employed for the model,
whereas a logarithmic variation was used to eliminate the dimension effect of all metrics.
To reduce the independent metrics dimension and collinearity between independent metrics,
a subset of simple linear regression models was established for each independent and dependent
variable, after which a branch-and-bound search was conducted using the “leaps” package in
R (v3.5) to identify the best regression model.42

The number of independent metrics was limited to 5 via Bayesian information criterion, and
colinearity detection was carried out by the variance expansion factor <5 to eliminate the factors
associated with excessive collinearity. To investigate the influence of color metrics on modeling,
the subset of models with color metrics, and those without color metrics with the highest fitting
degree of the same dependent variable were selected as the optimized models, respectively.

A cross-validation method was employed to validate the model, and the selected indicators
were as follows:

1. Determinant coefficient (R2): The greater the R2 value, the stronger the correlation
between dependent and independent variables, which was the test of goodness of fit for
the regression straight line Eq. (11):

EQ-TARGET;temp:intralink-;e011;116;364R2 ¼ 1 −
Xn
i−1

ðxi − x̂iÞ2∕
Xn
i−1

ðxi − xiÞ2: (11)

2. RMSE: Expresses the square root of the deviation between the observed and true values,
and the ratio of the observed number n in Eq. (12):

EQ-TARGET;temp:intralink-;e012;116;290RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i−1

ðxi − x̂iÞ2
s

: (12)

3. rRMSE: Defined as the ratio of RMSE to the arithmetic average of the measured results
in Eq. (13). The smaller the rRMSE, the better the prediction effect of the model. This
index had nothing to do with the magnitude of the evaluation quantity itself and could
better reflect the difference of the model:

EQ-TARGET;temp:intralink-;e013;116;190rRMSE ¼ RMSE

xi
× 100%: (13)

3 Results

3.1 Correlation Analysis of Point Cloud Metrics

Due to the high complexity of forest ecosystems, the relationships between point cloud char-
acteristic metrics and field data were very complex and highly uncertain. The selection of metrics

Table 3 Metrics for modeling.

Independent variable Dependent variable

Height percentile (p10,p25, p30, p40, p60, p75, p85, p 90) Lorey’s height (m)
density (n/ha)

Density metrics (d10,d25, d30, d40, d60, d75, d85, d 90) Basal area (m2∕ha)
Volume (m3∕ha)

AGB (t/ha)Height variation metrics hmean, hmax, hmin, hcv

Image color metrics FVC, EXG, ExG–ExR, NGRDI, GLI

Xu et al.: Estimation of secondary forest parameters by integrating image. . .
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has the requirement of being optimized by a statistical test, which may be found through
correlation analysis (Fig. 5). The correlation between the characteristic metrics extracted from
normalized point clouds and Lorey’s height was the highest (R2 ¼ 0.58 to 0.95), followed by
the volume (R2 ¼ 0.29 to 0.71), AGB (R2 ¼ 0.27 to 0.64). The basal area (R2 ¼ 0.24 to 0.52)
and density (R2 ¼ 0.18 to 0.48) were the lowest.

Between the jointly extracted metrics, the correlations between the mean height (hmean), high
coefficient of variation (hcv), high-rank height quantile (p75 to p90), middle-high-rank cloud
density (d60, d90), and stand characteristics were also higher. In contrast, the correlations
between the maximum height (hmax), middle-low-rank height quantile, point cloud density, and
stand characteristics were lower.

3.2 Estimation Model Construction and Accuracy Analysis

The estimation model was constructed through multivariate regression analysis, where the model
calculating metrics were in good agreement with the measured metrics (R2 ¼ 0.29 to 0.86)
(Table 4). The regression equation parameters of each stand were <5 in the model parameters.
Independent metrics, including height percentile, point cloud density, and mean height, were
highly correlated with the corresponding stand characteristics. Lorey’s height had the best
fit with the stand characteristic metrics, followed by volume, basal area, AGB, and density.
The fitting results were essentially consistent with the correlation analysis results.

From the perspective of rRMSE, the order of accuracy from high to low was Lorey’s height
(5.32%), volume (6.35%), AGB (10.41%), basal area (16.38%), and density (27.04%).
According to the selected factors of each model, the upper height quantile (P90, P60) was
selected most frequently (Lorey’s height, density, volume, and AGB), followed by the height
mean (hmean), which was selected by Lorey’s height, volume, and the AGB model. Density
metrics and the lower-rank height quantile participated in Lorey’s height and basal area
modeling.

Following the model regression search, color variables were selected through factor
models other than density and basal area, which resulted in the prediction accuracy of the

Fig. 5 Coefficients between point-cloud metrics and stand characteristics.
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model being improved. The FVC was selected by the volume and AGB model, the GLI
was selected by Lorey’s height model, and the EXG index was selected by the AGB model,
which revealed that the green-band data had a certain response to tree height, volume, and
biomass.

The cross-validation estimates of stand characteristic models and scatter plots of the sample
plots are shown in Fig. 6. It can be seen from the graph that the accuracy of Lorey’s height
recognition was the highest (R2 ¼ 0.93), and the fitting equation was basically consistent with
a 1:1 validation line. Remarkably, the correlation was quite significant; the accuracies of the
basal area and density were relatively low (R2 ¼ 0.46 and R2 ¼ 0.32), whereas the accuracies
of the volume and AGB were in the middle (R2 ¼ 0.60 and R2 ¼ 0.58).

3.3 Influence of Color Metrics on Model Development

Color metrics, such as vegetation coverage and the color index set, were introduced into
the models as parameters. The models with color metrics were established by Lorey’s height,
volume, and AGB. Their R2 were 0.94, 0.62, and 0.6, and rRMSE were 6.39%, 6.35%, and
10.41%, respectively. The pure point cloud variable models (R2) of the three factors were
0.86, 0.59, and 0.55, whereas the rRMSE was 5.32%, 6.93%, and 13.52%, respectively. The
results revealed that the vegetation coverage and color index set could improve the accuracy
of the model to a certain extent, with AGB (rRMSE decreased by 3.11%), followed by storage

)0.58 %) and Lorey’s height (0.08%).
A comparison of the measured and estimated values of Lorey’s height, volume, and

AGB for all plots can be seen in Fig. 7. The variable color models were more accurate in
estimating Lorey’s height, and the sample plots with large estimation errors in the colorless
component model were corrected. The involvement of color components in the estimation
of biomass-related factors with low estimates had an increasing effect. In the assessment
of biomass, the volume estimated by the model without color metrics was significantly
lower than the measured value in nos. 10 and 19 plots. The estimated value of the model
increased significantly following the addition of color metrics, which was closer to the mea-
sured value.

Similar to the volume, the noncolor variable model of AGB was significantly lower in plot
nos. 2, 12, 15, 24, and 27, while the color variable model was improved in varying degrees, thus
enhancing the estimation accuracy of the model. Simultaneously, the color metrics also increased
the original estimated value of the plot (e.g., plot no. 20, AGB plot nos. 9, 28). Therefore, the
effect of improving the accuracy of the model was limited.

Table 4 Estimation models and accuracy assessments.

Stand characteristics Combined extraction estimation models R2 RMSE rRMSE (%)

Lorey’s height (m) ln H ¼ 0.23þ 0.579 • ln hmean þ 0.346 • lnp90 0.86 0.13 6.47

ln H ¼ −0.79þ 1.34 • ln hmean
þ 0.369 • lnd85þ 4.15 � ln GIL

0.94 0.08 6.39

Density (n/ ha) ln N ¼ 6.39þ 6.027 • ln p60 − 5.84 • lnp30 0.29 0.69 27.04

Basal area (m2∕ha) ln G ¼ 2.752 • ln p60 − 1.841 • ln p10 − 1.126 0.53 0.28 16.38

Volume (m3∕ha) ln V ¼ 2.499þ 1.429 • ln p90 þ 0.7 • ln d90 0.59 0.40 6.93

ln V ¼ 4.365þ 0.759 • ln p90
− 7.0223 • ln hmean þ 3.23 • ln FVC

0.62 0.33 6.35

AGB (t/ha) InA ¼ 15.27þ 7.893 • lnp90 − 4.68 • lnp30 0.55 0.35 13.25

InA ¼ 23.65 − 4.986 • ln FVC
þ 3.35 • hmean − 5.233 • ln EXG

0.60 0.31 10.41

Note: H, Lorey’s height; N , density; G, basal area; V , volume; A, AGB.
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4 Discussion

The independent metrics of the multivariate regression model consisted of three groups of point
cloud characteristic metrics: height quantile, point cloud density, and height data. The correla-
tions between the height quantile and forest vertical data were higher, which was similar to some
of the LiDAR results. Fu et al.43 estimated the structural parameters of Canadian coastal forests
using discrete small spot LiDAR point cloud data. The selected model metrics were p50, p30,
d60, d90, and so on. The accuracy of the model with canopy return density was higher than
those with single height information.

Cao et al.44 extracted characteristic LiDAR parameters in the Yushan subtropical forest
area of Jiangsu Province and found that hmean, D60, and hcv were repeatedly selected in
different models. As it was difficult to penetrate the canopy, the height percentiles and density
components of the UAV images were often higher than LiDAR, and the forest types with more
complex canopy results were more obvious. The model parameters obtained in this study also
included low-level and maximum factors, such as P10 and hmin. The UAV digital images
employed in this study captured data for the upper tree crowns and described their height

Fig. 6 Comparison of field-measured forest characteristics and model estimation (dotted line is
1:1 validation line). (a) Lorey’s height, (b) basal area, (c) density, (d) volume, and (e) AGB.

Xu et al.: Estimation of secondary forest parameters by integrating image. . .

Journal of Applied Remote Sensing 022204-12 Apr–Jun 2020 • Vol. 14(2)



fluctuations. However, they could not obtain data related to the lower layers of the tree crowns,
which were covered. The low-level height metrics in the SFM data were often equivalent to
the middle-level LiDAR data, and the hmin of the SFM was equivalent to the middle-level
of LiDAR point clouds of the same density, which was also consistent with previous research
results.

Through previous research, the fitting effect and accuracy of the multiregression prediction
model of the stand characteristics developed in this study were similar to those of other models
using LiDAR point clouds only. Næsset et al.37 estimated the characteristic parameters of
a Norwegian subfrigid forest based on LiDAR. The results revealed that the R2 of the estimation
models for the characteristic parameters of this forest were average height (0.82 to 0.95), basal
area (0.69 to 0.89), and volume (0.80 to 0.93), which were slightly higher than those of the R2

models obtained in this study.
As most of the subtropical forests were multilayered, their structures were more complex

(the tree heights and densities varied significantly); thus, the accuracy of the data extraction
was low, and inconsistency was high. He et al.45 used LiDAR point clouds to extract the
individual structural parameters of spruce trees in an alpine zone and applied a multiple stepwise
regression analysis method to establish the statistical regression relationship between the average
tree height, crown width, measured stand average height, crown width, DBH, density, and AGB
at the sample plot scale. The results revealed that the average stand height and stand arithmetic
were significant.

The estimation equation of the average height and AGB had higher accuracy (R2 > 0.7),
while the determination coefficient of the estimation equation of the average crown width, aver-
age DBH, and density was slightly lower (R2 > 0.5), which were similar to the results of this
paper. The focus of this paper was a subtropical secondary forest, the structure of which was
more complex than that described in the previous literature. However, due to the high density of
DAP point clouds and the small study/sample areas, ideal experimental results were obtained.

Fig. 7 Lorey’s height, volume, and AGB predicted data by (a) noncolor metrics participation model
and (b) color metrics participation model.
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The results of the model calculation revealed that the accuracy of the tree height inversion based
on vertical forest data was the highest. The accuracy of the basal area and density inversion
based on the horizontal data was lower, while the accuracy of the volume inversion based on
the horizontal and vertical information was in the middle.

The Lorey’s height, volume, and AGB model accuracies were slightly improved by adding
color metrics. At present, multiple studies have shown that the accuracy of models may be
enhanced to a certain extent by combining conventional point cloud feature metrics with other
factors. Lucas et al.46 used LiDAR and CASI data to extract forest biomass data. This research
revealed that fused data were more accurate for modeling.

Xu et al.47 combined Landsat Operational Land Imager (OLI) with LiDAR data to establish a
comprehensive model for estimating aboveground forests and belowground biomass. The results
showed that the accuracy of the comprehensive model for estimating aboveground forests and
underground biomass was higher than that of the OLI and LiDAR models. The correlations
between the OLI texture data and height percentile metrics and biomass were strong. Puliti
et al.48 added green-band spectral information of UAV images to the modeling of forest char-
acteristic metrics. It was found that the spectral data improved the estimation of Lorey’s height,
dominant tree height, and density; however, it was not significant (RMSE decreased by 0.38% at
most). Jayathunga49 employed vegetation coverage with point cloud height quantile and density
quantile to estimate volume and biomass carbon storage in Hokkaido, Japan.

The results revealed that vegetation coverage increased the accuracy of the volume and
biomass model (RMSE decreased by 1.9% and 1.55%), respectively, and there was a negative
correlation between the vegetation coverage, volume, and biomass. This may have been due to
the numerous trees in the research area. Shen et al.50 used multispectral and RGB imagery to
estimate the attributes of forest structures. The models that included only spectral indices had the
capacity to predict the features of forest structures with relatively high accuracy (R2 ¼ 0.56 to
0.69, rRMSE ¼ 10.88% to 21.92%). Moreover, the models that were fitted using multispectral
and RGB-derived metrics had similar accuracies (ΔR2 ¼ 0 to 0.02, ΔrRMSE ¼ 0.18% to
0.44%).

The results of this study were similar to those above, where models for Lorey’s height,
volume, and AGB improved estimation accuracies due to the addition of vegetation coverage,
GLI, and EXG index. The calculation of the color metrics employed involved the green-band
of visible light, which reflected the relationship responses between the vegetation growth and
green-band to a certain extent.

The differences observed in the rRMSE values between the different stand characteristic
parameters could be related to the structural complexity of the parameters. In this study, the
density and basal area exhibited the highest rRMSE, which had the highest variability in
structural complexity, in contrast to the other parameters. One possible solution to overcome
this issue might be to develop stand-specific regression equations or to use the stand type as
the random effect variable in robust linear mixed model. For our future research target, we will
address this issue in detail, and how to use UAV photogrammetry in subtropical forest manage-
ment toward the achievement of sustainability goals.

Although the RMSE of Lorey’s height, volume, and AGB was reduced following the addi-
tion of the color metrics to the regression models, the estimations with and without color metrics
were not statistically significant, which might perhaps be ascribed to the complexity of the forest
in our study area. Furthermore, it would be important to test alternative methods that can be
employed to improve the accuracy of model estimation. For example, (1) extended modeling
factors, such as color index, vegetation index, temperature, precipitation, etc., to extract useful
information from mass data for assimilation and integration and (2) use of multisource data to
participate in modeling, such as hyperspectral, microwave, etc.

5 Conclusion

For this study, we developed predictive forest stand characteristic models using UAV-based
LiDAR and DAP data, respectively, in secondary forests within a subtropical zone of East
China. Correlation analysis revealed that jointly extracted point cloud metrics were highly
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sensitive to vertical forest data (tree height), followed by volume, AGB, and density, where the
basal area was the lowest. Due to the lack of penetration of the UAV digital images, they were
less sensitive to density, which were primarily reflected via the density data.

The supervised classification of UAV images was conducted to extract the vegetation cover-
age of each plot, and the corresponding green index, green–red index, NGRDI, and GLI were
calculated. The vegetation coverage and color index datasets were employed as color metrics for
modeling. The results revealed that following model selection, color metrics participated in the
determination of Lorey’s height, volume, and AGB. The quantities of three types of factors were
modeled, and the accuracy of the model was improved to a certain extent.

Therefore, our results highlight the potential of UAV images for assessing forest resources to
support operational forest management activities in subtropical secondary forests, which are
characterized by complex horizontal and vertical structures. This study provided a good example
of the capacity of UAV to accurately assess forest stand characteristic parameters. Future studies
should focus on determining the impacts of seasonal differences on UAV photogrammetric data,
when estimating forest structural attributes.
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