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Abstract. There is a growing concern over surface water dynamics due to an increased under-
standing of water availability and management with current climate trends. Remote sensing has
now become an effective means of water extraction due to the availability of an enormous
amount of data with diverse spatial, spectral, and temporal resolutions. However, water extrac-
tion from optical remote sensing data is associated with several major difficulties, such as the
applicability of the extraction method over large areas and complex environments; shadow
contamination from clouds, buildings, and mountains; and disclosure of shadowed water and
exclusion of floating and submerged plants. To address these difficulties, a learning vector quan-
tization (LVQ) neural network-based method was proposed and implemented to extract water
using Landsat 8 imageries. This method is capable of separating water from clouds, build-up
areas, shadows, and shadowed water by the ideal input of bands 1 to 7 and normalized difference
vegetation index. This model learns water across Sri Lanka. Eight OLI scenes were tested, and
the performance was compared with five widely used machine learning algorithms: support
vector machine, K-nearest neighbor, discriminant analysis, combination of modified normalized
difference water index and modified fuzzy clustering method, and K-means clustering methods.
This method performed the best, achieving overall accuracies and the kappa coefficients between
97.8% and 99.7% and between 0.96 and 0.99, respectively. Results have demonstrated robust-
ness, consistency, and preciseness in various dark surfaces, noisiest water environments, and
highly water scarce scenes. LVQ revealed a good generalizing ability to detect all types of water
with less amount of training samples. This method can be easily adaptable for other sensors and
global water to support water resource studies. © The Authors. Published by SPIE under a Creative
Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part
requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JRS.14.032605]
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1 Introduction

Remote sensing is an efficient technique for monitoring and extracting surface water1,2 and has
been extensively utilized and has become a primary source for numerous studies relevant to

*Address all Correspondence to Bing Zhang, E-mail: zb@radi.ac.cn

Journal of Applied Remote Sensing 032605-1 Jul–Sep 2020 • Vol. 14(3)

https://doi.org/10.1117/1.JRS.14.032605
https://doi.org/10.1117/1.JRS.14.032605
https://doi.org/10.1117/1.JRS.14.032605
https://doi.org/10.1117/1.JRS.14.032605
https://doi.org/10.1117/1.JRS.14.032605
mailto:zb@radi.ac.cn
mailto:zb@radi.ac.cn
mailto:zb@radi.ac.cn


water as it provides fine spatial, multispectral, lower cost, and greater temporal views of surface
water over larger areas, compared to the ground measurements.3 Many methods have been devel-
oped to extract water features from optical remote sensing data, such as thresholding and
machine learning.4 Threshold-based water indices are broadly adapted to identify surface water
due to simplification, whereas these indices are relying on a locally varying optimal threshold,
which hinders the universal applicability on a broadscale.1 Due to the availability of the high
amount of data and large-scale applications, a considerable number of studies have investigated
automated processes of feature recognition and reform. The machine learning methods
extremely absorb data from training samples to optimally separate water from nonwater in
automated manner, including artificial neural network (ANN),2 random forest,5 decision trees,6

isocluster,7 K-nearest neighbor (KNN),8 discriminant analysis (DA),2 fuzzy clustering,9

K-means clustering,10 and support vector machine (SVM).3 Studies have demonstrated that the
primary benefit of these models is the higher classification accuracy in a more complex
system.11,12 During the last three decades, ANNs have undergone a rapid improvement in most
research areas13,14 due to their learning ability, relative noise tolerance, unreliableness on data
distribution, and great parallel structure, including target detection, image segmentation and
image classification,15–17 climate and environmental transformations,18 and remote sensing water
mapping.19–21

Learning vector quantization (LVQ) is an adaptive heuristic method for data classifica-
tion due to simplicity, faster convergence, stability, better generalization, flexibility,
robustness,22–25 and more computational efficiency than other ANN techniques.26,27 The
complexity of remote sensing images has been aggravated due to the advancement of sen-
sors and the existence of various environmental noises. Such inevitable circumstances can
be solved by learning further in detail and deliberate much information from many bands.28

In addition to the spectral characteristics, shape, textural information, and the spatial
dependence between the labels of neighboring pixels also iteratively learned by LVQ to
maximize the classification accuracy. It applies unsupervised techniques for data clustering
while using a supervised training method.25 This has been commonly used in remote sens-
ing applications involving image classification,29,30 land use classification,31,32 and water
extraction with contrasting results.4 Although there are several studies in the field of remote
sensing, the application of the LVQ in surface water extraction has not been clearly pre-
sented in the literature. Most existing applications of LVQ only used a few bands of the
sensors and were conducted on a small scale.4,32 This has motivated us to employ the LVQ
neural network in the process of water extraction and demonstrate its ability, applicability,
and consistency in a country scale against various water methods using maximal band
information.

Though numerous methods have been proposed to extract surface water from optical data,
each has its own accuracy and functional difficulties due to the obstacles. One prominent
obstacle for accurate water extraction is low reflectance surfaces, which have similar reflec-
tance with water, such as terrain and cloud shadows and dark build-up.1,33 Secondly, shad-
owed water and floating plants, especially in the study region, where predominantly cloudy
with higher aquatic plant diversity.34 Therefore, water mapping in Sri Lanka is challenging,
where the decision boundary is much more complex. Those water bodies are not only small
and numerous but also diverse in water condition, such as size, shape, depth, altitude, temper-
ature, vegetation cover, and surroundings, moreover, associated ground details with hetero-
geneity in space. Prevailing climatic dynamics also necessitate the critical task of continuous
monitoring in a complex environment for decision-making. Hence, it is necessary to explore
the most appropriate and useful method for the purpose of water mapping throughout
Sri Lanka. We attempt to address the aforementioned problems by proposing an LVQ-based
method to increase the accuracy of water extraction under different confused situations.
The objective of this study is to develop an LVQ-based model that can reliably extract water
with high accuracy under various obstructions and environmental noises. The robustness of
this proposed method is comprehensively evaluated and compared with other five widely used
machine learning algorithms.
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2 Study Area and Data

2.1 Study Areas

Sri Lanka is located in the tropics, which has a higher number of small- and medium-sized sur-
face water resources. The study area is situated between 5°55′ N to 9°51′ N latitude and 79°41′ E
to 81°53′ E longitude and eight typical test sites are shown in Fig. 1. These test sites represent
a wide range of water bodies with various types (i.e., ponds, lakes, reservoirs, streams, rivers,
ocean), sizes, and depth, and their background environment include diverse land cover types,
such as build-up areas, forest, paddy fields with flat, hilly, and mountainous terrains. A range of
environmental noise to evaluate the performance of the proposed model and a brief description of
test sites is presented in Table 1.

2.2 Data

For this study, four Landsat 8 OLI images (15 March 2016: path 141, rows 55, 56; 13 January
2017: path 141, rows 55 and 13 September 2018: path 141, rows 54) were collected from the U.S.
Geological Survey (USGS).35 Images were Level 1 terrain-corrected (L1T) and pregeoreferenced
using the WGS84 datum. Sentinel-2 images belonging to five tiles at 10-m resolution were used
as reference data and were collected from the European Space Agency (ESA).36 The correspond-
ing metadata information and a brief description of each test scene are summarized in Table 1.

3 Methods

The overall methodology adopted in this study for the identification and extraction of water
bodies is shown in Fig. 2. This LVQ-based method consists of five stages: (1) applying

Fig. 1 Locations of the selected study area and test sites in Sri Lanka represent different con-
ditions of water in the presence of various environmental noises (Landsat OLI band composite:
R: band 7; G: band 5; B: band 2).

Somasundaram et al.: Learning vector quantization neural network for surface water extraction. . .

Journal of Applied Remote Sensing 032605-3 Jul–Sep 2020 • Vol. 14(3)



T
ab

le
1

M
et
ad

at
a
an

d
su

m
m
ar
y
of

us
ed

La
nd

sa
t
8
im

ag
es

La
nd

sa
t
O
LI

sc
en

es
R
ef
er
en

ce
da

ta
S
en

tin
el

2

D
ay

s
of

di
ffe

re
nc

e
be

tw
ee

n
im

ag
es

Im
ag

e
N
o.

T
yp

e
M
aj
or

no
is
e

La
nd

fo
rm

at
io
n

D
at
e
of

ac
qu

is
iti
on

D
at
e
of

ac
qu

is
iti
on

A
R
es

er
vo

ir,
la
ke

s
B
ui
ld
-u
p,

pa
dd

y
fie

ld
s

F
la
t

S
ep

te
m
be

r
13

,
20

18
S
ep

te
m
be

r
13

,
20

18
0

B
U
rb
an

la
ke

,
riv

er
B
ui
ld
-u
p

M
ou

nt
ai
no

us
Ja

nu
ar
y
13

,
20

17
Ja

nu
ar
y
08

,
20

17
5

C
R
es

er
vo

ir
C
lo
ud

,
cl
ou

d
sh

ad
ow

,
m
ou

nt
ai
n

sh
ad

ow
,
bu

ild
-u
p

M
ou

nt
ai
no

us
M
ar
ch

15
,
20

16
M
ar
ch

14
,
20

16
1

D
R
es

er
vo

ir,
riv

er
C
lo
ud

,
cl
ou

d
sh

ad
ow

,
bu

ild
-u
p,

pa
dd

y
fie

ld
s

F
la
t

M
ar
ch

15
,
20

16
M
ar
ch

14
,
20

16
1

E
S
ea

,
la
go

on
B
ui
ld
-u
p,

pa
dd

y
fie

ld
s

F
la
t

S
ep

te
m
be

r
13

,
20

18
S
ep

te
m
be

r
13

,
20

18
0

F
D
en

se
sm

al
ll
ak

es
an

d
po

nd
s

B
ui
ld
-u
p,

pa
dd

y
fie

ld
s

F
la
t

S
ep

te
m
be

r
13

,
20

18
S
ep

te
m
be

r
13

,
20

18
0

G
N
ar
ro
w

riv
er

C
lo
ud

,
cl
ou

d
sh

ad
ow

,
pa

dd
y
fie

ld
s

F
la
t

M
ar
ch

15
,
20

16
M
ar
ch

14
,
20

16
1

H
S
m
al
ll
ak

es
M
ou

nt
ai
n
sh

ad
ow

,
bu

ild
-u
p

M
ou

nt
ai
no

us
M
ar
ch

15
,
20

16
M
ar
ch

14
,
20

16
1

Somasundaram et al.: Learning vector quantization neural network for surface water extraction. . .

Journal of Applied Remote Sensing 032605-4 Jul–Sep 2020 • Vol. 14(3)



Rayleigh correction; (2) selecting training samples; (3) designing and training network; (4) sim-
ulating; and (5) assessing the accuracy. More detailed descriptions of each step are described in
the following sections.

3.1 Image Preprocessing

Radiometric calibration and atmospheric corrections are prerequisites for raw Landsat imagery
to obtain identical and high-quality experimental data.37 Due to the challenges associated with
atmospheric correction over inland and coastal water, Rayleigh-corrected reflectance has been
widely used in water applications with consistency.38 Images were processed and Rayleigh-
corrected reflectance were derived using the Atmospheric Correction for OLI lite tool
(acolite_win_2014).

3.2 Training Sample Selection

Uniformly distributed training samples are efficient to train ANN.2 Training samples are selected
across the study area from four OLI images except test areas. A total of 3765 water and 2685
nonwater pixels were selected in order to examine the efficiency of LVQ and accelerate the
training process. Selection and distribution of samples are done by experience following a series
of experiments. Pixels that are recognized as true water were exclusively selected for the training
process to ensure the accuracy and quality of the network. All samples are manually labeled
using region of interest polygons as water and nonwater using ENVI 5.3 software.

3.3 Training LVQ Network

A total of eight layers, including OLI bands from one to seven and normalized difference veg-
etation index (NDVI), were included in the network together with the per-pixel class label. The
LVQ network was constructed by the newlvq function in the neural network toolbox provided by
MATLAB R2014b. Parameters were selected according to a rigorous examination of a series of
experiments with higher efficiency and minimum computational error.39 Learning rates of 0.01,
0.001, and 0.0001 have experimented; both learning rates 0.01 and 0.001 were excluded as they
converged at a lower number of epochs and 0.0001 converges around epochs 200. The experi-
ment result showed how training and classification accuracies evolve with the number of epochs
and time (Fig. 3). We set the number of iterations and neurons as 200 and 50, respectively,
in concern of an optimization strategy.

Fig. 2 Flowchart of adapted methodology in this study.
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3.4 Simulation

According to the trained LVQ, each pixel was classified into two categories: water or nonwater.
The sim function in the MATLAB neural network toolbox was applied to simulate the trained
network and a binary image was obtained as a result with different color labels.

3.5 Accuracy Assessment

The performance evaluation for entire scenes is conducted in a quantitative manner and visual
comparison. All the eight Landsat image scenes are verified with the corresponding high-
resolution Sentinel-2 images and a confusion matrix is calculated. All water pixels and an equal
amount of nonwater pixels are used to assess the accuracy. Performance evaluation was done by
four accuracy measures, including overall accuracy, kappa coefficient, producer’s accuracy, and
user’s accuracy, which were defined by following standard equations:40

EQ-TARGET;temp:intralink-;e001;116;362Overall accuracy ¼ ðTPþ TNÞ
N

× 100; (1)

EQ-TARGET;temp:intralink-;e002;116;307Kappa coefficient ¼ NðTPþ TNÞ − ½ðTPþ FPÞðTPþ FNÞ þ ðFNþ TNÞðFPþ TNÞ�
N2 − ½ðTPþ FPÞðTPþ FNÞ þ ðFNþ TNÞðFPþ TNÞ� ; (2)

EQ-TARGET;temp:intralink-;e003;116;272Producer’s accuracy ¼ TP

ðTPþ FNÞ ; (3)

EQ-TARGET;temp:intralink-;e004;116;237User’s accuracy ¼ TP

ðTPþ FPÞ ; (4)

where TP is true positive: the number of detected water pixels, TN is true negative: the number of
detected nonwater pixels, FP is false positive: the number of falsely detected water pixels, FN is
false negative: the number of undetected water pixels, and N is the total number of pixels used
in accuracy assessment.

4 Results

4.1 Water Extraction Result and Quantitative Assessment

With the water extraction process proposed, results in binary maps in all test sites are shown in
Fig. 4. A significant amount of clouds, cloud shadows, terrain shadows, build-up areas, various
water types, different shapes and depth, diverse land cover, and vegetation mixed water are the

Fig. 3 Investigation of accuracy, time on the number of epochs at a learning rate of 0.0001.
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major influence factors in these test scenes. A simple visual investigation shows that this method
succeeded in enhancing variation between water and nonwater in all water environments under
confused surroundings and concurrently suppressing low reflectance surfaces in both fresh and
coastal waters.

Quantitative assessment of water extraction is done by calculating producer’s accuracy,
user’s accuracy, overall accuracy, and kappa coefficient by constructing error matrices. The
results are summarized in Table 2. The overall accuracy and kappa coefficient ranges from
97.80% to 99.69% and 0.9559 to 0.9938, respectively. Similarly, the producer’s accuracy and
user’s accuracy are varied between 0.9717 and 0.9998 and 0.9783 and 0.9945, respectively.
Overall, the results indicate the robustness and higher accurateness of the proposed method
under diverse water environmental conditions.

4.2 Performance Comparison with Other Methods

The results of LVQ were compared with the results of the five most widely used supervised and
unsupervised water detection algorithms: SVM, KNN, DA, combination of modified normalized
difference water index and modified fuzzy clustering method (MMFCM), and K-means. SVM41

is a hyperplane-based classification technique, KNN42 algorithm is using KNNs for classifica-
tion, and DA43 is a multidimensional distance parametric classification technique. MMFCM,
which is developed by combining modified fuzzy clustering method algorithm, modified nor-
malized difference water index (MNDWI),9 and K-means,44 which is a popular unsupervised
clustering algorithm. All algorithms were implemented in MATLAB R2014b using seven

Fig. 4 The extracted water in eight test scenes (a)–(h) are Landsat OLI images with band
composite R: band7; G: band5; B: band2 with the results of LVQ.
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OLI bands and NDVI. Water extraction was carried out independently for another 10 various
noise-induced scenes using LVQ, SVM (type: CSVC, kernel: radial basis), KNN (NN: 9),
DA (type: linear), MMFCM, and K-means clustering, and the result is visually inspected.
Furthermore, the ability to suppress shadows, the potential to detect small waters, shadowed
water, and the capability of extracting boundaries in more detail without the influence of sur-
roundings and noises are expressed from those test images (Fig. 5). The differences in perfor-
mance among them are marked as red squares.

Water extraction result in Fig. 5(a) shows that cloud shadow over the paddy fields can be
suppressed by LVQ, KNN, and DA [Figs. 5(a1), 5(a3), and 5(a4)], while SVM, MMFCM, and
K-means misclassify a portion of cloud shadow as water. In the presence of a large amount of
cloud over water and build-up area [Fig. 5(b)], MMFCM showed confusion with cloud shadow
and cloud as water; meanwhile, SVM, DA, and K-means clustering method extracted portions of
the shadow as water. However, LVQ and KNN were successful in discrimination and accurate
identification of shadowed water boundary in the build-up area. In case of terrain shadow, all
algorithms exposed similarity in the performance as LVQ [Fig. 5(c)] in contrast to the K-means
clustering, which overclassifies terrain shadows as water.

LVQ has the potential to ascertain a very shallow and thin sandy river, which has a similar
ground condition in the underwater and adjacent nonwater areas that were partially detected by
KNN, DA, MMFCM, and K-means clustering [Fig. 5(d)]. SVM achieved almost the same
performance as the LVQ. Water assorted with vegetation, including emergent, floating-leaved,
submerged, and free-floating macrophytes [Fig. 5(e)] can be precisely extracted by LVQ, KNN,
and DA, while other methods cause commission error. Furthermore, it can clearly be seen that
LVQ performed better when identifying detailed water in cases of paddy fields, sand beds, and
vegetation mixed river boundaries [Fig. 5(f)] than all other methods, while several portions of
sand beds and paddy fields are missed by SVM, KNN, DA, MMFCM, K-means, and some are
overclassified by SVM, MMFCM, and K-means.

Seawater, natural and manmade coastal details [Fig. 5(g)] were properly extracted by LVQ,
SVM, and KNN with almost similar performance, while KNN misses few areas [Fig. 5(g3)].
Other methods were underclassifying several saltpans and overclassifying manmade structures
as water. Result of tank bunds and a narrow line of trees located within a reservoir [Fig. 5(h)]
demonstrated that the performance of LVQ, SVM, KNN, and DAwas the same; however, KNN
and DAwere missed some portions of small water bodies and area along tank bunds [Figs. 5(h3)
and 5(h4)]. Inner details of the reservoir were not able to be mapped by both MMFCM and
K-means [Figs. 5(h5) and 5(h6)]. In addition, relatively greater robustness of LVQ is indicated
by the extracted single, double, and eight-pixel sized artificial water bodies [Fig. 5(i1)].
However, the single-pixel feature was undetected by KNN and MMFCM; meanwhile, the KNN
and K-means method only partially detected the eight-pixel water body. However, SVM and DA
have commissioned few more pixels as water [Fig. 5(i2) and 5(i4)]. These all performances

Table 2 Accuracy measures of LVQ model in eight test scenes.

Test
scene

Producer’s
accuracy

User’s
accuracy

Overall
accuracy (%)

Kappa
coefficient

a 0.9995 0.9926 99.61 0.9922

b 0.9717 0.9841 97.80 0.9559

c 0.9846 0.9783 98.14 0.9627

d 0.9838 0.9908 98.73 0.9745

e 0.9998 0.9940 99.69 0.9938

f 0.9790 0.9945 98.68 0.9736

g 0.9826 0.9842 98.34 0.9667

h 0.9838 0.9815 98.27 0.9654

Somasundaram et al.: Learning vector quantization neural network for surface water extraction. . .
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can be concluded that LVQ has depicted a higher capacity to detect different types of water
distribution in detail with superior accuracy and stability among the six methods under various
confusing states.

5 Discussion

This study also revealed that the superior big data generalization ability of LVQ by learning from
lesser number of training samples with acceptable accuracy. The number and types of training

Fig. 5 Performance comparison of surface water extraction by (a1)–(f1) LVQ, (a2)–(f2) SVM,
(a3)–(f3) KNN, (a4)–(f4) DA, (a5)–(f5) MMFCM, and (a6)–(f6) K-means under different confusing
environments. Difference in performances marked as red squares. Performance comparison of
surface water extraction by (a1)–(f1) LVQ, (a2)–(f2) MMFCM, and (a3)–(f3) K-means under
different conditions. Variation in performances marked as red squares.
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samples were reduced as much as possible to be small using a trial-and-error technique. Similar to
these results, studies have already shown empirical evidence for the excellent generalization abil-
ity of LVQ45 and ANN methods in water extractions2 using very few training samples. Further,
results revealed that LVQ can correctly segment rivers, streams, ponds, reservoirs, ocean water,
and saltpans even if the training samples were not provided for those all water types. These may
be due to the dynamic learning nature and segmenting characteristics of LVQ23 or the adequate-
ness of the input data in the representation of precise water18 or spectral variation of the dataset.
Previously, studies stated that the performance of the LVQ-based water detection largely depends
on the selection of training samples.4,32 This task was highly challenging due to the significant
variations in the characteristics of water and nonwater across Sri Lanka. These challenges were
accomplished by careful manual selection of samples as much as possible to represent the varia-
tion. Perfection in the selection of training samples and parameters may further improve the
accuracy. Furthermore, the accuracy of the per-pixel labeling of training samples is a crucial
factor that affects the accuracy of the predictions of each pixel during segmentation. In concern
of high precision, only well-known water pixels were labeled as water. As a consequence of this
process, our model consisted of higher accuracy with minimal omission and commission errors.

An earlier study had reported that scarcity of water training samples in the scenes results in an
adverse effect on the output accuracy of LVQ.4 This study used training samples from all OLI
imageries as same class pixels almost showed similar spectral response in all bands46 with sev-
eral considerations: (1) to achieve accurate water extraction in the scenes that lack water pixels
and (2) to speed up the prediction process by reducing human interaction in sample selection and
the training process in each scene. Moreover, scenes with small, narrow, various depth and
diverse conditional water bodies are much more challenging33,40 in contrast to the scenes with
larger water features or the majority of water. Thus, the test scenes were selected with various
sized water and cover areas range between 0.44% and 42% to evaluate the consistency. This
model showed good effectiveness to segment water without any limitations in extents [single
pixel in Fig. 5(i)], shapes, depths [about 87 m in Fig. 4(c)], and quantities of water pixels by
generating a prime result, as illustrated by Fig. 6. However, the method leads to false-positive
pixels in urban areas (test site b).

In this study, evaluations were conducted through four OLI imageries and therefore, can be
considered as a general representative of the country’s water features. However, clear sky and
availability of very high-resolutional Sentinel-2 images on the same or close proximity date to
evaluate accuracy are the main reasons for limited scenes. Manual interference is required in the
training processes for appropriate training samples and training parameters selection and per-
pixel labeling. In addition, the requirement of time for training the LVQ and ANN2,32 is quite
considerable. This is due to the training behavior of the neural network and is proportional to the
dimensionality of input data. However, it is noted that the time required for the simulation of
all images is minimal when the LVQ has been trained.

Fig. 6 Comparison of water pixels with accuracy.
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5.1 Optimum Input Selection

Surface water extraction is generally impacted by the presence of various forms of environmental
noises, surroundings, extent, shape, depth of water, and types of water surfaces. In Sri Lanka,
with its tropical and heterogeneity space regions, it is more challenging, because it is always
covered by plentiful clouds, cloud shadows, terrain shadows, shadowed water, and higher
aquatic plant diversity. These factors may contribute to the confusion during the spectral iden-
tification process, especially among small and higher density water features,4 which showed that
learning from few bands may be insufficient for water identification using LVQ, whereas the
accuracy that may increase with the number of bands can be used.28,47 A recent study showed the
OLI band 7 with good performance in the perspective of water identification.48 These all made it
a necessity to incorporate more elements to represent real water during the process of learning in
highly complex areas as our study site. Hence, a combination of seven OLI spectral bands with
NDVI distribution49 was introduced as input data to increase accuracy.

Selection of the best training input was carried out using a trial-and-error method with a
validation dataset by comparing scenes with noises, such as cloud, terrain shadow, and cloud
shadow with complex terrain and land covers, which resulted in the highest overall accuracy and
kappa coefficient. Seven OLI bands and NDVI were tested with a few more water indices, and
the outcomes are shown in Fig. 7. All produced visually similar results, whereas cloud, cloud
shadows, and terrain shadows are significantly contributed to the false positive in Figs. 7(a2)
and 7(b2). Results showed that the combination of OLI bands and NDVI index is the ideal and
delivers remarkable results [Figs. 6(a1) and 6(a2)] since the accuracy cannot be increased by
further adding indices, such as NDWI2 and MNDWI.

5.2 Potential Global Applicability

The proposed model relies only on Landsat 8 OLI bands, without demanding auxiliary data or
prior statistical knowledge on data distribution. Limited training samples showed the ability to
detect a number of water type with acceptable accuracy. This model has excellent capacity and
flexibility in the architecture to learn and segment in an automated mode at a large scale.
Therefore, this model can be implemented to monitor global water by training more spectrally
and geometrically varied water samples across the world, from available global water datasets:
GLC2000,50 Global Land Survey datasets51 and Global Land Cover Facility together with per-
pixel labels,52 without any preprocessing20 in automated manner.

Learning directly from pixels, without considering data distribution makes the possibility to
combine multisource data. Previous studies showed that ANN is insensitive to the input multi-
spectral sensor2,31 as well. This method can be easily adapted to other multispectral sensors, such
as Quickbird31 and Sentinel 2A/B. Future work will be directed toward the time series from
Landsat 4,4 Landsat 5, and Landsat 7 with available open-source tools.7

Fig. 7 Performance comparison of surface water extraction by various input layer combinations:
(a1), (b1) OLI bands 1 to 7 and NDVI; (a2), (b2) OLI bands 1 to 7, NDVI, NDWI, and MNDWI.
Commission errors are marked as red squares.
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6 Conclusion

Surface water mapping is getting more attention due to the growing concern about freshwater
availability and water-related issues. This study proposes an LVQ neural network model for
water extraction using Landsat 8 OLI images, where the heuristic learning process is intrinsically
related to the spectral signature, shape, textural information, and spatial dependence. The per-
formance of this model is evaluated under different backgrounds and compared with five com-
monly used machine learning algorithms (SVM, KNN, DA, MMFCM, and K-means).

The results of the study can be summarized as follows:

(a) Performance of LVQ illustrates that it can accurately identify water with various water types
(freshwater and seawater), extents (very narrow and small), shapes, depths, and detailed
water boundary that can be extracted. The overall accuracy in eight test sites ranges from
97.8% to 99.7% and the kappa coefficients between 0.96 and 0.99.

(b) According to the visual comparison, LVQ depicted a better performance under the compli-
cated water environments than under the other five algorithms. Results show that it could
effectively identify water by suppressing dark surfaces and environmental noises, such as
cloud shadow, terrain shadow, build-up, cloud, and floating vegetation. In addition, it is able
to precisely detect water under the shadow.

(c) This study also found that the resulted accuracy is acceptable for all types of water bodies
and water-scarce scenes, even if training samples are limited in quantity and water types.
Accuracy may be further improved with perfection in the training samples and parameters.

(d) The addition of the NDVI improved the consistency of LVQ in the complicated scenes by
overcoming noises. Adding more indices did not show improvement in the performance.

Our results demonstrate that LVQ could be very useful for the accurate automated classi-
fication of surface water. Further applications remain to be explored, and we suggest that multi-
sensors and universal water samples may be used to understand the global water dynamics over
time and to forecast future trends.
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