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Abstract. Stacked denoising autoencoder (SDAE) model has a strong feature learning ability
and has shown great success in the classification of remote sensing images. However, built-up
area (BUA) information is easily interfered with by broken rocks, bare land, and other features
with similar spectral features. SDAEs are vulnerable to broken and similar features in the image.
We propose a multiscale SDAE model to overcome these problems, which can extract BUA
features in different scales and recognize the type of land object from multiple scales. The model
effectively improves the recognition rate of BUA. The experimental results show that our algorithm
can resist the disturbance information, and the classification accuracies are better than support
vector machine, backpropagation, random forests, and SDAE. Then we investigate an application
in Wuhan (China) metropolitan area analysis with the classification results of our algorithm. The
range of the metropolitan area is 1.5-h isochronous circle calculated by Tencent map big data and
is divided into three layers: core metropolitan area, subcore metropolitan area, and daily metro-
politan. Finally, from the comprehensive statistical data and traffic data, we know that the Wuhan
metropolitan area has a “target-shaped” distribution structure radiating outward from the core
metropolitan area. It includes five metropolitan development corridors: Wuhan–Huanggang,
Wuhan–Xiaogan–Suizhou, Wuhan–Ezhou–Huangshi, Wuhan–Xiantao–Tianmen, and Wuhan–
Xianan–Chibi. The corridor is of great significance to the development of metropolitan areas.
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1 Introduction

With the representative features of influence and radiation, the metropolitan area plays an
increasingly important role in the field of city clusters.1 The metropolitan area has the character-
istic of urban agglomeration to some extent. With the development of rapid traffic and the expan-
sion of commuter circle, the range of the metropolitan area is relatively larger.2 Domestic and
foreign research on the metropolitan area mainly focus on commuting distance and spatial dis-
tribution of built-up area (BUA).3,4 Distance factors are mostly used to define the range of the
metropolitan area, but there are no strict standards for travel time and spatial distance.5–8 Zakaria9

took Philadelphia as an example, studied the relationship between regional public transport or
car accessibility and land use growth rate, and found that the growth rate of different areas in the
urban area was inconsistent due to different accessibility. Liu et al.10 consulted the transportation
planning of highway and waterway (2002 to 2020) and skeleton highway network planning
(2002 to 2020) of Hubei Province proposed the time–distance accessibility model, and established
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1-h high-accessibility circle (0 to 75 km), 2-h medium accessibility circle (75 to 150 km), and 3-h
low-accessibility circle. With the development of big data analysis and collection methods, mobile
phone signaling data and traffic data have been widely applied in commuting analysis. It realizes
the cognition of residents’ travel needs and travel characteristics from the city microscale.

BUA is a relatively concentrated area that contains buildings, public facilities, and urban
roads within the urban administrative area.11 We define BUA for which the surface is predomi-
nantly impervious, including all nonvegetative, nonwater, nonsoil, human-constructed elements
(e.g., roads and buildings). BUA is an objective reflection of urban construction and develop-
ment in regional distribution and indicates the scale and size of construction land in different
periods of urban development.12 Spatial information of BUA is fundamental to a better under-
standing of the development direction of the metropolitan area, the inter-relationship between
cities, and the radiation effect of core cities on surrounding cities.13 It is of great significance for
guiding and evaluating the development of the metropolitan area.14

Many BUA extraction methods using remote sensing images have been proposed.15,16

They can be mainly divided into three categories, including pixel-based, object-based, and deep
learning-based methods. The pixel-based method is a popular method to classify remote sensing
images, given its simplicity and high efficiency. However, the classification results display a “salt
and pepper” effect. To overcome this problem, the object-based method has become a main-
stream method in land-use/land-cover application recently. However, the segmentation scale is
a key problem to the object-based method in the face of different data and application scenarios.
Deep learning method is proposed to improve these performances with its perfect fitting ability.
Its neural network has strong expression property to imitate various complex models, and thus it
can be widely applied to the land use/land cover.

Stacked denoising autoencoder (SDAE) is a typical deep learning method and works in much
the same way as stacking restricted Boltzmann machine in deep belief networks or ordinary
autoencoders.17,18 It learns to recover the corrupted data with the help of an unsupervised pre-
training procedure that initializes the neural network. Then it seeks to be trained over the entire
neural network using supervised learning to recognize the moving target.19,20,21 Zhang et al.22

extracted the spectral, spatial, and texture features for each object and put all features into stacked
autoencoder or SDAE network, and then got the parameters of the network. The classification
result is better than that of “linear” support vector machine (SVM) model and radial basis func-
tion (RBF) SVM model. Han et al.23 used SDAE to predict human eye fixations in two steps. He
used center patch and its surrounding patches to represent the features, developed model to learn
feature from raw image data under an unsupervised manner, and then captured the intrinsic
mutual patterns as the feature contrast and integrated them for final saliency prediction. Li24

used SDAE and Softmax model to solve the problems of automatic feature extraction and dimen-
sion reduction in Braille recognition. The SDAE performs better than the traditional feature
extraction algorithms and Softmax has a better performance than multilayer perceptron and
RBF when they perform with SDAE. Zhang25 constructed the detection vector of the center
pixel based on the center pixel and its neighboring pixels and used the SDAE model to classify
the land cover based on GF-1 image. The classification result is better than that of traditional
SVM and backpropagation (BP) network. SDAE has been widely applied to feature learning in
many other fields, such as denoising and target recognition.26–31,32 The spatial distribution of
BUA concentrates on distribution, consistent types, and structures. It is easy to be disturbed
in the process of classification by broken rocks, bare land, and other features with similar spectral
features. SDAE model has a strong feature learning ability, but it lacks spatial scale features.
When encountering the phenomenon of “different object with the same spectra feature and same
object with the different spectra feature in remote sensing image,” the classification ability is
limited.

In this paper, we develop a new BUA extraction method based on SDAE, and the BUA
results extracted by this method are applied to the analysis of metropolitan area. First, the rec-
ognition of the same land object will have different results in different scales. It manifests that the
spatial pattern of land objects is significantly different at different scales.33 We will analyze the
spatial scale features of BUA, generate multiscale hierarchical structure features, and integrate
the learning ability of SDAE model. Then we propose a multiscale stacked denoising autoen-
coder (MSDAE) model to learn the features and extract BUA from multiple scales. It improves
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the classification ability of BUA. Second, taking Wuhan city for example, we divide the com-
muting isochronous circles into 0.5-h isochronous circle (0.5 h), 1-h isochronous circle (1 h),
1.5-h isochronous circle (1.5 h) base on Tencent map big data. We comprehensively analyze the
clustering degree of BUA, population density, urban traffic, and corridor in this area.

The organization of paper is as follows: Sec. 2 gives an introduction of region and data; Sec. 3
introduces the SDAE and describes the proposed method in detail; Sec. 4 presents the extraction
result; Sec. 5 presents precision evaluation; following that, based on the result of BUA extracted
using MSDAE method, metropolitan area analysis are given in Sec. 6. Finally, the conclusion is
drawn in Sec. 7.

2 Study Area and Data

2.1 Study Area

Wuhan is located in the east of Jianghan plain and in the middle of the Yangtze river, 113°41′E–
115° 05′ E, 29°58 ′N–31°22′N. The terrain in north is higher than in south, and it is mostly flat in
middle. The average elevation of this area is 23.3 m with the same wave rolling hills and plains
geomorphology. Wuhan is the capital of Hubei Province, the only subprovincial city and meg-
acity in the six central provinces, the central city of central China, and an important industrial
base, scientific and educational base, and comprehensive transportation hub in China.

Taking a central city as the center, the regional accessibility can well explain the radiation
capacity and the degree of connection of the central city to the surrounding areas in different
directions.34

Based on population heat map and real traffic flow from Tencent map big data, we get
the center of the city, calculate the distance from the center to the furthest point; it, respectively,

Fig. 1 Wuhan isochronous circle distribution map.
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takes 0.5, 1, and 1.5 h (considering the complexity of road condition during the day, we use the
night traffic flow condition of travel time). By overlaying the administrative zoning map with the
furthest distance, we get the isochronous circles based on administrative zoning map (see Fig. 1).
In this paper, we define 1.5 h as the boundary of the metropolitan area. The metropolitan area
covers 42 districts and counties, involving 10 cities. Among them, 0.5 h covers 11 districts and
counties, 1 h covers 12 districts and counties, and 1.5 h covers 19 districts and counties, as shown
in Table 1.

2.2 Data and Preprocess

The metropolitan area of Wuhan is taken as the research area; all available GF-1 WFV images
data with cloud cover less than 10% are chosen for inclusion in this study and acquired in April
2018 with a spatial resolution of 16 m are selected. The preprocess includes geometric correction
and mosaic and projection transformation. The result of processing is shown in Fig. 2.

Table 1 Area covered by isochronous circle statistics.

Isochronous circle Districts and counties

0.5 h Huang Pi, Dong Xihu, Hong Shan, Jiang Xia, Cai Dian, Qing Shan,
Han Yang, Wu Chang, Jiangan, Jianghan, Qiao Kou

1.0 h Xin Zhou, Xiao Nan, Xiao Chang, Yun Meng, Ying Cheng, Han Chuan,
Huang Zhou, Hua Rong, E Cheng, Xian An, Han Nan, Tie Shan

1.5 h Jing Shan, Tuan Feng, An Lu, Tian Men, Xi Shui, Da Ye, Xi Sai Shan,
Liang Zi Hu, Jia Yu Xian, Xian Tao, Xia Lu, Huang Shi Gang, Guang Shui,
Da Wu, Hong An, Ma Cheng, Chi Bi, Yang Xin, Hong Hu

Fig. 2 GF-1 image of the study area.
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3 Multiscale Stacked Denoising Autoencoder Method

In this section, we elaborate on the proposed MSDAE to extract BUA. First, we introduce the
related work, namely, SDAE algorithm and its characteristics. Next, the proposed method is
described in detail.

3.1 Stacked Denoising Autoencoder

The architecture of SDAE is divided into two steps. The first is feature learning, which is
a process of unsupervised learning. The second step is optimization of network parameter, which
is a process of supervised learning (Fig. 3).

The basic building block of an SDAE is denoising autoencoder (DAE), which is one variant
of the standard autoencoder.35,36 Autoencoder can learn to recover the data from the correspond-
ing corrupted input data. SDAE allows us to build a deep network to use denoise feature as an
unsupervised objective to guide the learning of useful higher level representations.37 As men-
tioned in Vincent’s research, the autoencoder framework comprises two parts: encoder and
decoder. The DAE is trained to reconstruct a clean “repaired” input from a corrupted version
of it. Before encoding, the initial input x into ~x is done by means of a stochastic mapping
x̃ ∼ qDðx̃jxÞ in which some elements of x is forced to be zero randomly (masking noise).
Then the encoder procedure is provided a nonlinear affine mapping function fθðxÞ, which
transforms the corrupted vector into a hidden representation by the following equation:

EQ-TARGET;temp:intralink-;e001;116;488yi ¼ fθðx̃iÞ ¼ sigm½WðlÞx̃i þ bðlÞ�: (1)

Its parameter θ ¼ fW; bg, where W is the weight matrix and b is an offset vector. The acti-
vation function sigm is set to sigmoid function, where sigm ¼ 1∕ð1þ e−xÞ. A decoder is the
process where the hidden representation yi is mapped back to a reconstructed vector zi in
a similar equation:

EQ-TARGET;temp:intralink-;e002;116;406zi ¼ gθðyiÞ ¼ sigm½WðlÞyi þ bðlÞ�: (2)

To meet criteria of feature representation, features in the data can be learned by minimizing
the reconstruction error of the loss function. To emphasize on the corrupted dimensions, the
weights are set differently among all components of the input. The corrupted dimensions is
emphasized, and the squared loss yields:

EQ-TARGET;temp:intralink-;e003;116;325L2;αðx; zÞ ¼ α

� X
j∈κðx̃Þ

ðxj − zjÞ2
�
þ β

� X
j∈=κðx̃Þ

ðxj − zjÞ2
�
; (3)

where κðx̃Þ denotes the indices of the components of x that were corrupted. The weight α denotes
the reconstruction error on components that were corrupted, and β denotes those that were left
untouched; α and β are considered hyperparameters.

Fig. 3 The architecture of SDAE.
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Finally, a feedforward neural network (FFNN) classifier can be added to the end of
the deep neural network to form a complete SDAE model for image classification.
Hidden layer network structure of FFNN is the same as hidden layer structure constructed
of the SDAE. During training, the network parameters obtained by SDAE training are taken as
the optimal initialization parameters of FFNN, and labeled samples are used to train the
model. FFNN network uses error propagation mechanism, according to the difference
between the output and the label, BP algorithm is used to fine-tune network parameters until
convergence. The parameters of all layers are well tuned using the stochastic gradient descent
algorithm.23,38,39

3.2 Multiscale Stacked Denoising Autoencoder

Many research results have shown that the scale is a critical factor in remote sensing image
classification. Land objects in remote sensing images are complex and broken, so the land object
needs to be recognized from different scales. To tackle this problem, we propose a new method to
recognize the type of land object from multiple scales, which is called MSDAE. The mode con-
tains three parts: multiscale training, multiscale classification, and multiscale results merging.
The architecture of the model is shown in Fig. 4.

To accomplish this, we first collect two types of samples: built-up sample and nonbuilt-up
sample. Then, we crop each sample with 3 × 3 pixels corresponding to scale 1, 7 × 7 pixels

corresponding to scale 2, 15 × 15 pixels corresponding to scale 3, 25 × 25 pixels correspond-
ing to scale 4. The difference between the four scales is that scale 1 is used to determine the
land object type of the center pixel by the vector composed of the center pixel and its eight
surrounding points. Scales 2, 3, and 4 are used to determine the type of land object by patch.
Therefore, from this perspective, scale 1 is pixel-based classification and scales 2 to 4 are
patch-based classification. Therefore, the dimensionality of input vectors is different at differ-
ent scales, so the configuration employed for MSDAE is shown in Table 2. In the training
stage, the main aim is to train the MSDAE model by the layer-wise pretraining and supervised
fine-tuning.

For each input image to be classified, we test it in the four scales separately. In every scale,
there is no overlap in each direction among patches. Then we can obtain the result of

Fig. 4 The architecture of MSDAE.
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classification in each scale. The final result is calculated by the results at different scales, as
shown in Eq. (4), where Li;j is the label of land object type of pixel point ði; jÞ, LSn

i;j is the label
of object type of pixel point ði; jÞ in scale nðn ¼ 1;2; 3;4Þ, LSn

i;j ¼ 1 is the BUA, LSn
i;j ¼ 0 is the

non-BUA; a; b; c; d represent the weight coefficients of the four scales respectively. The labeled
sample points are used for logistic regression analysis, where L is the logistic function and p is
the constant parameter. Finally, the final BUA extraction result is obtained from the classification
results of the four scales, which is simple but effective.

EQ-TARGET;temp:intralink-;e004;116;438LðaLS1
i;j þ bLS2

i;j þ cLS3
i;j þ dLS4

i;j þ pÞ ¼ Li;j: (4)

4 Built-Up Area Extraction Result

The task in our experiments was to classify all pixels in images into two categories: built-up and
nonbuilt-up using our model MSDAE. Experiments were conducted on GF-1 WFV image data
that cover the metropolitan area of Wuhan [Fig. 5(a)], the size of the data is 20373 × 16376 and
the data contain four spectral bands, which represents blue, green, red, and near-infrared in order.
Using ROI tool from ENVI, 14,557 sample points of BUA and 72,206 sample points of non-
BUA are selected on images. About 60% of them were randomly selected as training samples
and 40% as test samples. The samples of MSDAE are made by expanding to 3 × 3, 7 × 7,
15 × 15, 25 × 25 slices with the pixel sample as the center. The model is trained and then is
used to detect the image. The classification results are shown in Fig. 5. The result of
SDAE-pixel-based [Fig. 5(b)] obviously has more noise than the result of MSDAE proposed
in this paper. The noise is caused by unused land, ridges, rocks, and other similar land object.

Table 2 List of hyperparameter for MSDAE.

Hyperparameter Description Scale 1 Scale 2 Scale 3 Scale 4

nHLay Number of hidden layers {1,2} {1,2} {1,2} {1,2}

nHUnit Number of units per hidden layer {250,250} {588,200} {900,500} {1000,1000}

IRate Fixed learning rate for unsupervised
pretraining

0.1 0.1 0.01 0.01

IRateSup Fixed learning rate for supervised
pretraining

0.1 0.1 0.01 0.01

nEpoq Number of pretraining epochs {10,10,50} {10,10,50} {10,10,100} {10,10,100}

v Corrupting noise level 0.01 0.1 0.3 0.3

Fig. 5 (a) Image of GF-1, results of (b) SDAE-pixel-based and (c) MSDAE.
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As shown in the Fig. 5, the detection of BUA from multiple scales can reduce the interference of
other land objects.

5 Precision Evaluation

5.1 Comparisons with Single-Scale Result

In this paper, five regions [Fig. 5(a): 1–5] are selected to compare the classification results of
scale 1, scale 2, scale 3, scale 4, and final results. As shown in Fig. 6, the classification result
of scale 1 is of good detail, but the pepper-and-salt noise is obvious. The classification result of
scale 2 is “granulated,” but pepper-and-salt noise still exists. In the classification result at scale 3,
the main part of the target object is highlighted and the noise is reduced. At scale 4, target object
are more aggregated, but false alarm is amplified. As can be seen from the figure, the clustering
degree of final result is higher and the noise is less. Through multiscale to confirm the type of
land object type, we find that MSDAE can reduce the interference of similar features from other
land object. R1 shows that both sides of the river are misclassified as BUA in scales 1 and 2 but
not in scales 3 and 4. The misclassified land object is soil land, so through the fusion of
the results from the four scales, misclassified information is excluded in the final result. R2
shows that the boundary of the BUA is gradually clear and the noise is reduced from scale
1 to scale 4. We get the BUA result with clear boundary and less noise by MSDAE. R3 shows
that buildings are densely distributed and adjacent to other land objects, forming an obvious
dividing line in the result of scale 1. It is made of bare land, but the BUA information of the
result based on MSDAE is prominent. R4 and R5 show that BUA distributes sparsely, and the
feature of BUA is similar to the feature of surrounding land object. The disturbance information
of bare land, rock, and soil is identified by multiple scale discrimination, and the boundary of
BUA in the final result is clear.

Precision, accuracy, recall, missing alarm, and false alarm are selected as evaluation indica-
tors to evaluate and compare the classification results of scales 1 to 4. The precision, accuracy,
recall, missing alarm, and false alarm are calculated by Eq. (5):

Image Scale1 Scale2 Scale3 Scale4 Final result

R1

R2

R3

R4

R5

Fig. 6 Comparison diagram of results from different scales and MSDAE.
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EQ-TARGET;temp:intralink-;e005;116;586

Accuracy ¼ tpþ tn

tpþ tnþ fpþ fn
;

Precision ¼ tf

tpþ fp
;

Recall ¼ tp

tpþ fn
;

Missing alarm ¼ fn

tpþ fn
;

False alarm ¼ fp

tnþ fp
; (5)

where tp is true positive, fp is false positive, fn is false negative, and tn is true negative. These
values can be calculated by confusion matrices. As shown in Table 3, precision of MSDAE
result is 0.873, which is best. Accuracy of scale 2 is 0.859, which is similar to accuracy of
MSDAE. Recall of scales 3 and 4 is higher, which is related to its detection window. The larger
the detection window, the higher is the probability that it will hit the target. Conversely, false
alarm is higher. To sum up, MSDAE is superior to the results of single scale.

5.2 Comparisons with Other Methods

To further investigate and evaluate the performance of our framework, we compare the results of
the classifications based on SVM, BP, random forest (RF), and SDAE. These methods are robust
and widely used for land cover classification.15,14 In our evaluation, overall accuracy (OA), user’s
accuracy (UA), producer’s accuracy (PA), F1 score, intersection over union (IOU) are used to
assess the quantitative performance from SVM, BP, RF, SDAE, and MSDAE. The F1 score is
calculated by Eq. (6). IOU is the value of the intersection of prediction and ground-truth regions
over their union, as shown in Eq. (7).

Note that all models were implemented on the same training dataset and test dataset. Table 3
compares the classification accuracies for five models from five evaluation indices. MSDAE
consistently provided better results than other models and reached high scores (89.20% OA,
87.32% UA, 90.96% PA, 89.10% F1 score, and 80.35% IOU), which indicates that the
MSDAE performed well on BUA extraction. The MSDAE clearly outperforms the SDAE
by about 5% in the OA, about 7% in the UA, about 2% in the PA, about 5% in the F1 score,
and about 7% in the IOU, respectively. This shows that the multiscale model is superior to the
single-scale model. The proposed MSDAE can achieve a better performance (Table 4).

EQ-TARGET;temp:intralink-;e006;116;154F1 ¼ 2 ×
precision × recall

precisionþ recall
; (6)

EQ-TARGET;temp:intralink-;e007;116;98IOU ¼ precision × recall

precisionþ recall − precision × recall
: (7)

Table 3 Comparison table of classification accuracy from four scales and MSDAE.

Scale 1 Scale 2 Scale 3 Scale 4 MSDAE

Precision 0.809 0.807 0.773 0.714 0.873

Accuracy 0.844 0.859 0.825 0.782 0.892

Recall 0.887 0.934 0.905 0.918 0.910

Missing Alarm 0.113 0.066 0.096 0.082 0.090

False Alarm 0.191 0.193 0.2275 0.286 0.127
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6 Metropolitan Area Analysis

To study the aggregation and spatial distribution of BUA in the metropolitan area of Wuhan, the
extraction result of BUA is processed; the postprocess includes the small patch removing and
hole filling and cutting. The processed result is shown in the Fig. 7. The figure shows that the
BUA concentrates in the center of the city and disperses outward. The metropolitan Wuhan was
divided as core metropolitan area, subcore metropolitan area, and daily metropolitan area
following the 0.5, 1, and 1.5 h. Taking the circle as research object, we compare and analyze
the area of BUA and population of the administrative region between different circles.

According to the statistics, the 27.2714 million of permanent residents gathered in
49;890.29 km2 metropolitan Wuhan in 2016. There were 56;439 km2 BUA in the metropolitan
area of Wuhan reported by our result. Proportion of district area, BUA, permanent resident pop-
ulation, and the population density are shown in Table 5. It indicates that the core metropolitan
area took the 13.63% of whole metropolitan, in which the BUA took 44.02% and 32.35% of
permanent residents gathered in with the population density of 1295 people∕km2; proportions in
the subcore metropolitan area showed relatively balanced with about 20.41% proportion of

Fig. 7 Spatial distribution map of BUA.

Table 4 Comparison table of classification accuracies from different models.

OA (%) UA (%) PA (%) F1 score (%) IOU (%)

SVM 81.81 81.77 80.44 81.10 68.21

BP 80.49 80.97 78.18 79.55 66.04

RF 82.61 81.86 82.42 82.14 69.69

SDAE 84.38 80.93 88.70 84.64 73.37

MSDAE 89.20 87.32 90.96 89.10 80.35
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administrative, about 27.49% proportion of BUA, about 24.28% proportion of permanent pop-
ulation, and 650 people∕km2 of population density. The largest proportion of administrative area
and smallest population density appeared in daily metropolitan area. The three circles form a
“target-shaped” distribution structure radiating outward from the core metropolitan area on the
said four indicators.

Corridor is a linear area that spans urban and rural regions with transportation infrastruc-
ture.40 From the perspective of regional economics, corridor is a linear system connected by
transportation. It is a corridor regional economic space system formed by highly developed mul-
timode transportation network connecting at least two or more large and medium-sized cities or
urban agglomerations.41,42 Transport lines in the metropolitan area of Wuhan such as major
roads, railways, and rivers are distributed outward as Wuhan as a core. They extend northward
to Xiaogan and Suizhou, spread southward to Xianan, respectively, alone with the Jingguang and
Handan railways; by the Huyu expressway and Yangtze river, transport lines extend eastward to
Huanggang, Huangshi, westward to Xiantao, Tianmen. Hereunder, five corridors are shown in
Fig. 8. These corridors are Wuhan to Huanggang, Wuhan to Xiaogan and then to Suizhou,
Wuhan to Ezhou and then to Huangshi, Wuhan to Xiantao and then to Tianmen, and Wuhan
to Xianan and then to Chibi. The spatial distribution of BUA and transportation infrastructure

Table 5 Comparison table of administrative district, BUA, population, and population density.

Metropolitan area

Proportion of
administrative

area (%)
Proportion of
BUAs (%)

Proportion of
permanent

population (%)

Population
density

(people∕km2)

Core metropolitan area 13.63 44.02 32.35 1295

Subcore metropolitan area 20.41 27.49 24.28 650

Daily metropolitan area 65.95 28.49 43.37 359

Fig. 8 Distribution map of transport lines from metropolitan area of Wuhan.
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are highly consistent. Traffic corridors shorten the travel time between cities and enable people to
obtain a wider space for activities and development. At the same time, they promote the sharing
of various resources between cities and the optimization of resources in each functional area.
They are the flow of people, material, and capital for the development of metropolitan areas and
form the axis of urban development. The construction of traffic corridors will promote the proc-
ess of urbanization and promote the outward expansion of BUA.

7 Conclusions

In this research, we proposed an MSDAE method for extracting BUA from GF-1 images, then
we extracted BUA of the metropolitan area of Wuhan, and finally we analyzed the area of BUA,
population and population density based on the extraction result and got five corridors by the
distribution of BUA and transport lines. The conclusions are summarized as the following.

1. Aiming at the concentrated distribution of BUA but a large number of broken features,
the MSDAE model is innovatively built by taking full advantage of the significant differ-
ence in the spatial pattern of features on different scales. MSDAE learns the features of
land objects from the four scales of 1 × 1, 7 × 7, 15 × 15, 25 × 25, and identifies the
types of land objects from the four scales, then determines the classification result
by logistic method. By using multiscale detection windows, building multilevel feature
structure, and optimizing merge rules, MSDAE can reduce the interference of similar
land objects without losing the detailed information of BUA and avoid the phenomenon
of salt-and-pepper noise generated by traditional pixel classification. Therefore, MSDAE
effectively improves the recognition rate of BUA. MSDAE is superior to the results of
single scale. Compared with other methods, MSDAE reaches high scores and provides
better result than other models. Although our proposed method performs well, several
issues remain to be resolved in future work. BUA has obvious feature in color space,
remote sensing index, and other aspects. How to use multifeatures to integrate multiscale
features to further improve the extraction accuracy of BUA and the robustness of the
model needs further study.

2. Taking the metropolitan area of Wuhan as the study case, the range of the metropolitan
area is 1.5 h calculated by Tencent map big data. The BUA of the Wuhan metropolitan
area is extracted by MSDAE model from GF-1 WFV image. The metropolitan area of
Wuhan is divided into three layers: core metropolitan area, subcore metropolitan area,
and daily metropolitan. By calculating the proportion of the administrative area, BUA,
permanent population, and population density, we know that the metropolitan area of
Wuhan has a target-shaped distribution structure radiating outward from the core met-
ropolitan area. Through the overlay analysis of city corridor and BUA of metropolitan
area of Wuhan, it can be seen that the spatial distribution of the BUA is consistent with
the spatial distribution of traffic lines; based on this, five corridors are identified: Wuhan–
Huanggang, Wuhan–Xiaogan–Suizhou, Wuhan–Ezhou–Huangshi, Wuhan–Xiantao–
Tianmen, and Wuhan–Xianan–Chibi. Corridor is conducive to the optimization and
sharing of resources among metropolitan areas, can promote urbanization, and is of great
significance to the development of metropolitan areas.
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