
Spatial models for selecting the most suitable areas of 
rice cultivation in the Inland Valley Wetlands of 

Ghana using remote sensing and geographic 
information systems 

 
Muralikrishna Gumma,a Prasad S. Thenkabail,b Hideto Fujii,c and 

Regassa Namarac 
aRemote Sensing and Geographic Information Systems, International Water Management 

Institute (IWMI), ICRISAT Campus, Patancheru, Hyderabad, India 
m.gumma@cgiar.org  

bSouthwest Geographic Science Center, U.S. Geological Survey (USGS), Flagstaff, Arizona 
86001 

pthenkabail@usgs.gov 
cInternational Water Management Institute (IWMI), Ghana Office, Accra, Ghana CT 112 

h.fujii@cgiar.org; r.namara@cgiar.org  
 
Abstract. The overarching goal of this research was to develop spatial models and 
demonstrate their use in selecting the most suitable areas for the inland valley (IV) wetland 
rice cultivation. The process involved comprehensive sets of methods and protocols 
involving: (1) Identification and development of necessary spatial data layers; (2) Providing 
weightages to these spatial data layers based on expert knowledge, (3) Development of 
spatial models, and (4) Running spatial models for determining most suitable areas for rice 
cultivation. The study was conducted in Ghana. The model results, based on weightages to 
16-22 spatial data layers, showed only 3-4 % of the total IV wetland areas were “highly 
suitable” but 39-47 % of the total IV wetland areas were “suitable” for rice cultivation. The 
outputs were verified using field-plot data which showed accuracy between 84.4 to 87.5% 
with errors of omissions and commissions less than 23%. Given that only a small fraction 
(<15% overall) of the total IV wetland areas (about 20-28% of total geographic area in 
Ghana) are currently utilized for agriculture and constitute very rich land-units in terms of 
soil depth, soil fertility, and water availability, these agroecosystems offer an excellent 
opportunity for a green and a blue revolution in Africa. 
 
Key words: spatial model, inland valley wetlands, land suitability, most suitable areas 
selection, rice, agriculture, water, remote sensing,  Ghana, Africa. 
 
1   INTRODUCTION 
Rice constitutes a significant component of major food staples and is of principal importance 
in West Africa. Records show a rapid increase of rice consumption in West Africa from 1 
million tonnes in 1964 to 8.6 million tonnes in 2004 [1]. In Ghana the rice consumption 
increased from 7.4 kilogram per capita per annum between 1982 and 1985 [2] to 13.3 kg per 
capita per annum (Government of Ghana, 1996). National statistics on rice production and 
consumption in Ghana indicated that in 2005, a total of 142,000 tonnes of milled rice were 
domestically produced with 113,600 tonnes available for human consumption. Domestic 
food supply and demand status in Ghana in 2005 indicated milled rice deficit of 199,400 
tonnes (Government of Ghana, 2006). Under these circumstances, attaining self-sufficiency 
of rice is a critical strategy for many countries in West Africa including Ghana. However, 
rice production in most sub-Saharan Africa (SSA) falls below consumption demand due to a 
variety of reasons that could be categorized as bio-physical, socio-economic, technological, 
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and eco-environmental factors. Therefore, to resolve the deficiency in rice production there 
is a need to implement strategies for increasing productivity by expansion of production 
capacity. 

Inland valley (IV) wetlands are highly suitable for rice cultivation in Ghana [3]. These 
IVs present great potential for agricultural expansion and intensification in West Africa to 
help feed the fast growing populations and changing food habits [3]. The IVs occur in the 
upper reaches of river systems in which river alluvial sedimentation processes are absent or 
imminent only. They are composed of valley bottoms, hydromorphic valley fringes, and 
minor floodplains, which may be submerged for part of the year. Throughout the West 
African region the estimated area of IVs range between 8-28 % of the total geographic area 
with only about 7-20% of this area cultivated [4,5]. The IV wetland areas are highest in the 
humid forests, followed by derived savannas, southern Guinea Savanna, Northern Guinea 
Savanna, and Sudan Savanna, and Sahel.  

However the importance of the IV wetlands actually increase in drier areas, since in these 
areas the importance of IVs for lowland rice and for cultivating other crops increase as well. 
The uplands in these regions have severe water scarcity for most of the year [4, 5]. It is 
estimated that if an extra 2 million hectares of IV wetlands are used for rice cultivation, 
producing at an average yield of 3 tonnes per hectare, the West Africa region could halt the 
importation of rice from elsewhere. These IVs also present equally great potential for other 
crops such as vegetables, banana, and cassava [6-10]. However, similar to any other 
ecosystems, these IVs show a great diversity in their physical, bio-physical, and hydrological 
characteristics [11]. If these IV wetland ecosystems are evaluated in terms of their bio-
physical, technological, socio-economic, and eco-environmental factors, they will 
collectively determine their suitability for cultivation. Such an outcome will enable farmers 
and the policy makers to identify the most suitable areas that could be developed promoting 
sustainable farming systems. In performing land suitability analyses remote sensing and 
geographic information systems (GIS) data and tools and techniques provide a good 
platform for data generation, integration, processing, and analyses.  

Given the above background, the main objective of this project was to evaluate and map 
suitable IVs for paddy cultivation based on developed indicators categorized as bio-physical 
factors, socio-economic factors, and eco-environmental factors. The specific objectives of 
the GIS-RS spatial analysis component of the project were to: (1) Identify critical spatial 
data layers needed for the land suitability model for inland valley rice cultivation; (2) 
Provide weightages to spatial data layers and for classes within each spatial data layer 
based on expert knowledge; (3) Develop spatial model that will provide answers to relevant 
questions and identify most suitable areas for rice cultivation IV wetlands based on the 
spatial data layers and their weightages. 
 
 

2 STUDY AREA 
The spatial model for selecting the most suitable areas for inland valley (IV) wetland 
cultivation will be illustrated for 2 key study areas in Ghana. These are (Fig. 1): (a) Tamale 
in Northern Ghana, and (b) Kumasi in Southwestern Ghana. Tamale falls in Guinea savanna 
zone. The annual rainfall of the study watersheds is around 1100mm on an average. In 
contrast, Kumasi falls on semi-deciduous forest zone. The annual rainfall of the study 
watersheds is around 1400mm on an average. In both study areas, an area covering 100km X 
100 km was selected for semi-detailed characterization using Landsat (30m) resolution and a 
area of 15km X 15km, within the semi-detailed area, was selected for detailed 
characterization using sub-meter to 4 m quickbird and\or IKONOS imagery.  
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Fig. 1. Study areas in Ghana: (a) Tamale in North (shown using IKONOS imagery), (b) Kumasi in 
Southwest (shown using Landsat imagery). The yellow lines indicate the delineation of IV wetland 
bottomlands. 
 
 

3   METHODOLOGY 

The methodology (Fig. 2) for determining the most suitable areas for rice cultivation in the 
IV wetlands consisted of 4 specific modules: (1) Identification and development of 
necessary spatial data layers; (2) Providing weightages to these spatial data layers, and (3) 
Development of spatial model, and (4) running those models for determining most suitable 
areas for rice cultivation. 
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Fig. 2. Spatial model steps involved in selecting the most suitable areas for rice cultivation in IV 
wetlands.  
 
3.1 Identification of spatial data layers 
A total of 29 key spatial data layers (Fig. 2) were identified as ideal for establishing most 
suitable areas for rice cultivation. The variables considered were based on their importance 
for IV wetland rice cultivation. These spatial data layers were categorized into following 
broad groups: 
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3.1.1 Biophysical, Climatic, and Water Variables:  
 
The biophysical, climatic, and water variables considered were Rainfall, evapotranspiration 
(ET), length of growing period (LGP), surface water discharge, stream order, slope, 
vegetation, soil type, soil depth, and soil fertility.  
 
3.1.2 Technical factors 
 
The technical factors were agronomic experience, agriculture technology, and water 
management. 
 
3.1.3 Socio-economic factors 
 
The socio-economic factors were accessibility settlements, road-networks, markets, land 
tenure, labor force, credit systems, extension system, social customs, gender, rice policy 
tariff, rice policy subsidy, and farmers incentive. 
 
3.1.4 Eco-environmental factors 
 
The eco-environmental factors were malaria, bilhazias, onchocercasis species, and 
conservation of significant flora and fauna. 
 
However, data was available for 22 variables for Kumasi and 16 variables in Tamale (these 
will be discussed later; see Table 6 for example). 
 
3.2 Preparation of spatial data layers 
Some of the layer information’s were gathered from satellite images, field surveys, and other 
global datasets. Slope, stream order, road network, markets, settlements, and land use\land 
cover (LULC) analyzed directly from satellite data. Rainfall, ET, LGP, and diseases data 
were extracted from other studies [12]. Other socioeconomic factors and soil parameters 
from field surveys using GPS and processed in GIS by inverse distance weighted technique 
(IDW) (Arc GIS 9.2). 
 
3.2.1 Satellite sensor data 
 
Landsat ETM+ tiles were downloaded from the University of Maryland, global land cover 
facility website (http://glcf.umicas.umd.edu/index.shtml). The IKONOS data were purchased 
through Landsat Science Team allocations. The characteristics of these images are shown in 
Table 1. All these images were converted into at-sensor reflectance based on the equations 
and algorithms presented in [10, 11, and 12].  The Landsat ETM+ and IKONOS data (Table 
1) were used as the primary data sources for spatial parameters like settlements, markets, 
roads, land use\land cover (LULC), and vegetation. 
 
3.2.1.1 Normalization  
 
The IKONOS, and ETM+ sensors have different radiometric resolutions, hence their 
respective digital numbers (DNs) carry different levels of information and cannot be directly 
compared. Therefore, they were converted to absolute units of radiance (W m-2 sr-1 µm-1), 
then to apparent at-satellite reflectance (%), and finally to surface reflectance (%) after 
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atmospheric correction. Details on these conversions are provided due to the uniqueness of 
the sensors involved. 

Table 1. Characteristics of satellite sensor data used in the study. 

Sensor Spatial Spectral Radiometric band range Irradiance Sun elevation Earth sun 
distance Data points

(meters) (#) (bit) (µm) (W m-2sr-1 µm-

1)
 θ D

(# per 

hectares)
Landsat ETM+ 30 8 8 0.45-0.52 1970 56.04 (for p194r54) 20-Mar-02 0.9911 44.4, 11.1

0.53-0.61 1843 58.61 (for p194r55) 7-Nov-99 0.9959
0.63-0.69 1555
0.75-0.90 1047
1.55-1.75 227.1
10.4 12.5 0
2.09-2.35 1368
0.52-0.90 1352.71

IKONOS  1 - 4 4 11 0.445-0.516 1930.9 68.23(Tamale) 1-Oct-07 1.0005 10000, 625
0.506-0.595 1854.8 52.81(Kumasi) 16-Jan-03 0.9874
0.632-0.698 1156.5
0.757-0.853 1156.9

Acquisition 
of the 

imagery

 

 
 
3.2.1.2 ETM+ data to radiance  
 
The ETM+ 8 bit DNs were converted to radiances using the equation:  
Radiance (W m-2 sr-1 µm-1) = gain * DN + offset  ,                     (1a) 
This can also be expressed as: 

Radiance (W m-2 sr-1 µm-1) = 
LMAX-LMIN

 QCALMAX-QCALMIN * (QCAL-QCALMIN) + LMI  ,(1b) 

where QCALMIN = 1, QCALMAX = 225, QCAL is the digital number, LMIN and LMAX 
are the spectral radiances for each band at DNs 1 and 255 (i.e. QCALMIN, QCALMAX), 
respectively. The LMAX and LMIN values (W/m2 Sr µm) for the March 18, 2001, ETM+ 
image are: LMAXband1 = 191.600; LMINband1 = -6.200; LMAXband2 = 196.500; LMIN band2 = -
6.400; LMAXband3 = 152.900; LMINband3 = -5.000; LMAX band4 = 241.100; LMIN band4 = -
5.100; LMAXband5 = 31.060; LMINband5 = -1.000; LMAXband61 = 17.040; LMIN band61 = 
0.000; LMAXband62 = 12.650; LMINband62 = 3.200; LMAX band7 = 10.800; LMIN band7 = -
0.350; LMAXband8 = 243.100; LMINband8 = -4.700. 
 
 
3.2.1.2 IKONOS data to radiance 
 
The 11-bit IKONOS DNs were converted to radiance (m W cm-2 sr-1) using the equation  

Lij  = DNij*[CalCoefj]-1  ,              (3) 
where Lij and DNij are the in-band radiance at sensor aperture (mW cm-2-sr-1 ) and image 
product digital value of the ith pixel in the jth band, respectively, and CalCoefj is the in-band 
radiance calibration coefficient (DN cm2*sr m-1W-1). Since the IKONOS image used in this 
study was acquired after February 22, 2001, the values of CalCoefk used were 728 for band 
1, 727 for band 2, 949 for band 3, and 843 for band 4.  
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3.2.1.4 Radiance to reflectance 
 
A reduction in between-scene variability can be achieved through a normalization for solar 
irradiance by converting spectral radiance, as calculated above, to planetary reflectance or 
albedo [13,16]. This combined surface and atmospheric reflectance of the Earth is computed 
with the following formula: 

ρp =  
S

2

cosESUN
dL

θ
π

λ

λ   ,        (4) 

where ρp is the at-satellite exo-atmospheric reflectance, Lλ is the radiance (W m-2 sr-1 µm-1), 
d  is the earth to sun distance in astronomic units at the acquisition date [16], ESUNλ is the 
mean solar exo-atmospheric irradiance (W m-2 sr-1 µm-1)or solar flux [17], and Sθ  is solar 
zenith angle in degrees (i.e., 90 degrees minus the sun elevation or sun angle when the scene 
was recorded as given in the image header file). 
 
3.2.1.5 Surface reflectance 
 
Atmospheric correction was performed using the improved dark object subtraction technique 
[18, 19] to derive surface reflectance from apparent reflectance. 
 
3.3 Secondary (ancillary) and remote sensing derived spatial data layers 

3.3.1 Precipitation, ET, and slope from Secondary (or ancillary) data 
 
Secondary (or ancillary) sources of data were used to obtain spatial data layers for rainfall 
(http://www.osti.gov/energycitations/product) and evapotranspiration 
(http://www.iwmi.cgiar.org/WAtlas/atlas.htm). Slope data was derived using the Space 
Shuttle Radar Topographic Mission (SRTM) (http://srtm.csi.cgiar.org/) data. Slope (Fig. 3) is 
one of the important data layers with areas with low slopes ideally suited for rice cultivation 
since they require very little investment for land preparation, presence of rich fertile soils, 
and adequate water.  Spatial distribution of slope over the detailed (15km X 15km) study 
area is shown in Fig. 3 and Table 2 shows the area distribution among different slope classes. 
When the local slope values exceed 10°, the SRTM data is not very suitable [26]. However, 
only a negligible proportion of IV wetlands have such steep slopes, with overwhelming 
proportion of them <4° [4]. 
 
3.3.2 Water availability in IV wetlands from remote sensing and field plot data 
 
Availability of surface water resources within the study site was analyzed using drainage 
pattern characterized by distribution pattern of different stream orders. Typically, IV 
wetlands occur in 1 to 4th order streams, beyond which they become flood plains. In general, 
lower order streams in Tamale and Kumasi showed seasonal flow of water while the higher 
order streams are characterized with a perennial flow. Nevertheless, the land suitability for 
rice cultivation depends on slope, soil, and water availability apart from other factors 
discussed in section 4.1 and its sub-sections. Table 3 summarizes the drainage characteristics 
of the study areas. 
 
3.3.3 Landuse\land cover and vegetation derived from remote sensing 
 
Land use/ land cover (Fig. 5) pattern of the study site was analyzed and mapped using high 
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resolution satellite imagery (Landsat/IKONOS data) acquired on two dates: January 16, 
2003 and November 7, 1999 (Table 1) using methods and protocols described in [20,21]. 
The Table 4 summarizes the land extents under different land cover categories. The rainfed 
rice areas are either left fallow or have second crops (mainly vegetables) during summer. 
They are significantly wetter than the surroundings. As a result they are easily detected in 
summer imagery (e.g., Figure 5b) and delineated out as rainfed rice. The decision is 
separating this class is done using extensive field-plot data (used to re-affirm class labeling). 
 
 

 
 
 
Fig. 3. Slope of the study areas derived using SRTM data. Top: Tamale, Bottom: Kumasi. Most to least 
suitable areas for rice cultivation based on slope alone as a parameter is illustrated. 
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Table 2. Slope distribution in inland valley in detailed (15 km x 15 km) study area. Lesser the slope, 
greater the suitability of land for IV wetland cultivation. 

Kumasi Tamale 
Slope Range Area 

(ha) 
% 
Area 

Area 
(ha) 

% 
Area 

Suitability 

>=5 9368 41.6 6569 29.2 Not suitable 

3.0 - 5.0 5891 26.2 4949 22.0 Marginally suitable 

2.0 - 3.0 2893 12.9 4633 20.6 Moderately suitable 

1.0 - 2.0 2494 11.1 4441 19.7 Suitable 

<=1 1854 8.2 1908 8.5 Highly suitable 

 

 
 
Fig. 4. Stream order of the study areas derived using SRTM data: (a) Kumasi (left), (b) Tamale (right).  
 
 

Table 3. Drainage characteristics over the detailed study areas (Kumasi & Tamale). 
Kumasi Tamale 

Stream 
order No. of 

Streams 

Stream 
Length 
(km) 

Watershed 
area (ha) 

No. of 
Strea

ms 

Stream 
Length 
(km) 

Watershed 
area (ha) 

1 78 128.25 11588.55 27 51.38 13785.02 

2 42 81 3366.88 7 30.1 4651.98 

3 16 74.25 1971.89 1 22.4 4063.00 

4 2 24.75 3652.51 0 0 0 

5 1 11.25 1921.17 0 0 0 

Total 139 319.5 22500.00 35 103.88 22500.00 
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3.3.4 Soil characteristics from soil survey 
 
Detailed soil survey was conducted by the soil research institute (SRI) of Ghana by Dr.Buri. 
Soil characteristics of the study area were analyzed using results of the soil survey of 60 
field plots for Kumasi and 45 field plots for Tamale (locations shown in Fig. 6), This reveals 
that the soils within the study sites are relatively deep with textures that vary from sandy 
loam through silt loam to loam. Table 5 summarizes the results of the soil parameters tested 
in the study. 
 
 
3.3.5 Socioeconomic data through field-surveys 
 
Socioeconomic survey was conducted in 15 villages for a total of  840 sample locations with 
each village having several samples (Fig. 7) and socioeconomic factors which includes 
farmer incentives (e.g., rice cultivation profitability), credit systems, land tenure systems, 
labour availability, rice cultivation experience, yield, post harvest technology, extension 
system, and water supply systems.  
 
 
 

 
 
 
Fig. 5. Distribution of different land use\land cover (LULC) classes within the detailed (15 km x 15 
km) study areas in: (a) Kumasi (left), and (b) Tamale (right), using IKONOS data.  
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Table 4. Land use\land cover (LULC) categories and their land extents within the detailed (15 km x 15 
km) study areas using IKONOS data. 
 

Kumasi   Tamale 

Lulc class Area 
(ha) %Area   Lulc class Area 

(ha) %Area 

01. Water bodies 32 0.1   01. Water bodies 62 0.3 

02. Settlements 699 3.1   02. Settlements 1457 6.5 

03. Barrenlands/Rangelands 1511 6.7   03. Open lands 132 0.6 

04. Forest with dense shrubs 4048 18.0   04. Shrublands/Forest 3079 13.7 
05. Forest/Agriculture 
plantations 41 0.2   05. Savannas with shrubs 4343 19.3 

06. Savannas 4156 18.5   06. Savannas 2609 11.6 

07. Rangelnads 8777 39.0   07. Barrenlands/Rangelands 3104 13.8 

crops 2538 11.3   08. Ranfed mix with 
Rangelands 1913 8.5 

09. Unclassified/Cloud 697 3.1   09. Rainfed mix crops 4266 19.0 

Total 22500 100.0   10. Rainfed-Rice 1535 6.8 

        Total 22500 100 
 
 
 

 
Fig. 6. Location of soil survey data points in the study areas of (a) Kumasi and (b) Tamale. The soil 
survey data points were spatially extrapolated, (c) and (d), to obtain soil map showing suitability for rice 
cultivation. 

Journal of Applied Remote Sensing, Vol. 3, 033537 (2009)                                                                                                                                    Page 11



Table 5.  Summary of selected soil properties in Tamale and Kumasi in Ghana. 
 

Parameter # sample Mean Minimu
m

Maximum % CV # sample Mean Minimu
m

Maximum % CV

pH (H2O) 60 5.74 4.1 7.62 16 90 4.6 3.71 7.36 11.5

Or. C (gkg-1) 60 12 3.6 36.5 48 90 6.14 0.6 19 49.5

Total N (gkg-1 60 1.1 0.3 3.2 49 90 0.65 0.1 1.6 42.4

Av. P (mgkg-1) 60 4.94 0.1 28.5 94 90 1.49 0.3 5.35 61.2

Ex. K {cmol (+) kg-1} 60 0.42 0.03 1.28 59 90 0.22 0.04 1.06 74.5

Ex. Ca {cmol (+) kg-1} 60 7.48 1.07 25.99 68 90 2.07 0.53 15 91

Ex. Mg {cmol (+) kg-1} 60 4.13 0.27 12.28 64 90 0.97 0.27 5.87 77.1

Ex. Na {cmol (+) kg-1} 60 0.32 0.04 1.74 81 90 0.11 0.1 0.72 91.8

Ex. Ac. {cmol (+) kg-1} 60 0.31 0.04 1.15 93 90 1.01 0.05 1.8 47.4

ECEC {cmol (+) kg-1} 60 12.7 2.45 34.63 59 90 4.4 2.28 21.7 58.4

Sand (g kg-1) 60 371 91.6 771 37 90 326.6 51.4 590.8 37.2

Silt (g kg-1) 60 502 187 770 22 90 607 347.6 810.5 17.6

Clay (g kg-1) 60 127 41 301 44 90 66.3 40 241.4 58.9

Gravimetric moisture (%) 60 31 1 91 61 42 15.6 5.9 23.7 25.6

Volumetric moisture (%) 60 32 2 80 53 42 24.7 7.7 37.4 26.9

TamaleKumasi

 
 

 
 

Fig. 7. Location of socioeconomic factors discussed in section 4.3.5. 
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3.3.6 Inland valley wetland delineation and characterization using remote sensing 
 
Remote sensing data was used to obtain information on IV wetland distribution (e.g., stream 
order, stream density, and valley bottom width), their characteristics (e.g., vegetation, land 
use\land cover). Remote sensing was also used to delineate road network, settlements, and 
locate markets. The methods for delineating IVs using imagery such as Landsat, IRS, 
Quickbird, and IKONOS are described in [4, 5, 22, and 23]. The semi-automated methods 
[23, 24] consisted of: (a) Enhancement of images through ratios to highlight wetlands from 
non-wetlands; (b) Display of enhanced images in red, green, blue (RGB) false color 
composites (FCCs) to highlight wetland boundaries; and (c) Digitizing the enhanced and 
displayed images and delineate wetlands from non-wetlands (Fig. 5). Once the images are 
enhanced and displayed at full pixel resolution, they are digitized directly off screen. The 
process of digitizing begins by selecting FCC RGBs that separate out wetlands from other 
land units. IVs occupied an area of 6240 ha (Fig. 8) from the detailed study area at Tamale 
(Fig. 8) and 7500 ha from the detailed study area at Kumasi (Fig. 8).  
 

 
 
 
Fig. 8. Spatial distribution of IVs delineated using Landsat ETM+ data for: (a) Tamale (top), (b) 
Kumasi (bottom). 
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3.4 Providing weightages to spatial data layers 
 
In all, data were available for the 22 layers in Kumasi and 16 layers in Tamale (Table 6). 
These data layers were used in the spatial models (see section 4.4) to determine most 
suitable areas for rice cultivation. Two approaches were adopted in weighing layers. These 
were: 
 
3.4.1 Equal weights and variable scores 
 
In this approach, all spatial data layers had equal weights. Only the weights of classes within 
each layer were varied (Table 6). 
 
3.4.2 Variable weights and variable scores 
 
In this approach, all spatial data layers had variable weights based on importance of the layer 
as decided by experts (Table 7). There were 22 experts: 4 agronomists, 2 soil scientists, 3 
economists, 4 agricultural extension officers, 2 socio-economists, 4 remote sensing 
specialists, and 3 water resources experts. In the process, slope was considered the most 
important layer (weight 2.95), followed by soil fertility, length of the growing period, and 
stream order. In contrast, the consideration of malaria had the least weightage. The weights 
of classes within each layers also varied (Table 7). 
 
 
Table 6. Process of providing equal weights and variable scores for: (a) Kumasi (left), and (b) Tamale 
(right).  
 

Factor 
weight

Score range Maximum 
score

Scores 
given

Weighted score Factor 
weight

Score 
range

Maximum 
score

Scores 
given

Weighted 
score

01-Annual-rainfall 1 1 - 5 3 3 ( 1 * 3 ) = 3 01-Annual-rainfall 1 1 - 5 3 3, ( 1 * 3 ) = 3
02-PET 1 1 - 5 3 3,2 ( 1 * 3 ) = 3 02-PET 1 1 - 5 3 3,2 ( 1 * 3 ) = 3
03-LPG 1 1 - 5 5 5 ( 1 * 5 ) = 5 03-LPG 1 1 - 5 3 3,2 ( 1 * 3 ) = 3
04-specificdischarge 1 1 - 5 5 5,4,3,2,1 ( 1 * 5 ) = 5 05-Stream order 1 1 - 5 3 3,2,1 ( 1 * 3 ) = 3
05-Stream order 1 1 - 5 5 5,4,3,2,1 ( 1 * 5 ) = 5 07-Slope-percent 1 1 - 5 5 5,4,3,2,1 ( 1 * 5 ) = 5
07-Slope-percent 1 1 - 5 5 5,4,3,2,1 ( 1 * 5 ) = 5 08-Lulc 1 1 - 5 5 5,4,3,2,1 ( 1 * 5 ) = 5
08-Lulc 1 1 - 5 5 5,3,2,1 ( 1 * 5 ) = 5 09-Soils 1 1 - 5 3 3,2,1 ( 1 * 3 ) = 3
12-Experience in rice cult., 1 1 - 5 5 5,4 ( 1 * 5 ) = 5 10-Soil depth 1 1 - 5 5 5,4,3,2,1 ( 1 * 5 ) = 5
13-Agro., technology (yield) 1 1 - 5 4 4,3 ( 1 * 4 ) = 4 11- Soil fertility 1 1 - 5 5 5,4,3,2,1 ( 1 * 5 ) = 5
14-Watermangement tech., 1 1 - 5 2 2,1 ( 1 * 2 ) = 2 16a-Major settlement 1 1 - 5 5 5,4,3,2,1 ( 1 * 5 ) = 5
15-Postharvest tech., 1 1 - 5 5 5,4,3,2,1 ( 1 * 5 ) = 5 16b-Minor settlement 1 1 - 5 5 5,4,3,2,1 ( 1 * 5 ) = 5
16a-Major settlement 1 1 - 5 5 5,4,3,2,1 ( 1 * 5 ) = 5 17a-Major roads 1 1 - 5 5 5,4,3,2,1 ( 1 * 5 ) = 5
16b-Minor settlement 1 1 - 5 5 5,4,3,2,1 ( 1 * 5 ) = 5 17b-Minor roads 1 1 - 5 5 5,4,3,2,1 ( 1 * 5 ) = 5
17a-Major roads 1 1 - 5 5 5,4,3,2,1 ( 1 * 5 ) = 5 18a-Major markets 1 1 - 5 5 5,4,3,2,1 ( 1 * 5 ) = 5
17b-Minor roads 1 1 - 5 5 5,4,3 ( 1 * 5 ) = 5 18b-Minor markets 1 1 - 5 5 5,4,3,2,1 ( 1 * 5 ) = 5
18-Markets 1 1 - 5 5 5,4,3,2,1 ( 1 * 5 ) = 5 25-Malaria 1 1 - 5 2 2,1 ( 1 * 2 ) = 2
19-Land tenure 1 1 - 5 5 5,4,3,2,1 ( 1 * 5 ) = 5
20-Labour force 1 1 - 5 5 5,4,3,2,1 ( 1 * 5 ) = 5
21-Crdit system 1 1 - 5 3 3,2,1 ( 1 * 3 ) = 3
22-Extension system 1 1 - 5 5 5,4 ( 1 * 5 ) = 5
24-Incentives_net benfit 1 1 - 5 3 3,4,5 ( 1 * 3 ) = 3
25-Malaria 1 1 - 5 3 3,4 ( 1 * 3 ) = 3

Factor
Kumasi

Factor
Tamale

 
 
 
 
 
 
 
 
 
 

Journal of Applied Remote Sensing, Vol. 3, 033537 (2009)                                                                                                                                    Page 14



Table 7. Process of providing variable weights and variable scores. 
 

Factor 
weight

Score range Maximu
m score

Scores given Weighted score Factor 
weight

Score 
range

Maximum 
score

Scores 
given

Weighted score

01-Annual-rainfall 1.89 1 - 5 3 3 (1.89*3)=5.67 01-Annual-rainfall 1.89 1 - 5 3 3, ( 1.89 * 3 ) = 5.67
02-PET 1.47 1 - 5 3 3,2 (1.47*3)=4.41 02-PET 1.47 1 - 5 3 3,2 ( 1.47 * 3 ) = 4.41
03-LPG 2.05 1 - 5 5 5 (2.05*5)=10.25 03-LPG 2.05 1 - 5 3 3,2 ( 2.05 * 3 ) = 6.15
04-specificdischarge 1.89 1 - 5 5 5,4,3,2,1 (1.89*5)=9.45 05-Stream order 2.05 1 - 5 3 3,2,1 ( 2.05 * 3 ) = 6.15
05-Stream order 2.05 1 - 5 5 5,4,3,2,1 (2.05*5)=10.25 07-Slope-percent 2.95 1 - 5 5 5,4,3,2,1 ( 2.95 * 5 ) = 14.75
07-Slope-percent 2.95 1 - 5 5 5,4,3,2,1 (2.95*5)=14.75 08-Lulc 1.37 1 - 5 5 5,4,3,2,1 ( 1.37 * 5 ) = 6.85
08-Lulc 1.37 1 - 5 5 5,3,2,1 (1.37*5)=6.85 09-Soils 1.53 1 - 5 3 3,2,1 ( 1.53 * 3 ) = 4.59
12-Experience in rice cultivation 1.42 1 - 5 5 5,4 (1.42*5)=7.1 10-Soil depth 1.68 1 - 5 5 5,4,3,2,1 ( 1.68 * 5 ) = 8.4
13-Agro., technology (yield) 1.11 1 - 5 4 4,3 (1.11*4)=4.44 11- Soil fertility 2.32 1 - 5 5 5,4,3,2,1 ( 2.32 * 5 ) = 11.6
14-Watermangement tech,. 1.68 1 - 5 2 2,1 (1.68*2)=3.36 16a-Major settlement 1.5 1 - 5 5 5,4,3,2,1 ( 1.5 * 5 ) = 7.5
15-Postharvest tech., 1.05 1 - 5 5 5,4,3,2,1 (1.05*5)=5.25 16b-Minor settlement 1.5 1 - 5 5 5,4,3,2,1 ( 1.5 * 5 ) = 7.5
16a-Major settlement 1.5 1 - 5 5 5,4,3,2,1 (1.5*5)=7.5 17a-Major roads 1.7 1 - 5 5 5,4,3,2,1 ( 1.7 * 5 ) = 8.5
16b-Minor settlement 1.5 1 - 5 5 5,4,3,2,1 (1.5*5)=7.5 17b-Minor roads 1.7 1 - 5 5 5,4,3,2,1 ( 1.7 * 5 ) = 8.5
17a-Major roads 1.7 1 - 5 5 5,4,3,2,1 (1.7*5)=8.5 18a-Major markets 1.4 1 - 5 5 5,4,3,2,1 ( 1.4 * 5 ) = 7
17b-Minor roads 1.7 1 - 5 5 5,4,3 (1.7*5)=8.5 18b-Minor markets 1.4 1 - 5 5 5,4,3,2,1 ( 1.4 * 5 ) = 7
18-Markets 1.4 1 - 5 5 5,4,3,2,1 (1.4*5)=7 25-Malaria 0.41 1 - 5 2 2,1 ( 0.41 * 2 ) = 0.82
19-Land tenure 1.74 1 - 5 5 5,4,3,2,1 (1.74*5)=8.7
20-Labour force 1.53 1 - 5 5 5,4,3,2,1 (1.53*5)=7.65
21-Crdit system 1.58 1 - 5 3 3,2,1 (1.58*3)=4.74
22-Extension system 1.05 1 - 5 5 5,4 (1.05*5)=5.25
24-Incentives_net benfit 1.37 1 - 5 3 3,4,5 (1.37*3)=4.11
25-Malaria 0.41 1 - 5 3 3,4 (0.41*3)=1.23

Factor
Kumasi

Factor
Tamale

 
 
 
In the variable weights and variable scores (Table 7), the classes within the layers are also 
given variable importance by the experts as per their knowledge\perception of how 
important the variable is for IV wetland rice cultivation. This lead to areas with least slope 
having highest total weightage (14.75), followed by soil and water layers. The differences in 
weightage between 2 approaches can be compared between Table 6 and 7. 
 
 
3.5 Development of spatial model 
The first step in the spatial model development will be to have a clear and precise knowledge 
of how the spatial data layers and the classes within each spatial data layers are scored 
(Table 6 and 7). Once this knowledge is clear, the next step will be to build the spatial model 
(e.g., Fig. 9). This was done in the ERDAS spatial modeler as shown in Fig. 9. Two models 
were developed: one taking the weights and scores from Table 6 (approach 1) and another 
taking the weights and scores from Table 7 (Approach 2). The model is coded in ERDAS 
modeler as follows (Fig. 9): 

Pixel score in model output = weightage of layer 1 * weightages of classes within layer 
1+ weightage of layer 2 * weightages of classes within layer 2+…………..+ weightage of 
layer n * weightages of classes within layer n. 

In first approach weightages of layer 1 to n will always be 1 whereas in approach 2  
weightages of layer 1 to n will differ as per Table 7.  However, the weightages of classes 
within layer 1 to n will vary for both approaches. 
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Fig. 9. Illustration of a typical spatial model built in ERDAS.  
 
The model uses map algebra techniques [25] to arrive at the outputs. The map algebra 
techniques used in this model (Fig. 9). The detailed procedure of building and running the 
model are provided in Appendix 1. 
 
4  Results and discussions 
The spatial data layers (Fig. 2 and section 4.1 and 4.3) were weighted (section 4.4) and fed 
to the models (section 4.5) leading to generation of most suitable areas (Fig. 10)  for inland 
valley (IV) wetland rice cultivation in the Tamale and Kumasi areas of Ghana. The models 
were first, run for entire datasets (uplands and lowlands). However, since our interest is in 
determining areas most suited for rice cultivation in the inland valley (IV) wetlands, we used 
the IV boundaries delineated in section 4.3.6 to mask out IV lowlands (Fig. 10) from 
uplands. The areas provided by the 2 approaches: (a) approach 1 (equal weights for layers 
and variable weights for classes), and (b) approach 2 (variables weights for the layers and 
variable weights for the classes) varied significantly in both study areas of Kumasi and 
Tamale. Often the spatial models were run using the approach 1. This can be misleading as 
the importance of different spatial data layers can vary significantly as indicated by expert 
knowledge (Table 7) in this research. So, it is critical to provide greater importance to the 
results obtained from approach 2. 

As per approach 2 (variable weights for the layers and variable weights for the classes), 
Kumasi has 3% (189 hectares or ha) of the total IV wetland area (6389 ha) as highly suitable 
and 36% area (2297 ha) as suitable (Table 8, Fig. 10). The results for Tamale were similar 
with 4% (236 ha) of the total IV wetland area (6240 ha) as highly suitable and 43% area 
(2710 ha) as suitable. Overall, 39-47 % of the total IV wetland area is suitable or highly 

Journal of Applied Remote Sensing, Vol. 3, 033537 (2009)                                                                                                                                    Page 16



suitable for rice cultivation. These areas have low slopes (<2%), rich soils in terms of soil 
depth, and fertility (soil fertility scores vary from 11 to 40, high score is highly suitable), 
easy water\moisture availability, close to road-network, settlements, and markets. The spatial 
distributions of these suitable \ most-suitable sites are shown in Fig. 10.  The total area that 
is distributed across various spectrum of suitability (Fig. 10, Table 8) will depend on the 
number of spatial data layers and their weighting patterns. For example, Kumasi has 22 
spatial data layers compared to 16 from Tamale. This may be one of the causes of the 
differences in total areas under most suitable and suitable categories for Tamale (47%) 
versus Kumasi (39%).  
 

Fig. 10. Most suitable sites for IVs rice cultivation in (a) Kumasi (left), and (b) Tamale (right). For 
each location the results and statistics are provided considering 16 variables and two approaches: (1) 
equal weight for layer, variable weight for classes within the layer; and (b) variable weight for layer, 
variable weight for classes within layer.  
 
 

Table 8. Most suitable sites for IVs rice cultivation areas in (a) Kumasi (left), and (b) Tamale (right). 
 

Kumasi Tamale 

Equal weights Variable 
weights Equal weights Variable weights Suitability 

Area 
(ha) % Area (ha) % Area (ha) % Area (ha) % 

Not suitable 8 0 8 0 0 0 0 0 

Marginally suitable 310 5 663 10 1104 18 328 5 

Moderately suitable 2187 34 3232 51 4313 69 2965 48 

Suitable 3607 56 2297 36 762 12 2710 43 

Highly suitable 276 4 189 3 62 1 236 4 

Total 6389 100 6389 100 6240 100 6240 100 

 
4.1 Accuracy assessment 
During the field visit, we collected data in Kumasi and Tamale on suitability for 5 distinct 
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conditions: not suitable, marginally suitable, moderately suitable, suitable and highly 
suitable- to match with Figure 10 and Table 8 classes. These conditions were determined 
based on ground observations by field experts (groundtruth team that consisted of a local 
agronomist, water specialist, soil scientist, and a remote sensing expert). The precise 
locations of these areas were recorded using a GPS. Not suitable sites have either very poor 
soils, very steep slopes, or were inaccessible. Marginally suitable areas have limitations in 
soil and\or water apart from access and\or costly land preparation needs. Moderately suitable 
lands were prime for IV wetland cultivation in terms of soils and water, but required effort in 
access and land preparation. Suitable areas are similar to most suitable except for one or 
more limitations such as access or land preparation. Most suitable areas were prime in terms 
of soil and water as well as access and had least difficulty in preparing land for cultivation. 
These were also lands that are already in cultivation. In Tamale 45 points were gathered of 
which 8 were not suitable, 6 marginally suitable, 8 moderately suitable, 7 suitable, and 11 
most suitable. In Kumasi, data was gathered from 44 locations- 11 not suitable, 5 marginally 
suitable, 7 moderately suitable, 14 suitable and 7 most suitable. 

The above field truth points were overlaid on the outputs of approach 1 and 2 of Kumasi 
and Tamale (Figure 10). The best accuracies were obtained for approach 2 (variable weights 
for layers and variable weights for classes) - with overall accuracy of 84.4% for Kumasi and 
87.5 % for Tamale. The errors of omissions and commissions were <23% for both areas. The 
confusion occurred mostly between close classes (e.g., marginal and moderate; suitable and 
most suitable). 
 

5 CONCLUSION 
This research espoused and illustrated spatial modeling approach for determining most 
suitable areas for inland valley (IV) wetland rice cultivation. The process involved: (a) 
identifying and developing harmonized spatial data layers of importance, (b) providing 
weightages to spatial data layers and classes within each data layers based on expert 
knowledge, (c) developing spatial models, and (d) running spatial models using spatial data 
and their weightages to arrive at areas most suitable areas for IV rice cultivation. 

The study illustrated the successful application of the models in 2 distinct study areas of 
Ghana. The models provided the various levels of suitability, percentage areas most suited 
for IV wetland rice cultivation, and precise location of these areas. 

The research showed that 20-28% of the total geographic area was inland valley 
wetlands. Of this, less than 15% of the area is currently cultivated. Of the 20-28% of IV 
wetland areas, 39-47% of the areas were considered suitable or most suitable for IV wetland 
cultivation. This mapping was performed with an overall accuracy of 84.4 to 87.5% with 
errors of omissions and commissions not exceeding 23% for the 4 suitability classes. In 
addition to these, IV wetlands have rich soils (depth and fertility) and have abundant water. 
These facts clearly imply that the IV wetlands will have a key role to play in the green and 
the blue revolution for Africa. The models precisely pin-point areas that have highest 
potential for IV wetland cultivation. The methods and models developed in this research can 
be applied across Africa to determine IV wetlands most suitable for rice cultivation in 
particular and development of agricultural lands in general. 
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