Translator Disclaimer
1 January 2011 Estimation of forest canopy leaf area index using MODIS, MISR, and LiDAR observations
Author Affiliations +
A new approach for determining the forest leaf area index (LAI) from a geometric-optical model inversion using multisensor observations is developed. For improving the LAI estimate for the forested area on rugged terrain, a priori information on tree height and the spectra of four scene components of a geometric-optical mutual shadowing (GOMS) model are extracted from airborne light-detection and ranging (LiDAR) data and optical remote sensing data with high spatial resolution, respectively. The slope and aspect of the study area are derived from digital elevation model data. These extracted parameters are applied in an inversion to improve the estimates of forest canopy structural parameters in a GOMS model. For the field investigation, a bidirectional reflectance factor data set of needle forest pixels is collected by combining moderate-resolution-imaging-spectroradiometer (MODIS) and multiangle-imaging-spectroradiometer (MISR) multiangular remote sensing observations. Then, forest canopy parameters are inverted based on the GOMS model. Finally, the LAI of the forest canopy of each pixel is estimated from the retrieved structural parameters and validated by field measurements. The results indicate that the accuracy of forest canopy LAI estimates can be improved by combining observations of passive multiangle and active remote sensors.
©(2011) Society of Photo-Optical Instrumentation Engineers (SPIE)
Zhuo Fu, Jindi Wang, Jinling Song, Hongmin Zhou, Yong Pang, and Baisong Chen "Estimation of forest canopy leaf area index using MODIS, MISR, and LiDAR observations," Journal of Applied Remote Sensing 5(1), 053530 (1 January 2011).
Published: 1 January 2011

Back to Top