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Abstract. We propose a new algorithm for ship detection in synthetic aperture radar (SAR)
images based on the human visual attention system. The human visual attention system identifies
the prominent objects in images or scenes so that these objects can be more noticeable. Since the
ships in a SAR image of the ocean are prominent objects, they can easily be identified through
the human visual attention system. Thus, for detection of ships in the SAR images, the present
study (through its application) has modeled the human visual attention system in the detection
stage. In this way, not only can the targets be precisely detected, but also the falsely detected
pixels are significantly reduced. Compared to most existing algorithms in the literature, our pro-
posed algorithm can be used for both homogeneous and nonhomogeneous images. Accordingly,
its performance is independent of the image type (homogeneous or nonhomogeneous) and the
computation time significantly decreases. Experimental results have shown the efficiency of the
proposed algorithm for various SAR images from ERS-1, ERS-2, and ALOS PALSAR data.
© The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License.
Distribution or reproduction of this work in whole or in part requires full attribution of the original
publication, including its DOI. [DOI: 10.1117/1.JRS.7.071599]

Keywords: ship detection; synthetic aperture radar image; relief map; human visual attention
system.

Paper 12066V received Apr. 8, 2012; revised manuscript received Dec. 27, 2012; accepted for
publication Jan. 28, 2013; published online Feb. 19, 2013.

1 Introduction

One of the most common active sensors for imaging operation is synthetic aperture radar (SAR).
In recent years, high-resolution SAR images are widely used both in military and civilian appli-
cations. Much effort has been devoted to ship detection using SAR images. Because SAR images
are less influenced by the time and weather conditions than the optical images, they are more
suitable for ship detection.1–10 Systems using this technique can efficiently perform the mon-
itoring and surveillance mission of the sea surface. Ship detection is of great usefulness for
maritime surveillance, fishery activity management, monitoring ship traffic, and, in particular,
increasing maritime security by monitoring illegally operating ships, such as those involved in
piracy activities.

There are two fundamentally different means of detecting ships in SAR imagery: detection of
the ship target itself and detection of the ship wake. We note that most current research on ship
detection is based on detecting the ship rather than its wake. First of all, the reflected signal
from the ship as a feature is more useful and less dependent on the sea state and higher
than the surrounding sea clutter. Moreover, the ship wakes are often invisible for some special
angles of radar and, the detection of ship wakes needs heavy computational processing.
Consequently, in this paper, we focus on the schemes of detecting ship targets themselves rather
than ship wakes since ships have more robust backscattering properties than ship wakes, and ship
wakes do not exist sometimes.1

Due to the corner reflection from the ship structure or between the ship body and ocean
surface, ship targets are usually clear in SAR images. When the ocean surface is relatively
calm (e.g., when the wind speed is lower than two meters per second), the reflection of the
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ocean surface to the radar wave is specular reflection and the echo signal is very faint. In most
research, the background of the SAR images is quite dark and targets are bright, so it is very easy
to detect these ship targets. On the other hand, when the wind is fierce, large waves will be
stirred. The backscattering echo will be very strong and the whole SAR image will be rather
bright. This causes many difficulties in the detection of the ships, and especially small ships.2,3

The conventional method of ship detection uses constant false alarm rate (CFAR) in which
the threshold value automatically adapts to the statistical distribution of the signal in a detection
window.2,3 The main disadvantage of CFAR is that if the signature of a ship has a similar
intensity level as its surroundings, the extraction of ships becomes very difficult and has false
alarms unavoidably. Other cross-correlation algorithms such as in Ref. 4, techniques based on
wavelet,5,6 detection methods based on polarization7,8 and Lognormal distributions,9 Weibull,10

K,11–13 and α-stable14,15 have also been suggested. When using these distributions for modeling
the sea clutter in a CFAR algorithm, we find that they either produce a lot of false alarms or miss
some ship target detections. However, none of them can be the same with all the clutter back-
grounds in SAR images. For the homogeneous areas of the SAR clutter background, Gauss, K,
and G0 distribution can be used to model the clutter. Compared with other distributions, Gauss
distribution has many advantages, such as fewer undetermined parameters, less calculation com-
plexity, and easy realization. For the heterogeneous areas of the SAR clutter background, only K
and G0 distribution can have a good effect to simulate the SAR clutter background. However,
parameter estimation needs complex numerical calculations and takes a lot of time.11–13

Therefore, the algorithms utilized in this distribution are far less effective in real-time detection
systems and cannot detect a target whose intensity is at a similar level to the clutter. Articles
employing K distribution have used processing of the small size images with low resolution in
order to decrease processing time.

Most research studies on ship detection in SAR images have chosen homogeneous and
uniform images of ocean surface.16–18 Homogeneous images of the ocean surface does not
contain harbor areas, urban areas, and oil spills. However, some studies have recently been
conducted in order to deal with nonhomogeneous SAR images consisting of nonuniform ocean
surface. Nonuniform ocean surface is usually the result of oil spills, wind, or some other
geographical factors.19–23 Nevertheless, nonuniformities of these images are not as much as
the nonuniformities of the nonhomogeneous images, including harbor areas, urban areas, and
mountains.24–26

All the algorithms used for ship detection in the homogeneous SAR images are to reduce the
noise from the sea and detect the ships without any visible falsely detected pixels. In addition to
the noise reduction for ship detection in nonhomogeneous SAR images, it is also required to
remove the areas of images with intensity the same as or more than the ship area’s intensity.25

Furthermore, the background of homogeneous SAR images is exactly the ocean surface, while
the background of nonhomogeneous SAR images is usually composed of several different
scenes. Thus, unlike the homogeneous images that require only a simple distribution for model-
ing clutter of background (such as Gaussian distribution), nonhomogeneous images need a
relatively complex distribution.

It should be noted that most papers have presented algorithms for either homogeneous or
nonhomogeneous images, while there are only a few papers considering both homogeneous and
nonhomogeneous images.22 There are two main difficulties in making recommendations. First,
different types of imagery require different algorithms. Second, there is a lack of rigorous per-
formance evaluation in the literature. Often the imagery is visually ground-truthed and some
algorithms are very poorly tested with results only being presented for a small number of images.
This makes comparison of the various approaches difficult.

In this paper, we have presented a new algorithm for ship detection in SAR images based on
the human visual attention system. In contrast with most existing algorithms in the literature, our
proposed algorithm can be used for both homogeneous and nonhomogeneous images. While
dealing with nonhomogeneous images, this algorithm has a quite acceptable processing time
and its computational efforts are also reasonable. Furthermore, in order to evaluate the efficiency
and reliability of the proposed approach, various SAR images have been applied. The rest of this
paper is organized as follows. Section 2 introduces the paper methodology. Experimental results
are provided in Sec. 3. Finally, concluding remarks are provided in Sec. 4.
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2 Methodology

Figure 1 represents the flowchart of the suggested approach. Our proposed algorithm falls into
two main stages; concerning the function of each step, the first stage is here called the pre-
processing stage and the second one is named as the detection stage. There will be the same
preprocessing stages on both right-hand and left-hand paths of the flowchart in Fig. 1.

In the first stage, the land areas of the image such as cities, harbors, mountains, etc. are
removed as much as possible. Simultaneously, the noise of the sea surface is significantly
reduced. The input SAR images have been divided into 75 × 75 pixel subimages in the left-
hand path, as shown in Fig. 1. Then, independent processing of each subimage is performed
based on step 2, and finally the minimum of both right-hand and left-hand paths is calculated.
Now the input SAR images are preprocessed and ready to be used in the detection section. By the
second stage, the TF threshold is applied to the final preprocessing image; the desired object
inspired by the human visual attention system is detected; and finally pulse cosine transform
(PCT) is employed.

2.1 Preprocessing Stage: Removing Land Areas and Reducing Noise at
Sea Surface

In this stage, a new algorithm for removing high-intensity land areas from the SAR image has
been proposed. Simultaneously, the noise of the sea surface is considerably reduced. In the
following, different steps in the preprocessing stage are described.

Step 1: Input image is partitioned into several square subimages of equal sizes (Fig. 2).
The size of the subimages depend on various parameters, including image resolution, size of

the smallest and largest ship in the image, noise of the sea surface, minimum distance between
the ships, and minimum distance between ships and land areas in the image. In this paper, a
subimage size equal to 75 × 75 pixels has empirically been considered.

Step 2: Processing of each subimage is performed as follows:
A moving window of 3 × 3 pixels is applied to each subimage (Fig. 2). This moving window is

shifted one pixel sequentially until the entire subimage pixels are swept. In each shift, the value of ν
is calculated from Eq. (1) and its value is substituted into the central pixel of the moving window.

Detection

Preprocessing

The original SAR image 

Dividing the image into 75×75 pixel 
sub-image 

Independent processing each sub-image 
based on step 2 

To store preprocessing image in the 
S

Dividing the image into 150×150 
pixel sub-image 

To store preprocessing image in the S2

Minimum 

Output of preprocessing stage (S3

)

Independent processing each sub-image 
based on step 2 

Applying the FT  threshold 

Relief map 

Applying the DT  threshold and 

Output of detection stage 

Fig. 1 Block diagram of the proposed algorithm.
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ν ¼ ½μlocal window�2
2½σtile�2

; (1)

where μlocal window is the average of pixels in the moving window, and σtile is standard deviation of
all pixels in the processed subimage. ν indicates the group of pixels which is brighter than other
pixels in the subimage.27

This operation removes land areas and many pixels with high brightness but maintains
the ships with only a few pixels. As an illustrative example, consider a subimage t1 in which
there are one or more ships, and the remaining pixels create the background. Consider
another subimage t2 where all or most of its pixels have formed the dry area in the image.
Due to the fact that combination of dry area (inland area) with sea area provides nonuniform
SAR image significantly, data scattering over the t2 subimage is much higher than the data
scattering in t1.

Consequently, the standard deviation (SD) of pixel values in the t2 subimage is much greater
than that of t1. On the other hand, the standard deviation square of each subimage is in the
denominator of Eq. (1); as a result, for the nonuniform subimage t2 with great SD, the value
of ν becomes very small. In contrast, for the t1 subimage consisting of the ship or part of it, SD is
rather small. This leads to a greater value for ν which in turn causes the ships to be seen more
clearly.

Step 3: In this step we assume that step 2 of the processing operation has been performed for
all subimages.

Note that the boundary of the ocean regions and other areas (e.g., urban areas, port areas,
mountains, etc.) is usually bright and has high intensity. Consider a subimage in which most
pixels are associated with the ocean and just a few pixels are related to the border areas with
higher values of intensity. This subimage is similar to a subimage consisting of a ship with a few
bright pixels and ocean background with darker pixels.

After step 1 of the processing operation, the edges of the processed image become brighter
than the surrounding environment. This can clearly be observed in Fig. 3(b).

The result of applying the proposed algorithm in step 1 to the SAR image is presented in
Fig. 3(a) where 19 fishing boats on the sea surface are the desired objects for detection.

In order to avoid this undesired situation, we add an extra processing step to ensure that
none of the subimages in the image undergoes conditions such as those mentioned in the pre-
vious example. For this purpose, the result of step 2, a preprocessing image such as Fig. 3(b), is
stored as the S1 image. Then, the size of subimages is slightly altered and steps 1 and 2 are
repeated again with the new subimage sizes, like 150 × 150 pixels. Finally, the result is stored
again and we call it the S2 image. The result of repetition of step 2 of the processing with the new
subimage size is that subimages with ocean area as a major part and with only a few bright
boundary pixels dramatically change. Two types of change can be distinguished for them: either
bright boundary pixels have gone outside the new subimages or brighter boundary pixels have
come into the new subimages. In both cases, the bright borders in the new subimages are not

Fig. 2 Dividing of the image into the square frames with the same size and processing of each
subimage.
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detected as the desired objects by our algorithms (note that in the second case, where brighter
boundary pixels come into the subimage, the standard deviation of the subimage becomes greater
and then ν significantly decreases). Of course in the new S2 image, new subimages with unde-
sired conditions may also be produced (although we have just tried to avoid them). This can be a
dilemma for our method; fortunately this problem can be solved by a simple trick. In the images
S1 and S2, peer to peer subimages do not have similar conditions; therefore, bright boundary
pixels are not common for the corresponding subimages in the images while the ship in both
images is clearer than their surrounding environment. So a new image, S3, of which each pixel is
a minimum of corresponding pixels in S1 and S2 is obtained. Therefore, S3 is an image, of which
the bright pixels are only the ship pixels, and so the ship in the image can be detected without any
undesired boundary pixels.

Figure 3(c), displays the result of steps 1 and 2 with the 150 × 150 size of subimage, and
Fig. 3(d) displays the minimum of Fig. 3(b) and 3(c).

As mentioned before, the subimage size depends on several parameters. One of these param-
eters is image resolution. The subimage size directly depends on the image resolution; for higher
resolution images, the bigger subimage size should be selected. Bigger subimage size in turn
increases the standard deviation of subimages. Although a greater standard deviation reduces
the noise of the image, it may deteriorate the ship detection process. If the subimage size is
inappropriately selected, it may lead to the removal of one or more ships in the preprocessed
image. The combination (75 × 75, 100 × 100), (95 × 95, 100 × 100) and (100 × 100, 150 × 150)
subimage size can be considered as good options for our SAR images.

However, our experimental results have shown that the combination (75 × 75, 150 × 150)
yields the best results for our SAR images.

Fig. 3 (a) The original image. (b) The preprocessing image with a subimage size equal to
75 × 75 pixels. (c) The preprocessed image with a subimage size equal to 150 × 150 pixels.
(d) Output of the preprocessed stage.
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2.2 Detection Stage

Visual attention is one of the most important parts of consciousness.28,29 In fact, most of the infor-
mation that a person receives from the outside is through the visual system. It has been proved that
the human visual attention system has a mechanism to stare at prominent objects in a scene or
landscape.28 When we look at a scene or image, there are some prominent and noticeable objects
which attract much of our attention. In this context, the human visual attention system, similar to a
spotlight, quickly sweeps the entire visual field and selects the prominent objects. Then, our visual
attention system sends their images to our short-term memory and causes us to gaze at them.

Along with neurological studies on the human visual attention system, some artificial intel-
ligence researchers have sought to find a complete computational model for the visual attention
system. Recently, several papers studying the computational model for the visual attention sys-
tem have been published. In Ref. 30, an acceptable biological model for the human visual atten-
tion has been introduced, of which the attention mechanism has been developed in Ref. 31. Some
new approaches based on Fourier transform (FT) have been proposed in Refs. 31–33. These
approaches can accurately highlight the prominent areas of an image in a minimum time.
Finally, Refs. 34 and 35 have proposed new transforms called pulsed principal component analy-
sis (P2CA) and pulsed cosine transform (PCT) to enhance and complete the previous models.
Figure 4 shows an example of the PCT model for computing the relief map of a natural land-
scape. A relief map shows the different heights of the land forms using color shading and lines.
The bright areas in the relief map attract human visual attention more than the dark areas.

It has been mentioned that the human eye is superior to existing automatic algorithms in
observing a slick in the context of the surrounding sea, and surprisingly, some vessels undetected
by conventional techniques are visible to the eye.5,36 Inspired by this rationale, a simple and
effective algorithm is proposed based on the application of the human visual attention
model for ship detection. In this paper, PCT is selected for visual attention model due to its
computational efficiency and its great capability to predict eye fixation. Further details on
the subject are provided in Ref. 34. Steps in the algorithm are as follows.

Step 1: In this step, a thresholding process is used to remove noisy pixels and enhance the
binary image quality for the next step. For this purpose, the final preprocessed image of the
previous stage (S3) is used for computing the threshold value. The threshold value is calculated
from the following equation:

TF ¼ μS3 þ ðα × σS3Þ; (2)

where μS3 and σS3 are the mean and standard deviation of S3, respectively, and α is a constant
value. A greater value of α increases the value of the threshold and decreases the noise of the
image. On the other hand, an inappropriate large value of α causes some pixels of the ship to be
segmented as noisy pixels, so the value of α should be carefully chosen. In this paper, we set
α ¼ 0.6. The thresholding process is performed through the following equation:

S4ðx; yÞ ¼
�
S3ðx; yÞ; when S3ðx; yÞ ≥ TF

TF; when S3ðx; yÞ < TF
: (3)

Now, the enhanced binary image S4 is ready for the visual attention model input.

Fig. 4 (a) The original image. (b) Relief map.
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Step 2: In this step, a new PCT-based model for visual attention is introduced. This model
produces relief map of the input image. With S4 as an input image, the human visual model will
be illustrated in the following

P ¼ sign½cðS4Þ� (4)

F ¼ c−1ðPÞ; (5)

where c and c−1 are two-dimensional discrete cosine transform (DCT) and its inverse, respec-
tively.37 Mark signð·Þ is sign function. Note that F is non-negative and negative values of inverse
DCT are set to zero. Then, a Gaussian filter is used for smoothing the result

Ssaliency ¼ G � F2; (6)

where G is a two-dimensional low-pass Gaussian filter and the “*” symbol is the convolution
operator. Note that F is squared in Eq. (6) for visibility.

Equation (4), which is adopted from Ref. 34, is called the pulsed cosine transform (PCT).
This equation holds only the sign of DCT coefficients and the amplitude of DCT coefficients is
not used. A detailed description of this model has been provided in Refs. 34 and 35.

Step 3: In this step we complete our ship detection algorithm by an adaptive thresholding
process. Although in this step, ship detection can be performed using a fixed threshold, a con-
stant threshold is not applicable for all cases. An adaptive threshold determined by the image
values is used for efficient object detection. The adaptive threshold for automatic detection of
ships is obtained through the following equation:

TD ¼ μSs þ ðβ × σSsÞ; (7)

where μSs and σSs are the mean and standard deviation of the relief map, respectively. β
is a constant which is empirically adjusted. Finally, ship detection is done using the following
equation:

Dðx; yÞ ¼
�
1; when Ssaliencyðx; yÞ ≥ TD

0; when Ssaliencyðx; yÞ < TD
: (8)

Usually, the deviation of the relief maps with ship signatures is small, while the deviation of
the relief maps without any ship signature is comparatively large. Therefore, given a proper
parameter β and calculated by Eq. (8), the detection threshold for a ship-free relief map can
become large enough to avoid false alarms. In this paper, we choose β ¼ 14.5 empirically
based on the observations and experimental results.

Figure 5(a) is the result of applying the threshold to the image in Fig. 3(d). Figure 5(b) is the
relief map of Fig. 5(a) and 5(c) shows the final detected image. Our algorithm result has only one
falsely detected pixel [Fig. 5(c)] of which the size and shape are very similar to those of the
desired targets.

As mentioned before, dimensions of the subimage depend on the minimum distance between
ships and land areas in the image. If the distance of a ship is smaller than the size of the sub-
images, the ship is not detected. For example, if the size of subimage is 75 × 75 pixels, then the
minimum distance between the ships and the coastal area can be 75 × 75 pixels. Simulation
results for the subimage sizes (150 × 150, 550 × 550), which have been used concomitantly,
are shown in Fig. 6. As it can be seen, the targets on the left half of the image have not
been detected through the subimage size equaled to 550 × 550 pixels [Fig. 6(c)] while all targets
have been detected through the subimages size equaled to 150 × 150 pixels [Fig. 6(b)].

3 Experimental Results

In this section, the experimental results of the proposed algorithm are shown. To ensure the
accuracy and efficiency of the algorithm for ship detection, a wide variety of homogeneous
and nonhomogeneous SAR images are used. In all test images, the subimage size of
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Fig. 6 (a) The original image. (b) The preprocessing image with a subimage size equal to
150 × 150 pixels. (c) The preprocessed image with a subimage size equal to 550 × 550 pixels.
(d) The enhanced image of the first step of the detection stage. (e) The relief map of the final
preprocessed image. (f) The output of the detection stage.

Fig. 5 (a) Enhanced image of the first step of the detection stage. (b) Relief map. (c) Output of the
detection stage.
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(150 × 150, 75 × 75) for the preprocessing stage is used and for the detection stage we choose
α ¼ 0.6 and β ¼ 14.5. Also, for each SAR image the results of the preprocessing (S3 image) and
detection stage (resulted relief maps and final detected image) are shown. In addition, the results
of the proposed algorithm are compared with a conventional CFAR detector with a 0.5% false
pixel detection rate.

It should be noted that some previous research has defined a significance parameter for meas-
uring the ability of the algorithm for target clarity (such as Refs. 5 and 36). In this paper, the
significance parameter is used to measure the ability of the relief map of the proposed algorithm
for clarifying of the targets. Like previous works in the literature, significance is defined as follows:

significance ¼ θT − μB
σB

; (9)

where μB and σB are the mean and standard deviation of the background, respectively, and θT is the
maximum of the target values.

Example 1: Figure 7(a) shows a SAR image (280 × 280 pixels) in which a ship is repre-
sented. Detection of the ship in this image is somewhat difficult, because the speckle is
very strong. Figure 7(b) to 7(e) displays the CFAR detection, the preprocessing stage, relief
map, and the detection result of out method, respectively. As can be observed, the ship detection
is completely successful without any falsely detected pixels. The conventional CFAR method
would cause false alarms even though it works at a very low false alarm rate.

Example 2: Figure 8(a) shows a SAR image (1160 × 770 pixels) taken by ERS-2 which
belongs to the area size of 14.5 × 9.7 km2. In the top right corner of the image there is a

Fig. 7 (a) ALOS SAR image (significance ¼ 2.38). (b) Detection result of CFAR. (c) The final pre-
processed image (significance ¼ 7.68). (d) The relief map of the final preprocessed image
(significance ¼ 17.70). (e) Output of the detection stage.
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Fig. 9 (a) SARERS-2 image (significance ¼ 8.34). (b) Detection result of CFAR. (c) The final pre-
processed image (significance ¼ 11.88). (d) The relief map of the final preprocessed image
(significance ¼ 84.85). (e) Output of the detection stage.

Fig. 8 (a) SARERS-2 image (significance ¼ 3.07). (b) Detection result of CFAR. (c) The final pre-
processed image (significance ¼ 5.34). (d) The relief map of the final preprocessed image
(significance ¼ 24.68). (e) Output of the detection stage.
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ship with a long wake. Also in the bottom right corner, there is a dark area. The darkness of this
area is due to sea turbulence which has caused a weak signal has been reflected towards the radar.
Due to the dark area in the image, it is a nonuniform image, which aggravates the ship detection
process. However, our algorithm appropriately detects the ship without any falsely detected
pixels.

Example 3: Figure 9(a) shows an image of ERS-2 SAR (840 × 580 pixels) from Corsica
Island in the Mediterranean Sea. Land areas and black spots in the image have made a very
heterogeneous region. In this image, there are two ships that our algorithm detects them com-
pletely without any falsely detected pixels.

Example 4: Figure 10(a) shows an image of ERS-2 SAR (570 × 870 pixels) in which there is
a ship. Bottom left corner shows the small city of Bastia. This city and its bright spots have made
this SAR image very heterogeneous. But as it is observed, our algorithm completely detects the
ship without falsely detected pixels.

Example 5: Figure 11(a) shows an image of ERS-1 SAR (437 × 473 pixels) from Genova in
Italy in which there are two tanker ships in the front harbor. This is a very noisy and hetero-
geneous image. But as it is observed, the ships have been completely detected by our algorithm
without any falsely detected pixels.

Example 6: In order to test the reliability of the proposed algorithm, two SAR images without
any ships have been used in this example. Figure 12(a) shows the two SAR images
(256 × 256 pixels) without any ship signature. The first image is homogeneous regions and
the second one is heterogeneous regions. Our algorithm in both images neither detects any target,
nor has any falsely detected pixels. Thus, there is no false detection in the output of our method.
Note that CFAR still has false alarms in this case.

Fig. 10 (a) SARERS-2 image (significance ¼ 4.98). (b) Detection result of CFAR. (c) The final
preprocessed image (significance ¼ 6.18). (d) The relief map of the final preprocessed image
(significance ¼ 17.89). (e) Output of the detection stage.
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The ground truths of SAR images are located at the following addresses in Refs. 38 and 39.
The experiments were conducted using a PC with Pentium Dual-Core CPU of 2.8 GHz and

memory of 4 GB. The program codes were written in MATLAB. For the image shown in Fig. 8,
the computation times of the proposed detector and the two detectors used for comparison are
displayed in Table 1.

It is noticed that the proposed detector consumes less time than the CFAR-based Gaussian
distribution and CFAR-based K distribution detectors since no distribution parameter estimation
is required.1,13

In order to make further comparison between the CFAR algorithm and the proposed algo-
rithm, we derive the receiver operating characteristic (ROC) curve. A plot of the target detecting
probability (Pd) versus false alarm ratio (Pf) with changing the decision threshold is called
receiver operating characteristic (ROC).40

The ROC curves corresponding to the CFAR and proposed detectors are shown in Fig. 13,
where Pf and Pd are defined as40

Fig. 11 (a) SARERS-1 image (significance ¼ 7.17). (b) Detection result of CFAR. (c) The final
preprocessed image (significance ¼ 24.17). (d) The relief map of the final preprocessed image
(significance ¼ 34.36). (e) Output of the detection stage.
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Pf ¼ Number of clutter chips detected as target chips

Total number of clutter chips
; (10)

Pd ¼ Number of target chips detected as target chips

Total number of target chips
. (11)

As shown in Fig. 13, combining Eqs. (10) and (11), we obtain the receiver operating
characteristic curves of the CFAR algorithm using K distribution and the presented method.
These curves indicate that the method in this study has better detection precision than the
CFAR algorithm based on K distribution.

Table 1 Computation time of the proposed detector and the three detectors used for comparison,
including the CFAR based on Gaussian distribution and CFAR based on K distribution detectors.

Detector Proposed detector
CFAR based on

Gaussian distribution
CFAR based on
K distribution

Computation time (s) 0.68 3.54 11.2
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Fig. 13 Comparison of the ROC plot for detection performance.

Fig. 12 (a) ALOS SAR image. (b) Detection result of CFAR. (c) The final preprocessed image.
(d) The relief map of the final preprocessed image. (e) Output of the detection stage.
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4 Conclusion

In general, the CFAR detector or its enhanced variations are used for ship detection in the
SAR images. The efficiency and performance of the CFAR detector are always influenced
by the speed and accuracy. On the other hand, variations in these parameters in the CFAR detec-
tor are in opposite directions. That is, an increase in the speed results in a decrease in the
accuracy and vice versa. Consequently, there has to be a trade-off between speed and accuracy
in order to reach the optimum performance for these algorithms. Most of the algorithms pro-
posed for ship detection in SAR images have sought to maintain the accuracy while boosting
the speed.

However, these efforts have not always been successful and most of these algorithms have
only yielded good results for special images, which are not efficient enough compared to the
other types of images. In the present study, it has been sought to address this problem through the
application of the human visual attention system for the detection of the desired objects.

To perform the ship detection in SAR images, a new algorithm based on the human visual
attention system has been proposed. In the first stage, the preprocessed stage, the high-intensity
land areas of the image are removed, and noise of the sea surface is considerably reduced. In the
second stage, the detection stage, this study has, thus, modeled the human visual attention system
in the detection stage. In this context, not only can the targets be precisely detected but also the
falsely detected pixels are significantly reduced. Besides, processing speed significantly
increases. Furthermore, it is appropriate for real-time applications.

The significance parameter has been used to measure the capability of the relief map of the
proposed algorithm for clarification of the targets. The experimental results indicate that, with
our proposed method, the significance parameter is improved more than 10 times compared to
the CFAR algorithm. Several ERS-1, ERS-2, and ALOS PALSAR SAR images have been used
to justify the proposed algorithm. Compared to a typical CFAR algorithm, our proposed algo-
rithm shows better efficiency in detecting ships for both homogeneous and nonhomogeneous
images. As the results show, false alarms in the candidate chips are greatly suppressed, while
most real ship targets are well maintained.
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