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Abstract. Remote sensing classification of tidal flat wetlands is important for obtaining high-
precision information on wetland features. In this study, Thematic Mapper (TM) images of the
Yancheng National Reserves, Jiangsu Province, China, for the years of 1996, 2002, 2006, and
2010 were considered. First, the optimum combination of bands was chosen. Second, vegetation
and nonvegetation regions of interest were established to investigate the spectral reflectance
characteristics of the different ground objects. Then we used the knowledge-based decision
tree method on different features, such as the normalized difference vegetation index and the
spectral reflectance. In particular, the ancillary information is helpful to distinguish the vegeta-
tion classes. The results demonstrate that the classification system has advantages in identifying
the types of vegetation in ecotones, and it is 4 percentage points higher than the maximum like-
lihood method in classification accuracy. This study is useful to discriminate vegetation, and it
provides an important reference for the effective extraction of tidal flat land-cover information
from TM images. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JRS.7.073457]
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1 Introduction

Several researchers have mapped vegetation types using Landsat data, through methods such as
supervised classification and the use of vegetation indices and decision trees.1–5 Pal and Mather
have already described the effectiveness of decision tree methods for land-cover classification
using Landsat data.6 There are also comparisons of Landsat Thematic Mapper (TM), multitem-
poral remote sensing image data sets, and high-resolution photography to identify changes in
complex coastal wetlands.7–9 Coastal wetlands experience intense and sustained environmental
pressures, which show multiscale dynamics and are likely to have considerable uncertainties in
response to future environmental change.10–12 As an important part of the study of wetlands,
methods have been applied to extract landscape information effectively from TM images.
Research into methods to identify land-cover types has gained momentum but also has become
increasingly difficult.13 TM images act as a source of data on wetlands, and such information can
be extracted for a combination of multisubareas and multilayers on the basis of systemic analysis
of spectrum characteristics of all types of wetlands.14 Decision tree methods for land-type clas-
sification are more accurate than traditional computer automatic classification methods.15–20 The
SanJiang plain (China) freshwater wetland decision tree model was established by combining the
band threshold method with visual interpretation in Chinese coastal zones.21 The aim of decision
tree classification is to confirm a threshold value. Artificially seeking the threshold based on the
distribution of the value in the feature space is convenient and efficient.22,23 Previously, several
studies have employed Landsat TM images for mapping wetland vegetation types.24–26 They
attempted to combine TM imagery and ancillary environmental data using classification
trees.27,28 However, complete utilization of image and environmental characteristics to quickly
and accurately extract tidal flat wetland vegetation information is still an urgent and important
challenge. Our description is not only about the methods involved but also, more importantly,
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about how we can map vegetation land cover using remote sensing approaches in coastal
wetlands.

2 Study Area

The study area of Yancheng National Reserve Area is in Jiangsu Province, China. It is a typical
muddy tidal flat coastal wetland due to the wasted Yellow River mouth and the Yangtze River,
which outputs a lot of sediment in northern Jiangsu Beach and convergence deposition.
Sediment particles are smaller because of the gentle tidal flow, the formation of the largest
and the most original muddy tidal flat in China (Fig. 1). The study area is located in the latitude
range of 33° 25′ 0′′ to 33° 39′ 4′′ N, and the longitude range of 120° 27′ 40′′ to 120° 40′ 40′′ E.
Its total area is 191 ha, and it is located between Xinyang port and DouLong port, to the east of
HuangHai, with the west bounded by a sea road. The geographical position of this wetland is
very important. Rainfall is concentrated in the summer season, with less precipitation in winter, a
submerged intertidal zone time interval of 7 to 12 h, and a high-water level of 1.27 to 3.60 m.29

The tidal flat wetland is considerably influenced by regular semidiurnal tides. The wetland is rich
in vegetation, with a complete tidal flat vegetation succession; the vegetation types from land to
sea can be mainly classified into the Phragmites cammunis belt, the Suaeda salsa belt, the
Spartina alterniflora Loisel belt, and the mudflats belt.30 Since the tidal flat wetland constantly
silts up, the landscape pattern is continuously evolving.31

3 Data Processing and Research Methods

3.1 Data Selection

The data source of the TM data is taken (days, months, years) as shown in Table 1.
Images of the vegetation growing season and low water are selected since they are useful for

improving the recognition accuracy.

Table 1 Data source for the Thematic Mapper (TM).

Type TM TM TM TM TM

Path 119037 119037 119037 119037 119037

Acquisition
time

September
22, 1996

September
22, 2002

September
18, 2006

September
21, 2010

September
24, 2011

Fig. 1 The study area.

Wang et al.: Classification of land-cover types in muddy tidal flat wetlands. . .

Journal of Applied Remote Sensing 073457-2 Vol. 7, 2013



3.2 Data Processing

Remote sensing image preprocessing includes atmospheric correction, geometric precision cor-
rection, and feature extraction. The FLAASH atmospheric correction module, which is based on
MODTRAN4 and retrieves spectral surface reflectance from multispectral remote sensing
images, is the preferred atmospheric correction model. This method is based on observations
by Kaufman et al.32 of a nearly fixed ratio between the reflectance for pixels at 660 and
2100 nm.33–35 The FLAASH module in ENVI probably provides the most accurate means
of compensating for atmospheric effects. For geometric correction, 12 to 20 ground control
points are selected, usually including the locating object, which is explicitly identified.36

The quadratic polynomial resampling technology correction refers to the total error control
in a given pixel. A training area and an appropriate band combination was selected by consid-
ering the band wavelength of TM imagery, the region of interest (ROI) for the spectral reflec-
tance of different types, the normalized difference vegetation index (NDVI), and the ecological
characteristics (ecological niche and the color of the vegetation leaves in September). We made
an exploration of TM band reflectance characteristics of each band for each land-cover type
through the ROI training area. The ROI includes 1316 Spartina alterniflora Loisel, 633mudflats,
1253 Suaeda salsa, 1002 Phragmites cammunis, 525 water bodies, and 4803 road samples
(Fig. 2).

The NDVI and spectral reflectance values of different features were collected. The NDVI has
been widely used for vegetation application, and the calculation of NDVI is as follows:

NDVI ¼ ðNIR − RedÞ∕ðNIRþ RedÞ: (1)

Red and NIR stand for the spectral reflectance in the red and near-infrared bands, respec-
tively. Normalized NDVI values lie between (−1, 1). Under normal circumstances, values for
water are less than 0 and values for vegetation are larger during the growing season. A large
amount of the biomass in this study has a large NDVI value.37,38

3.3 Decision Tree Classification Method

Decision tree methods for land cover classification are more convenient and efficient to solve the
basic classification problem. The decision tree is based on a multistage or hierarchical decision
scheme or a tree-like structure. The tree is composed of a root node containing all data, a set of
internal nodes (splits), and a set of terminal nodes (leaves). Each node of the decision tree’s
structure makes a binary decision that separates either one class or some of the classes from
the remaining classes. The processing is generally carried out by moving down the tree
until the leaf node is reached. Thus, the basic concept of a decision tree is to split a complex
decision into several simpler decisions, which may lead to a solution that is easier to interpret.
In a decision tree approach, features of data (i.e., bands) are predictor variables, whereas the
class to be mapped is referred to as the target variable.39 When the target variable is discrete
(e.g., class attribute in a land cover classification), it is known as a decision tree classification.
A decision tree classification system should confirm a threshold value based on the distribution
of features in the feature space. The classification processing is conducted using ENVI4.7 soft-
ware. The regional overlay is visualized using ArcGIS9.3 software.

3.4 Selection of the Remote Sensing Band Combination

The band selection is done through data exploration. It helps to display and analyze remote
sensing data. Remote sensing data at different wavelengths can be used to distinguish different
vegetation types.

The results of feature selection indicate the range (maximumminus minimum) of bands 1 and
2 are small; the spectral reflectance area is narrow, which is unfavorable for feature recognition.
Moreover, the spectral reflectance of P. cammunis and water bodies have almost identical mean
values and hence cannot be distinguished from one another. However, the standard deviation
value of P. cammunis is higher than that of water bodies, revealing that feature separability
is stronger for P. cammunis than water bodies. A comparison of the reflectance standard
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deviation values of all seven bands shows that bands 1 and 2 have the lowest values, so these two
bands should not be chosen. Band 3 (0.63 to 0.69 μm) reflects not only plant chlorophyll infor-
mation but also beta-carotene and pigment information in autumn. Band 4 (0.76 to 0.90 μm) is in
a high-reflection region for plants and is hence used for vegetation classification, biomass inves-
tigation, and determination of crop growth; accordingly, it is a general band in plant classifi-
cation. Band 5 (1.55 to 1.75 μm) includes a large amount of information and thus has
a high utilization rate. Bands 5 and 7, the spectral reflectance minima of water body, mudflat,
and road, appear to be negative. These three bands (bands 5, 4, and 3) were used to separate
vegetation from nonvegetation land-cover types.

3.5 Tidal Flat Wetland Hierarchical Classification

This research considers NDVI, the band reflectance characteristics, and ecological features
(especially ecological niche and the color of the vegetation leaves in September) of six typical
tidal flat items, namely, water body, roads, mudflat, S. alterniflora, S. salsa, and P. cammunis.
The first three types are nonvegetation. The last three types belong to vegetation. In the tidal
flat wetland in the study region, the environmental characteristics are that the plants have

Fig. 2 The statistics of Thematic Mapper (TM) band reflectance characteristics of each band for
each type.
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predominant zonal distribution characteristics. Vegetation and nonvegetation land-cover infor-
mation are precisely extracted by utilizing NDVI index segmentation. The process of selecting
a value was repeated, and the value of NDVI was finally determined to be zero after comparing
several results. This means that pixels with NDVI > 0 represent vegetation regions and those
with NDVI < 0 represent nonvegetation regions.

3.5.1 Classification of wetland vegetation types

The tidal flat vegetation can be mainly divided into three types: S. alterniflora, S. salsa, and
P. cammunis. Their NDVI values are shown in Table 2.

The NDVI mean value (0.084258) for S. salsa was significantly lower than the values
(0.509434, 0.550454) for the other two types of vegetation in the TM images. This is mainly
because S. salsa’s biomass was relatively small and its color was red, while the biomasses of
S. alterniflora and P. cammuniswere higher and were shown in green on the image of September
21, 2010a. S. salsa can therefore be extracted through its NDVI value.

Zonal distribution vegetation classification. The distributions of other types of vegeta-
tion in the area were not determined only on the basis of analysis of the NDVI values. Since the
NDVI values for the other two plants are almost identical, it is difficult to distinguish between
them only through the NDVI values; hence the plants must be identified by their different envi-
ronmental characteristics and reflectance properties.

A spectral reflectance curve represents the spectral selective absorption of the incident light,
the light scattering, and the comprehensive characteristics of specular reflection on the surface of
the object. Figure 3 shows the spectral reflectance response values of different wave bands for all
three plants, obtained from the reflectance image acquisition of pixels, comprising purely pixel
of each plant.

The closer the spectral curves, the more difficult it is to distinguish the features. From the
typical feature spectrum curve in Fig. 2, the three vegetation types are distinguishable. However,
because of the phenomenon of “foreign body with same spectrum” and the ecotone that exists in
the case of S. alterniflora, S. salsa, and P. cammunis, it is difficult to further distinguish between

Table 2 Statistics of normalized difference vegetation index values of zonal vegetation
distribution.

Vegetation types Min Max Mean

P. cammunis 0.172336 0.704160 0.509434

S. salsa −0.180490 0.459669 0.084258

S. alterniflora 0.103365 0.753506 0.550454

Fig. 3 Spectral reflectance characteristics of the vegetation.
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them. Meanwhile, it is important to find a way to more accurately interpret vegetation types in
the ecotone.

Ecotones vegetation classification. The ecotones bandwidth for S. alterniflora and S.
salsa is ∼2.503 km, while that for P. cammunis and S. salsa is ∼1.655 km. Pure pixels, i.e., those
with only one vegetation type, were used to establish ROI. The spectral response curve was
collected repeatedly from these pure pixels through the whole reflectivity spectrum to finally
determine the value from the spectral response curve of vegetation (Figs. 4 and 5).

Since the separability of each plant’s spectral reflectance value in band 5 is strong, band 5
spectral reflectivity value was chosen to effectively separate S. alterniflora and P. cammunis.
After repeated tests, it was found that the band 5 reflectance value should be 0.12 to effectively
distinguish between these plant types (Fig. 6).

In the classification results, a small proportion of P. cammunis was classified as S. alterni-
flora. From the ecological feature point of view, this is located in the west side of S. salsa. The
field test was used to verify that the S. alterniflora was P. cammunis in fact. Accordingly, the
classification was changed to P. cammunis. Through the above methods, it is possible to identity
the distribution of zonal vegetation types in ecotones and scattered patches of vegetation types.

3.5.2 Classification of nonvegetation land-cover types

The main nonvegetation land-cover types are water body, mudflat, and road. Mudflat is mainly
found to the east of the area dominated by S. alterniflora. The waterbody and mudflat were

Fig. 4 The ecotones’ spectral reflectance of S. salsa and S. alterniflora.

Fig. 5 The ecotones’ spectral reflectance of S. salsa and P. cammunis.
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separated using the same method as that used for vegetation division, namely, the pixel spectral
acquisition method utilizing repeated NDVI and B3 band reflectance values (Fig. 7).

In the study area, identification of the road land cover is much more complex. One type is
the sea road, which has trees on both sides and a ditch along the center, while other roads
in aquaculture and waterfowl lake areas are covered by herbaceous vegetation. Furthermore,
foreign bodies may be found across the middle of dirt roads. Through the integration of remote
sensing image texture information with the vegetation classification information, road infor-
mation can finally be completely extracted in the postprocessing stage.

4 Results

4.1 Classification Results

The other three phases of image classification in the study area are realized through hierarchical
classification, with the results shown in Fig. 8.

Wetland land cover types are complex, especially for wetland vegetation. Because of “same
object with different spectrum” and “different objects with same image” phenomenons, mis-
classification and leakage of the pixels occur more frequently. These factors lead to the low
classification accuracy. There are different amounts of the pixels of vegetation types that
have been misclassified only based on spectral characteristics. Therefore, ecological niche
and vegetation growth characteristics in different belts as the ancillary information were
used to analyze the image of TM. This can identify a scattered distribution of vegetation
types and vegetation patches. It can distinguish between patches as small as 0.09 ha, of
which there are 345, accounting for 27% of the total number of patches.

4.2 Classification Accuracy Test

A confusion matrix was established to analyze and evaluate the hierarchical classification accu-
racy. The ROI training method and 55 field data were used to perform a classification accuracy
test. For this statistical classification and evaluation, there are six classes of land-cover type:
water body, roads, S. alterniflora, S. salsa, P. cammunis, and mudflat. The sample space
has a total of 3126 pixels in the 2010a image. After inspection, the overall accuracy was
(2997/3126) 95.87%. The result from the same period as the image and the maximum likelihood
method classification results (overall accuracy is 91.43%) are compared in Tables 3 and 4.

From a comparison of Tables 3 and 4, it can be seen that among the three types of vegetation,
the user accuracy is highest for S. salsa, at 93.59%. The pixels correspond to the actual vegetation
in Table 3 and to only 83.92% in Table 4. User precision indicates a high reliability of the clas-
sification diagram. Production shows that the actual accuracy for S. salsa is 94.62%, which is

Fig. 6 The decision tree of vegetation classification.

Fig. 7 The decision tree of nonvegetation.
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properly assigned to this kind of vegetation in Table 3, while 4.59%were classified as P. cammunis
and 1.81% as S. alterniflora. Meanwhile, 96.79% is properly assigned to S. salsa with 7.38%
classified as P. cammunis in Table 4 and 6.41% as S. alterniflora. In the classification statistical
classification accuracy, mudflat and water body have the highest classification accuracy. The num-
ber of false points for road classification was larger, mainly because dirt roads are covered with
vegetation and their width is narrower than other land-cover types, and some of them have ditches.

Table 3 Accuracy assessment of hierarchical classification of the 2010 TM image.

Type S. salsa Mudflat P. cammunis Roads S. alterniflora Water body

S. salsa 93.59 0 0 20 1.65 0

Mudflat 0 100 0 0 0 0

P. cammunis 4.59 0 99.3 5.93 0.78 0

Roads 0 0 0 65.19 0 0

S. alterniflora 1.81 0 0.62 0 97.57 0

Water body 0 0 0 7.41 0 100

Total 100 100 100 100 100 100

User p. 93.59 100 99.3 65.19 97.57 100

Production p. 94.62 100 91.26 100 97.95 97.34

Fig. 8 Classification map of landscape from TM images at different times.
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5 Conclusions

1. The spectrum of the tidal flat wetland features in remote sensing images is very complex,
especially for vegetation ecotones. Scattered distribution of vegetation patches makes
it even more difficult to distinguish features. So the classification’s importance is in
vegetation ecotones. It is the key to improve the accuracy.

2. The best band combination selection and feature extraction method selection is very
important for accuracy. We find that the characteristics of TM bands 5, 4, and 3,
NDVI, and the spectral reflectance of different bands further enable the construction
of the feature space for classification.

3. The decision tree method divides the complicated problem into relatively simple ques-
tions. The advantage of this method is that it produces branch nodes that can use different
attribute values in the process of establishing the decision tree. This can distinguish
patches as small as 0.09 ha. There are 345 patches that are this small, accounting
for 27% of the total number of patches.

4. Through the accuracy test, it was found that the user precision of all types of feature and the
accuracy of the producer was generally >93%, and that the overall accuracy reached
95.87%. S. alterniflora, S. salsa, P. cammunis, mudflat, and water body classification accu-
racy is higher, with user precision and accuracy of producers always>95%. In comparison
to the results of supervised classification, the overall accuracy was markedly improved.

Each classificationmethod has themost comfortable application range and its own limitations.
No one is the most common better method. It must be flexible in application. It is necessary to
integrate application of many kinds of classification methods, and combine with other image
processing technology to achieve maximum precision classification. In the future, we will focus
onusingmore new theories andnew technologies to improve the effect of the remote sensing image
classification.Wehope this article canprovidecertain reference in the tidal flat imageclassification.
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