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Abstract. The Operational Land Imager (OLI) is a new sensor developed by the joint USGS-
NASA Landsat Data Continuity Mission that should become a valuable tool for studying inland
and coastal waters. With upgrades to spectral coverage, 12-bit quantization, and increased signal-
to-noise due to its new push-broom design, OLI exhibits the potential to become the first Landsat
sensor with the radiometric resolution necessary for retrieval of the three primary constituents in
Case 2 waters: chlorophyll, suspended materials, and colored-dissolved organic matter.
Considering its traditional 30-m spatial resolution, this next-generation Landsat satellite will
be especially useful for monitoring the near-shore environment. This work presents the relevant
sensor parameters and results of experiments designed to determine if OLI will have the radio-
metric sensitivity necessary for water-based research. An OLI sensor model is developed, and its
ability to retrievewater constituents from simulated data is compared with that of existing sensors.
Results indicate that when atmospheric effects are properly accounted for, OLI introduces retrieval
errors of less than 11%of the expected observable range for all three constituents. Furthermore, by
spatially averaging a few OLI pixels, noise can be reduced to the Medium Resolution Imaging
Spectrometer levels, making this next Landsat instrument an exciting option formonitoring inland
and coastal waters. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
Unported License. Distribution or reproduction of this work in whole or in part requires full attribution
of the original publication, including its DOI. [DOI: 10.1117/1.JRS.7.073558]
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1 Introduction

The ability to continuously monitor the global water supply from satellite imagery is an ongoing
effort in the remote sensing community. Historically, water-based studies involving the use of
satellite imagery have focused over the open ocean where the optical properties of these Case 1
waters are dominated by phytoplankton and its associated material.1 With the progression of
space-based technologies, monitoring efforts have shifted to studying optically complex Case 2
waters, which are typically found in coastal regions or inland lakes and ponds. Case 2 waters are
classified as optically complex as they contain significant levels of inorganic suspended materi-
als and colored-dissolved organic matter (CDOM), in addition to phytoplankton.

Although several instruments have the ability to monitor offshore Case 2 waters, no single
existing satellite exhibits the necessary qualities for simultaneously monitoring the three primary
coloring agents in the spatially complex near-shore environment. The ideal satellite would have
the characteristics illustrated in Table 1; high spatial resolution to resolve the near-shore, high
temporal resolution to capture the dynamic nature of water, high radiometric resolution to
resolve the details in low signal levels, and data that is free to the community to foster research.
Many satellites in orbit today exhibit several but not all of these characteristics.

The moderate resolution imaging spectroradiometer (MODIS) was designed with an appro-
priate spectral coverage and radiometric resolution necessary for studying water from space and
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can be used to effectively monitor Case 1 and offshore Case 2 waters.2 With a one-day repeat
cycle, MODIS is particularly attractive for capturing the dynamic nature of water. Due to its
500-m spatial resolution over the visible and near-infrared (VNIR) spectrum, MODIS is not
adequate for independently monitoring the spatially complex near-shore environment of coastal
and inland waters. Figure 1 shows a true color image of western New York in the USA. The
zoom windows to the right contain image data of the Rochester embayment collected by the
MODIS and Enhanced Thematic Mapper Plus (ETMþ) (Landsat 7) sensors on April 25,
2003, and the Medium Resolution Imaging Spectrometer (MERIS) data collected on May 9,
2011 (note: full resolution MERIS data was not openly available for April 25, 2003). Notice
in the top right zoom window that the MODIS instrument is not able to resolve the smaller
ponds with its 500-m resolution and that much of the detail in the river plume is lost.

Although Envisat became inoperable in early 2012, its primary sensor MERIS was particu-
larly attractive as it was designed specifically for water-based research.3 Similar to MODIS,
MERIS exhibited the temporal resolution necessary for monitoring Case 2 waters. It contained
15 narrow bands over the VNIR spectrum, a 12-bit system, and used a push-broom-style archi-
tecture giving it a high radiometric resolution. With 300-m pixels, MERIS was better equipped
than MODIS to resolve the near-shore environment but still lacked the ability to capture the
detail of many smaller inland lakes and ponds. The middle zoom window of Fig. 1 shows
MERIS data over the Rochester embayment and while it was able to resolve a handful of pixels
over the small ponds in the area, it still lacked the spatial resolution to adequately characterize the
near-shore environment.

Alternatively, the 30-m spatial resolution of Landsat 7 s ETMþ sensor is adequate for resolv-
ing the spatial detail found in near-shore Case 2 waters.4 The bottom zoom window in Fig. 1
shows ETMþ data over the Rochester embayment. Clearly it is superior to the other sensors in
spatially resolving the near-shore environment (there are 100 Landsat 7 pixels to every 1 MERIS
pixel). Yet, due to its radiometric characteristics, only limited success in retrieving levels of
suspended sediment with this instrument has been demonstrated.5,6 With only four bands in the
VNIR, an 8-bit quantizer, and limited signal-to-noise due to its whiskbroom design, Landsat’s
thematic mapper sensors lack the radiometric resolution necessary for simultaneously retrieving
all three water quality parameters, where a significant change in constituents often leads to only a
small change in sensor-reaching radiance. Additionally, with a 16-day repeat cycle, Landsat 7
lacks the ability to capture the time dynamic nature of water.

Many commercial airborne (and some space-based) instruments contain the necessary spa-
tial, spectral, and temporal resolution required for monitoring water but have a significant charge
associated with their data products precluding the repeat global coverage needed for scientific
research. Therefore, no operational environmental sensor to date is ideal for independently mon-
itoring Case 2 waters, indicating that monitoring efforts would benefit significantly by merging
data from existing satellites.

A new sensor called the Operational Land Imager (OLI) has been developed by the joint
USGS-NASA Landsat Data Continuity Mission (LDCM) and exhibits the potential to be
both radiometrically and spatially suitable for monitoring Case 2 waters.7 While Landsat 5
and Landsat 7 have performed well beyond their five-year missions, efforts to extend the

Table 1 Required characteristics for a satellite to be used to independently monitor the near-
shore environment.
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collection of Landsat data became necessary in recent years. As a result of the LDCM’s efforts,
the OLI and the dual-band thermal infrared sensor were successfully launched on February 11,
2013, at 10:02 a.m. local time from Vandenberg Air Force Base. Equipped with eight 30-m
VNIR/SWIR (shortwave infrared) bands and a 15-m panchromatic band, OLI has spectral
and spatial coverage similar to that of ETMþ. With features such as 12-bit quantization and
improved signal-to-noise ratios (SNR) due to its push-broom-style architecture, the OLI instru-
ment is radiometrically superior to its predecessor. When coupled with Landsat’s native 30-m
spatial resolution, OLI should provide the community with an additional water-monitoring sen-
sor that fills in the near-shore data gap exhibited by all other environmental satellites. This is
particularly exciting, as OLI will have the ability to monitor rivers and small ponds in addition to
large lakes and seas.

This paper explores the potential for Landsat 8 to be used for monitoring water quality.
Specifically, the new sensor characteristics of OLI are modeled and a retrieval methodology
developed to determine if Landsat, a satellite program traditionally tailored for land-based
research, will have the spectral coverage and radiometric resolution necessary for simultaneously
retrieving the three primary water quality parameters found in Case 2 waters.

In the first study presented in this work, a model of OLI’s relevant design parameters
(enhanced spectral coverage, 12-bit quantization, and improved SNR due to its push-broom-
style design) is developed based on the sensor’s requirements,7 and its potential to retrieve
chlorophyll, suspended materials, and CDOM concentrations from water is evaluated using
simulated data. To gauge OLI’s improved radiometric resolution over previous Landsat instru-
ments and to determine its corresponding potential for water-constituent retrieval, the airborne
visible/infrared imaging spectrometer (AVIRIS), MERIS, and ETMþ sensors are included in

Fig. 1 True color image of the Rochester embayment located in western New York. From top to
bottom, the zoom windows show image data gathered by the moderate resolution imaging spec-
troradiometer (MODIS), medium resolution imaging spectrometer (MERIS), and enhanced the-
matic mapper plus (ETMþ) sensors, respectively. MODIS and ETMþ data was collected on
April 25, 2003. MERIS data was collected on May 9, 2011.
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this initial study. With 61 bands in the VNIR, 12-bit quantization, and high signal-to-noise, the
AVIRIS hyperspectral sensor serves as a measure of the highest performance a sensor is likely to
achieve in retrieving water constituents.8 Considering the AVIRIS sensor’s inability to contin-
uously monitor an area of interest due to its airborne platform, the MERIS instrument is included
in this work to indicate the retrieval potential of an instrument designed specifically for water-
based research. Finally, ETMþ is included to demonstrate the limitations of current Landsat
instruments relative to the algorithms used here and to serve as a baseline to measure the
improved features of OLI.

The second study presented in this work uses engineering test data of SNR to evaluate OLI’s
on-orbit constituent retrieval potential. SNR measurements from the OLI engineering test data
are compared with actual in-orbit SNR measurements from advanced land imager (ALI) image
data. The ALI is an instrument designed to test new Landsat technologies in space and is the
pathfinder instrument for OLI. The constituent retrieval process is again performed using simu-
lated data in this study, but with the improved SNRs observed in the engineering test data to
determine OLI’s retrieval potential assuming these noise levels can be maintained on orbit.

The results from the first two studies indicate that system noise is the main contributor to
constituent retrieval error using the algorithms presented here. A final study is conducted that
seeks to drive down system noise to further enhance constituent retrieval accuracy. In this study,
the impact of averaging Landsat pixels on the retrieval process is investigated for a range of
scenarios. The results of this study indicate that averaging just a few OLI pixels can drive
down noise to levels that enable retrieval accuracy that is inline with MERIS.

Multiple sources can introduce error when using satellite imagery to retrieve constituents
from water: inadequate knowledge of the inherent optical properties (IOPs) of the water; inability
to properly characterize and remove atmospheric effects; using an uncalibrated sensor; and using
a radiometrically deficient sensor. The experiments presented in this paper are sensor-only stud-
ies that seek to isolate the errors introduced to the constituent retrieval process by the aforemen-
tioned sensors when nadir-imaging. As these studies were specifically designed to gauge the
radiometric potential of the OLI instrument; they are performed with the assumption that all
sensors are radiometrically calibrated and that the atmosphere can be properly compensated
for. In practice, the common empirical line method (ELM) for atmospheric correction satisfies
both of these assumptions.9 As these studies seek to compare the relative performance of the OLI
instrument to existing sensors, variability due to water IOPs is not treated in this work. By mak-
ing the above assumptions, errors introduced to the retrieval process by the spectral and radio-
metric properties of the sensors are isolated.

2 Methodology

The goal of this work was to determine if the OLI sensor would be a useful tool for monitoring
water quality, which would enhance the current suite of water-monitoring sensors, especially for
observing the near-shore environment. Although Landsat 8 was launched in February 2013, its
data are not yet available. However, a forward modeling approach can be used to simulate OLI
data to determine its constituent retrieval potential. Referring to Fig. 2, an overview of the mod-
eling process used in this research is described.

First, the in-water radiative transfer code Hydrolight10 is used to generate water-leaving radi-
ance signals for a range of Case 2 waters when nadir-imaging. Next, as this study assumes
knowledge of the atmosphere, these signals are passed through a known moderate resolution
atmospheric transmission (MODTRAN) modeled atmosphere to generate top-of-the-atmosphere
radiance spectra. The sensor models are used in the third stage of the modeling process to create
simulated image data.

With simulated data in place, the constituent retrieval process can be initiated for each of the
datasets by performing atmospheric compensation of the known atmosphere to obtain the retrieved
water-leaving radiances associated with each imaged pixel. Last, a constituent retrieval algorithm
(CRA) can be applied to invert these retrieved radiances to constituent concentrations. To describe
the error introduced to the constituent retrieval process by each sensor, the average difference
between the retrieved and actual constituent concentrations will be used as an error metric.
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2.1 Scene Simulation

With an overview of the methodology in place, the modeling process can now be discussed in
more detail using Fig. 2 as a guide. The scene of interest for this study (shown in Fig. 1) is the
Rochester Embayment of Lake Ontario and several coastal ponds and bays. This scene is favor-
able to evaluate the potential of the OLI instrument to perform constituent retrieval due to the
wide range of water types in the area. The data used to drive this study were collected on May 20,
1999, by the Digital Imaging and Remote Sensing (DIRS) group at the Rochester Institute of
Technology as part of a major ground truth campaign of the area where multiple radiometric
measurements and water samples were obtained from the various lakes and ponds across the
scene. These data were collected in conjunction with an AVIRIS over-flight. Therefore, an exten-
sive knowledge of the region was developed, making it suitable for evaluating the potential of the
OLI instrument.

2.1.1 In the water

Hydrolight is an in-water radiative transfer code that requires several environmental inputs from
a scene of interest to determine the radiance leaving a water column.10 Figure 3 illustrates the
various environmental inputs required by Hydrolight. To simulate the Rochester Embayment,
Hydrolight requires solar-zenith angle, wind speed, and the IOPs of the water as input. The four-
component model is used to simulate data in this work so the spectral absorption/scattering
coefficients and phase functions for chlorophyll, inorganic suspended materials, and pure
water must be provided to Hydrolight (CDOM is treated strictly as an absorber, so only its spec-
tral absorption coefficients are required). Due to the ground truth campaign conducted by the
DIRS group, these inputs were well known for the scene of interest. Additionally, in situ water
samples were obtained the day of the collect and processed in a lab to provide a range of
observed constituent concentrations for the embayment. Therefore, to simulate a scene,
Hydrolight was used to randomly create water samples that were representative of the wide
range of water types shown in Fig. 1.

A random number generator was used in this work to create random water samples. By gen-
erating a uniformly distributed random number between 0 and 68 units for chlorophyll, a second
uniformly distributed random number between 0 and 24 units for suspended materials, and a
third uniformly distributed random number between 0 and 14 units for CDOM, a random water

Fig. 2 Illustration of the modeling process used in this work.
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type could be simulated in Hydrolight, i.e., these three numbers represent the concentrations of
chlorophyll (μg∕L), suspended materials (mg∕L), and CDOM (1∕m) that were used as input to
Hydrolight, respectively. Hydrolight then outputs the water-leaving signal (expressed as spectral
radiance just above the water surface) associated with the random water sample, which repre-
sents one pixel in the scene. This process was repeated thousands of times to simulate a scene. In
this study, 2000 randomly generated pixels were created, as shown in Step 1 of Fig. 2. It should
be noted that this is a particularly stressing approach, as it generates simulated water samples
spanning the entire test space (e.g., low CDOM and high suspended materials, high CDOM and
low suspended materials, etc.), even though this full range is unlikely in nature.

2.1.2 Through the atmosphere

MODTRAN code is an atmospheric radiative transfer model used in this work to simulate atmos-
pheric effects.11 Although perfect knowledge of the atmosphere is assumed in this study, the
radiance signals estimated by Hydrolight must be propagated through an atmosphere to generate
reasonable sensor-reaching radiance values before applying the modeled sensor characteristics,
i.e., the Hydrolight output radiances are too dark for the SNR values used in this work, as they
don’t include upwelled radiance.

Considering the goal of this initial study was to provide the relative contribution of constitu-
ent retrieval error introduced by the four sensors, a rigorous attempt to accurately model atmos-
pheric effects for any given date was not conducted. However, inputs to MODTRAN were
provided to simulate atmospheric conditions that were representative of the scene shown in
Fig. 1: a mid-latitude summer profile, urban aerosols, 35-km visibility, 16:00 GMT,
lat ¼ 43 N, lon ¼ 77 W, 75-m elevation, 3% surface albedo for the surround, full VNIR spec-
trum. Figure 4 compares the total sensor-reaching radiance obtained from the MODTRAN sim-
ulation (green triangles) versus the at-sensor radiance for the R/G/B/NIR bands of Landsat 7 (red
squares) and MODIS (blue diamonds) obtained over water from the April 25, 2003, data in
Fig. 1. These data show that the simulations are within a few percent of the observations
and differ from the observations less than the observations differ from each other.

The transmission and upwelled components of the MODTRAN output were used to generate
sensor-reaching radiance according to

Lsλ ¼ Lwλ � τλ þ Luλ; (1)

Fig. 3 Inputs required by the in-water radiative transfer code, Hydrolight.
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where Lsλ represents spectral sensor-reaching radiance, Lwλ represents the spectral water-leaving
radiance signals simulated with Hydrolight, and τλ, Luλ represent the spectral transmission and
upwelled components simulated with MODTRAN, respectively.

Upon sampling the simulated sensor-reaching radiances by each sensor model to generate
image data, atmospheric effects were removed from the image data according to

Lw ¼ ðLs − LuÞ∕τ: (2)

Notice that the spectral component is removed from Eq. (2) as each term of Eq. (1) has been
spectrally sampled by the sensor models to create image data. Accordingly, the transmission and
upwelled components in Eq. (1) must be spectrally sampled to the sensor models to remove the
known atmospheric effects.

Interestingly, although this work assumes perfect knowledge of atmospheric conditions,
spectrally sampling the atmospheric components will introduce different levels of retrieval error
as narrow-band sensors sample the atmosphere’s spectral features better than broadband sensors.
Therefore, although knowledge of atmospheric effects are assumed, some of the errors intro-
duced by atmospheric effects are embedded in this modeling process.

2.1.3 At the sensor

The spectral sensor-reaching radiance signals indicated in Eq. (1) must be sampled by the key
characteristics of the sensor models to simulate image data, see Fig. 5. First, the radiance signals
are spectrally sampled to the response functions of each sensor. Next, random noise is applied to
the signals based on SNR estimates. Last, the quantization process is simulated based on the
dynamic range of each sensor. The end result of the sensor’s sampling process is a discrete
representation of the spectral sensor-reaching radiance signals. The implementation of each
process is described in detail in the following sections.

Spectral sampling. The sensor-reaching radiance signals indicated in Eq. (1) were spectrally
sampled to the sensor response functions of each sensor according to

Fig. 4 Comparison of the total sensor-reaching radiance obtained from the moderate resolution
atmospheric transmission (MODTRAN) simulation (green triangles) versus the at-sensor radiance
for the R/G/B/NIR bands of Landsat 7 (red squares) and MODIS (blue diamonds) obtained over
water from the April 25, 2003, data.
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Z
Lsλ � Rλi � dλi∕

Z
Rλi � dλi for all bands; (3)

where Lsλ is the spectral sensor-reaching radiance, Rλi is the spectral response function for band
i, and dλi is the corresponding wavelength spacing in band i.9 Since the absorption coefficients
of pure water are several orders of magnitude higher in the SWIR than in the VNIR, the sensor-
reaching signals are only spectrally sampled to each sensor’s VNIR bands in this study.12

Accordingly, in the VNIR, ETMþ has four bands,4 OLI has five bands,7 MERIS has 15
bands,3 and AVIRIS has 61 bands to spectrally sample the sensor-reaching signals.8

Noise implementation. In the next stage of the modeled sampling process, the signal is further
altered by the introduction of sensor noise. In an effort to achieve higher SNRs, the OLI instru-
ment is equipped with a push-broom-style architecture7 as opposed to the whiskbroom design of
ETMþ.4 Both types of instruments use linear array detectors to collect data, but a whiskbroom
sweeps the data in the across-track direction as the satellite passes overhead in the along-track
direction. Alternatively, push-broom sensors collect data in the along-track direction only, which
is an advantage over the whiskbroom sensor as it can collect the same swath of data without any
across-track movement. By eliminating this sweeping motion, a push-broom sensor avoids the
need to scan allowing longer integration times resulting in increased signal-to-noise.

To simulate noise in this study, SNR system requirements7 were used for the OLI sensor
model. To estimate SNR for the remaining sensors, actual radiance image data was obtained,
and a region of interest containing several hundred pixels over water was defined. The mean
signal level was divided by the standard deviation of the signals to calculate per-band SNR
(see Fig. 6).

The resulting SNR values from Fig. 6 were used to estimate noise for the spectrally sampled
signals according to

SNR ¼ S∕N ⇒ NLi
¼ SLi

∕SNRLi
; (4)

where NLi
is the noise associated with the spectrally sampled radiance signal (SLi

) in band i, and
SNRLi

represents the calculated SNR (estimated SNR for OLI). Then, to add random noise for
each band i of a signal, a random normal number Rð0; 1Þ was generated, multiplied by the noise
estimate from Eq. (4) and the result added to the original signal according to

SLi
ðw∕noiseÞ ¼ Rð0; 1ÞNLi

þ SLi
: (5)

This process is repeated for all bands in each sensor and for all 2000 pixels in the simu-
lated scene.

Quantizer implementation. Referring again to Fig. 5, the final process a signal encounters, as
it is read by the sensor model, is the quantization process. OLI is equipped with a 12-bit quan-
tizer,7 as opposed to the 8-bit dynamic range of ETMþ.4 As a result, the continuous range of
response values in a scene can be partitioned into 4096 (212), values for OLI while ETMþ allows
for only 256 (28), such partitions. The result of this improved response resolution will be an
increased radiometric resolution, as illustrated in Fig. 7, where the effective radiance range
has been divided into 256 levels for ETMþ and 4096 levels for OLI.

The signal on the left hand side of Fig. 7 represents the spectral sensor-reaching radiance
associated with an arbitrary water pixel. If this signal is spectrally sampled by the blue bands of

Fig. 5 Illustration of the key characteristics of the sensor models used in this study.
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ETMþ and OLI, bands 1 and 2, respectively, the blue (circle) values on the right-hand side of
Fig. 7 are obtained. These values now need to be quantized (digitized) for the signal to be read
out. To model the quantization process, the spectrally sampled radiance values (blue circle val-
ues) can be rounded to the nearest quantization level. The grey arrows on the right-hand side of
Fig. 7 indicate that for every one quantization level that ETMþ has to place a spectrally sampled
signal, OLI has 16 quantization levels. As a result, the 12-bit quantizer is better able to preserve
the original signal.

The maximum radiance levels per band i (Lmaxi
) that can be resolved by ETMþ and OLI are

reported in Taylor (2011) and Irons andMasek (2006), respectively. From this, the step size (LQi
)

of the quantization process can be approximated according to

LQi
ðstep sizeÞ ¼ Lmaxi

∕2ðof bitsÞ: (6)

Once the step size (LQi
) is determined for each band i, the quantization levels can be set

according to

LQi;j
¼ jLQi

for j ¼ 0; 1; : : : ; n and 0 ≤ LQi;j
≤ Lmaxi

; (7)

where LQi;j
is the j’th quantized radiance level in band i.

AVIRIS and MERIS both have 12-bit dynamic range, and the quantization process was mod-
eled accordingly for their sensor models. The step sizes (LQi

) for these sensors were estimated
from actual image data where calibration equations that relate digital number to sensor-reaching
radiance were used in the estimation.3,8 The quantization levels were set according to Eq. (7),
however, the maximum sensor-reaching radiance signal was used in place of Lmaxi

to gauge
where to set the highest quantization level.

Finally, with the quantization levels set for each band in each sensor model, the 2000 signals
were quantized by rounding their signal values in each band to the closest quantization level.

Fig. 6 Per-band signal-to-noise ratios (SNRs) used in the sensor models. SNR system require-
ments were used for Operational Land Imager (OLI) while SNR for the remaining sensors was
calculated from radiance data over water.
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2.2 The Look-Up Table Constituent Retrieval Algorithm

The three aforementioned processes describe how a continuous sensor-reaching radiance signal
is read in and digitized by a sensor model in this study. With a simulated scene in place (recall
Step 3 from Fig. 2), the constituent retrieval process can be performed for each of the four sen-
sors. In practice, to retrieve the water quality parameters using remotely sensed imagery, one
would apply an atmospheric correction algorithm to retrieve the water-leaving radiances asso-
ciated with the imaged water pixels. Then a CRA could be applied to invert the water-leaving
radiances to constituent concentrations. Because we are only interested in the relative perfor-
mance of sensors under test-case conditions in this study, an idealized atmospheric compensation
was used for all sensors.

To initiate the constituent retrieval process in this experiment, the known (band-effective)
atmospheric effects described in Sec. 2.1.2 are removed from the 2000 imaged water pixels
according to Eq. (2) (Step 4 in Fig. 2). Next the CRA can be applied to determine the constituent
concentrations associated with each imaged pixel (Step 5 in Fig. 2). While a variety of methods
can be implemented to perform this task, a look-up table (LUT) inversion method was used in
this study.13 LUTs are designed to provide the user with a library of “ground truth” spectra for a
scene of interest. Figure 8 shows a sketch of the LUT used in this research. Notice that the axes

Fig. 7 Illustration of the response resolution associated with the 8-bit quantizer of ETMþ and the
12-bit quantizer of OLI, airborne visible/infrared imaging spectrometer (AVIRIS), and MERIS.
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Fig. 8 Sketch of the look-up table (LUT) constituent retrieval algorithm (CRA) used in this study.
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are defined by the various constituent concentrations in the scene and associated with each point
in the three-dimensional space is a water-leaving radiance spectrum. If the LUT is populated
sufficiently, it can be utilized by obtaining a water-leaving radiance spectrum from an image
pixel, performing a search of the LUT for an adequate interpolated match, and observing
the constituent concentrations associated with the match.

2.2.1 Look-up table development

A LUT should be populated with enough water samples to span the various water types across a
scene. One way to populate such a LUT is through the process of collecting in situ observations.
This procedure involves driving or rowing a boat out onto a water body, measuring the water-
leaving signal with a spectrometer, taking a water sample, and determining its constituent con-
centrations through a filtering process performed in the lab. This must be done multiple times to
obtain a LUT that is representative of all the water types in a scene. This is a daunting task for the
multiple water types found in the Rochester Embayment shown in Fig. 1.

Alternatively, Hydrolight can be used to populate the LUT. In a process similar to the scene-
generation process described in Sec. 2.1, the appropriate solar-zenith angle, meteorological con-
ditions, and IOPs can be provided as input to Hydrolight. Then, instead of supplying the model
with random constituent concentrations as demonstrated in Sec. 2.1.1, input concentrations can be
systematically varied to build a well-populated LUT. Table 2 shows the various constituent con-
centrations that were modeled in this work and the resulting water-leaving radiance spectra output.

By supplying Hydrolight with every combination of constituent concentrations shown in
Table 2, a well-structured and well-populated LUTwas created. As shown in Fig. 8, the domain
(axes) of the LUT define the levels of water constituents that are expected to be observed in the
scene, while the range contains the associated water-leaving radiance spectra illustrated above.
The end result of this process is a well-populated LUT that is ready to be used for the constituent
retrieval process.

2.2.2 Constituent retrieval algorithm implementation

Recall that a retrieved water-leaving spectrum can be compared with the elements of the LUT in
an effort to determine the constituents associated with the signal. Using a simple nearest neigh-
bor to perform this comparison will introduce significant retrieval errors. Instead, the Levenberg-
Marquardt nonlinear optimization algorithm was used to fit a least-squares cost function in this
work.14,15 The implementation of the LUT CRA is illustrated in Fig. 9.

Table 2 Range of constituent levels used to develop the LUT CRA in this study and the corre-
sponding simulated water-leaving radiance spectra.

CHL (µg/L) SM (mg/L) CDOM (1/m) 

0 0 0

0.5 0.5 0.5

1 1 0.75

3 2 1

5 4 2

7 8 4

12 10 7

24 14 10

46 20 12

68 24 14
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Using the spectrum associated with a pixel of interest (e.g., top-left of Fig. 9), the nonlinear
optimization routine iterates through the LUT until the least-squares difference between the
image-pixel spectrum and the interpolated LUT test spectrum falls below a predetermined
threshold. The blue test points in the LUT of Fig. 9 illustrate how the optimization routine sam-
ples the test space until it converges on a solution. Once this occurs, the LUT coordinates asso-
ciated with the matched spectrum represent the levels of chlorophyll, suspended materials, and
CDOM associated with the image-pixel.

Errors will be associated with the retrieval process due to sensor degradation and the atmos-
pheric removal process. Since this is a modeling effort, the concentrations of the constituents
associated with each water-leaving signal are known as they were generated using Hydrolight
(Step 1 of Fig. 2). The CRA estimates the constituent concentrations based on the retrieved
water-leaving radiance signals (Step 5 of Fig. 2). The difference between the two can be
used to define an error metric. In this work, the root mean square of the residuals between
the retrieved and actual constituent concentrations for the 2000 water samples was expressed
as a percentage of the observed range of constituents shown in Table 2. This provides a compact
metric to compare the relative performance of the test sensors.

2.3 Retrieval Studies

To evaluate the new features of the OLI sensor and their corresponding error contributions to the
constituent retrieval process, the initial study conducted in this work had three stages. In the first
stage, the constituent retrieval process was performed in the absence of noise and quantization
effects for the four sensors, i.e., the signals were only spectrally sampled before initiating the
constituent retrieval process. A test of this nature determined how much constituent retrieval
error could be attributed to just spectral coverage. Second, quantization was included into
the sensor models to determine how dynamic range has an impact on a sensor’s ability to retrieve
water constituents. In the final stage, system noise was included into the sensor models. By
spectrally sampling a signal, adding sensor noise, and quantizing the result, the effects of system
noise on the sensor’s abilities to retrieve water constituents could be gauged.

While the initial study described above used noise from OLI’s initial requirements document,
a second study was conducted in this work that used lab-measured noise margins from the actual
OLI instrument as built. This second study provides a sense of the retrieval errors that may be
achieved on orbit assuming the lab-measured noise measurements can be maintained on orbit.

OLI is an attractive sensor for monitoring the near-shore environment due to its 30-m res-
olution. However, radiometric resolution is imperative in these areas to achieve an accurate
retrieval of in-water parameters. The final study presented here measures the impact of pixel
averaging on radiometric resolution. The constituent retrieval process is performed after spatially

LUT 

Minimum 
RMS? 

False 

True 

(C, SM, CDOM)=(c1, c2, c3) 

Fig. 9 Illustration of the search method used when implementing LUTs for the constituent retrieval
process.
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averaging OLI pixels for several scenarios and compared with the retrieval accuracy obtained by
MERIS and AVIRIS.

3 Results

3.1 Initial Study

Figure 10 shows the errors associated with the retrieval of chlorophyll, suspended materials, and
CDOM for each of the three stages. The errors are expressed as percent of the total range of
constituents observed in the scene. Figure 10 (left) compares how well the four sensors retrieve
water constituents when considering just their spectral coverage. All four sensors introduce con-
stituent retrieval errors of less than 2% of the range shown in Table 2, indicating that spectral
coverage is not the major contributor to retrieval error for this parameter set. This result is con-
sistent with the findings of Sathyendranath et al.16 who determined that five bands of data can be
as effective as spectral data in simultaneously distinguishing the levels of chlorophyll, suspended
materials, and CDOM.

The second (middle) group in Fig. 10 compares the retrieval errors when spectral coverage
and quantization effects are combined in the modeling process. Twelve-bits of quantization
should better preserve a signal than 8-bits. This is clearly the case as the ETMþ sensor intro-
duces significant errors in this stage, while the remaining 12-bit systems introduce retrieval
errors of less than 3% for all constituents. This indicates that OLI’s 12-bit quantizer is not a
limiting factor in the constituent retrieval process.

Finally, the third (right) group of results illustrates how retrieval error is impacted when sys-
tem noise is included in the analysis. Naturally, the radiometrically sensitive MERIS and AVIRIS
systems introduce negligible error in this stage of the process. OLI introduces retrieval errors of
less than 10% for two out of three constituents but is over 10% for chlorophyll retrieval. ETMþ,
on the other hand, introduces over 20% retrieval error for chlorophyll and CDOM and is over
10% for all three. This final stage indicates why, despite its attractive spatial resolution, it is
difficult to use ETMþ for simultaneous constituent retrieval and why it has had limited success
in monitoring Case 2 waters (this study indicates that ETMþ has significant value in mapping
suspended materials as documented by Refs. 5 and 6). OLI, on the other hand, exhibits much
greater potential to be used for simultaneous constituent retrieval.

Fig. 10 Retrieval errors expressed as a percent of the range of concentrations observed in the
scene.
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3.2 Noise Margin Study

The SNR used in the previous study represent those published in OLI’s requirements document7

and represent the minimum acceptable SNR. Engineering test data of the actual OLI instrument
indicate that it should achieve significantly higher SNRs than the original required specifications.
Figure 11 shows a bar chart of laboratory-measured SNR margins and represents the percentage
above specification achieved in the lab. This chart indicates, for example, that laboratory-mea-
sured SNRs were 75% higher than specification for its coastal aerosol (C/A) band, 165% higher
for its blue band, etc.

To gauge the credibility of the laboratory-measured noise margins shown in Fig. 11, SNR
was calculated from an ALI image data over water according to Eq. (4). ALI is a system devel-
oped to validate in space new technologies for future Landsat missions.17 It contains the same
spectral coverage and bit depth required by OLI and uses a push-broom-style architecture to
collect its data. Figure 12 compares the SNR calculated from the ALI data to the lab-measured
SNR values assuming that only half the margins of Fig. 11 could be achieved in orbit.

Interestingly, the half-margin SNR estimates from the OLI lab measurements are nearly iden-
tical to the SNR that is being achieved on-orbit with OLI’s pathfinder instrument, ALI.
Accordingly, two additional experiments were performed in this work to gauge OLI’s retrieval
potential under the assumption that it will achieve significantly higher SNR than originally

Fig. 11 SNR margins that may potentially be achieved with the final OLI instrumentation, i.e.,
percentage by which the SNR is expected to exceed the specified SNR value based on engineer-
ing test data.

Fig. 12 Comparison of SNR values calculated from an advanced land imager (ALI) image over
water to lab-measured SNR values assuming only half the margins shown in Fig. 11 can be
achieved in orbit.
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specified. First, the OLI sensor is modeled with SNRs that reflect half the margins shown in
Fig. 11 and, second, the OLI sensor is modeled with SNRs that reflect the full margins
shown in Fig. 11. The constituent retrieval process is performed with the same 2000 randomly
generated pixels from the previous experiment to determine how these potentially improved
SNRs will have an impact on OLI’s retrieval ability. The results of this study are shown
in Fig. 13.

Interestingly, if just half the margins described in Fig. 11 are achieved, OLI’s potential ability
to retrieve water constituents improves dramatically (Fig. 13: OLI Half Margin SNR). If the best-
case scenario occurs and the OLI sensor achieves the full margins, expected retrieval errors will
be under 10% for all three constituents, with the expected retrieval errors for suspended materials
and CDOM under 5%.

3.3 Pixel Averaging Study

The results presented thus far have ignored the spatial resolution of the sensors and the impact of
resolution on SNRs. Assuming all sensor parameters are equal, save detector size, a sensor that
collects 300-m pixels will have higher SNR than a sensor that collects 30-m data as it receives
100 times the signal. Therefore, the results shown in Fig. 10 misrepresent the abilities of the
ETMþ, OLI, and AVIRIS sensors when compared with MERIS as they contain spatial reso-
lutions of 30, 30, 20, and 300 m, respectively.

The next study presented in this work evaluates the potential to spatially average OLI pixels
over water in an effort to enhance SNR and ultimately drive down retrieval errors. A ⋅ 2 × 2,
3 × 3; : : : ;, and 10 × 10 spatial average of simulated water pixels was performed to measure
the impact of pixel averaging on retrieval error. The retrieval process described in Sec. 2
was applied using the same 2000 pixels. However, to simulate the spatial averaging process,
n2 random realizations of sensor noise (using the half-margin noise shown in Fig. 11) were
applied to each of the 2000 pixels and averaged prior to submission to the constituent retrieval
process for n ¼ 2; 3; : : : ; 10. The resulting retrieval errors are shown in Fig. 14.

Figure 14 shows that spatial averaging just a few OLI pixels will drive down retrieval errors to
MERIS levels for suspended materials and CDOM. This is an important result for those mon-
itoring suspended materials and CDOM in the near-shore environment, as it indicates that
MERIS sensitivity can be achieved with OLI with minimal loss to spatial resolution (60 to
90 m pixels after the spatial averaging). Figure 14 also illustrates that chlorophyll retrieval
is impacted more by system noise and requires more spatial averaging to drive down retrieval
errors.

Fig. 13 Comparison of retrieval errors that can be achieved from the constituent retrieval process
in the event that SNRs at half margin and SNRs at full margin can be achieved. These results are
compared with retrieval errors obtained from simulated ETMþ data and simulated OLI data, which
uses minimum required SNR values.
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An interesting observation can be made when “retrieved” concentrations are plotted versus
“actual” concentrations for the three constituents studied here. Figure 15 shows plots of the
concentrations obtained from the constituent retrieval process versus the actual concentrations
used as input to the model for the 3 × 3 pixel averaging study described above. The plots for
suspended materials and CDOM show that the retrieval errors are evenly distributed along the
range of concentrations, save a minor loss of retrieval accuracy at lower concentrations for sus-
pended materials and at higher concentrations for CDOM. Chlorophyll retrieval accuracy, on the
other hand, exhibits a significant bias in retrieval errors towards higher concentrations.

To illustrate the importance of SNR when retrieving chlorophyll levels, Fig. 16 shows two
Hydrolight-simulated water-leaving radiance spectra. Both water types were modeled using
identical levels of suspended materials and CDOM but with high levels of chlorophyll that varied
significantly (one contained 46 μg∕L while the other contained 68 μg∕L). Note that the water-
leaving spectra are nearly identical, but the difference in input concentrations is 32%. Figure 16
illustrates the importance of SNR and indicates that signal degradation due to system noise will
adversely have an impact on chlorophyll retrieval at high levels where a significant change in
concentration leads to only a small change in signal.

To further illustrate the impact of system noise on chlorophyll retrieval, Fig. 17 shows plots
of the concentrations obtained from the constituent retrieval process versus the actual concen-
trations that were used as input to the model for the 3 × 3, 6 × 6, and 9 × 9 studies described

Fig. 14 Results of the constituent retrieval process when an n × n spatial average of OLI pixels is
performed for n ¼ 1; 2; : : : ; 10. Half margin noise shown in Fig. 11 is used for this study.

Fig. 15 Plots of retrieved concentrations versus actual concentrations from the 3 × 3 pixel aver-
aging study for chlorophyll, suspended materials, and colored-dissolved organic matter (CDOM).
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above (the results of which are shown in Fig. 14). Notice that, as system noise is reduced by
increasing the number of pixels averaged, the error in chlorophyll retrieval is reduced, especially
at high concentrations.

4 Concluding Remarks

The OLI is a new Landsat sensor developed by the LDCM that exhibits the potential to be an
invaluable tool for studying inland and coastal waters in the near-shore environment. With
upgrades to spectral coverage, 12-bit quantization, and improved signal-to-noise, OLI is posi-
tioned to become the first Landsat instrument with the spectral coverage and radiometric res-
olution necessary for water-based research.

As with any in-water parameter-retrieval study, adequately removing atmospheric effects
from the at-sensor OLI radiance data will be required to properly retrieve water constituent con-
centrations. When ground truth is available, the ELM is the preferred method for removing
atmospheric effects as it introduces negligible error to the retrieval process. Since ground
truth campaigns are not always a viable option, ongoing work focuses on the removal of atmos-
pheric effects from OLI data in the absence of ground truth measurements. OLI will not be
equipped with the two NIR bands required by traditional over-water atmospheric correction
techniques for multispectral instruments,18,19 so alternative methods will be required. Gerace
and Schott20 identify an atmospheric correction technique that uses the ratio of OLI’s NIR
band 5 and SWIR band 6 instead of two NIR bands and demonstrates through a simulated
case-study its potential to be used to adequately compensate for atmospheric effects.

The work described in this article demonstrates through a simulated case study that if atmos-
pheric effects can be properly removed, OLI exhibits the radiometric sensitivity required for the
simultaneous retrieval of chlorophyll, suspended materials, and CDOM in Case 2 waters. This is
particularly exciting, as OLI will not only provide the water-monitoring community with an
additional data source but, due to its 30-m spatial resolution, should help to fill in the near-
shore data gap exhibited by all other operational environmental satellites.

Fig. 16 Hydrolight-modeled water-leaving radiance spectra for two water types. Suspended
material and CDOM input concentrations were identical. The red curve used 46 units of chlorophyll
as input while the green curve used 68 units of chlorophyll as input.

Fig. 17 Plots of retrieved concentrations versus actual concentrations from the 3 × 3, 6 × 6, and
9 × 9 pixel averaging study for chlorophyll.
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