
Biomass estimation of wetland
vegetation in Poyang Lake area using
ENVISAT advanced synthetic aperture
radar data

Jingjuan Liao
Guozhuang Shen
Lei Dong



Biomass estimation of wetland vegetation in Poyang
Lake area using ENVISAT advanced synthetic

aperture radar data

Jingjuan Liao,a Guozhuang Shen,a and Lei Dongb
aChinese Academy of Sciences, Center for Earth Observation and Digital Earth, Key Laboratory
of Digital Earth Science, No. 9, Denzhuang South Road, Haidian District, Beijing 100094, China

gzshen@ceode.ac.cn
bChinese Academy of Sciences, Institute of Remote Sensing Applications, State Key Laboratory
of Remote Sensing Science, P.O. Box 9718, 3 Datun Road, Chaoyang District, Beijing 100101,

China

Abstract. Biomass estimation of wetlands plays a role in understanding dynamic changes of the
wetland ecosystem. Poyang Lake is the largest freshwater lake in China, with an area of about
3000 km2. The lake’s wetland ecosystem has a significant impact on leveraging China’s envi-
ronmental change. Synthetic aperture radar (SAR) data are a good choice for biomass estimation
during rainy and dry seasons in this region. In this paper, we discuss the neural network algo-
rithms (NNAs) to retrieve wetland biomass using the alternating-polarization ENVISAT
advanced synthetic aperture radar (ASAR) data. Two field measurements were carried out
coinciding with the satellite overpasses through the hydrological cycle in April to November.
A radiative transfer model of forest canopy, the Michigan Microwave Canopy Scattering
(MIMICS) model, was modified to fit to herbaceous wetland ecosystems. With both ASAR
and MIMICS simulations as input data, the NNA-estimated biomass was validated with
ground-measured data. This study indicates the capability of NNA combined with a modified
MIMICS model to retrieve wetland biomass from SAR imagery. Finally, the overall biomass of
Poyang Lake wetland vegetation has been estimated. It reached a level of 1.09 × 109, 1.86 × 108,
and 9.87 × 108 kg in April, July, and November 2007, respectively. © The Authors. Published by
SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or reproduction of this
work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10
.1117/1.JRS.7.073579]
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1 Introduction

Wetlands are an important component of global ecosystems because of their role in maintenance
of environmental quality and biodiversity. Wetland biomass is a key index to the health of the
wetland ecosystem and provides quantitative information for understanding its ecological and
environmental functions.1 Conventional methods of in situ estimation are often time consuming,
labor intensive, and difficult to implement, especially in remote areas. Isolated plot measure-
ments cannot provide spatial distribution of biomass in large areas. The advantages of
remote-sensing techniques, such as repetition of data collection, a synoptic view, a digital format
that allows fast processing of large quantities of data, and high correlations between spectral
bands and vegetation parameters, make it an efficient source for large-area biomass estimation,
especially in areas of difficult access. Therefore, remote sensing–based biomass estimation has
increasingly attracted scientific attention.2

Poyang Lake is the largest freshwater lake in China, with an area of about 3000 km2. The lake’s
wetland ecosystem has a significant impact on China’s environmental change. In previous studies of
this region, biomass estimation using traditional optical remote-sensing imagery such as Landsat
TM∕ETMþ has been conducted. Li and Liu3 estimated the wetland biomass in April 2000 using
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Landsat ETMþ data. With the vegetation index extracted from Landsat TM data and field mea-
surements, Li et al.4 also conducted biomass estimation in this region based on nonlinear regression
analysis. However, optical remote-sensing data are often limited because of heavy cloud cover in
the rainy season. With all-weather, cloud-penetration capacities, synthetic aperture radar (SAR)
data has become a good choice for biomass estimation during rainy and dry seasons in this region.

In recent years, remote-sensing research has led to the development of methods for retrieving
wetland biomass from radar backscatter. Several studies (e.g., Refs. 5–8) have exploited the
sensitivity of radar signal to biomass parameters of vegetation canopy over a water layer
such as mangrove and rice. The ability of satellite SAR to map wetland biomass was demon-
strated with C-band ERS-1/2 data.9,10 A combination of Radarsat and JERS-1 imagery was used
to understand the saturation point in a logarithmic relationship between backscattering coeffi-
cients and biomass in the Amazon floodplain.11 A major problem in wetland biomass inversion
from SAR data is the influence of other environmental variables such as water content, vegeta-
tion height, and water level.12 To reduce these effects, multifrequency and multiple datasets have
been mainly considered.13

Most studies in retrieving biomass have focused on the implementation of linear and
nonlinear regression models.14–16 However, the interaction between SAR image and vegetative
surfaces is complex and nonlinear.17 The semi-empirical regression model based on ground
measurements cannot express their relationship sufficiently. Comparison between neural
network algorithms (NNAs) and both linear and nonlinear regression algorithms highlights
the overall superior performance of NNA using SAR data in both P- and L-band.12

The aim of this study is to estimate wetland biomass in the Poyang Lake area using alter-
nating polarization ENVISAT advanced synthetic aperture radar (ASAR) data. An NNA is com-
bined with a canopy-scattering model to establish the relationship between the backscattering
values and biomass instead of using linear or nonlinear regression models. In the previous study
of biomass estimation based on a neural network, ground-truth measurements were mostly used
as input units, and the backscattering coefficients extracted from SAR images were used as out-
put units in the training process.18 However, the training data completely relied on the ground
measurements, and they became unavailable when the study area was hard to access or the
ground data were hard to get. The inversion accuracy is mostly determined by the measurement
accuracy. In this paper, biomass is retrieved with NNA in three temporal stages from April to
November. This paper is structured in six sections. The next section describes the test site and
dataset. Methods arepresented in Sec. 3. In Sec. 4, the results are analyzed and biomass esti-
mation validation with ground data are presented. Section 5 discusses the inversion results and
their effects. The final section of the paper summarizes the results.

2 Test Site and Data Set

2.1 Test Site

The test site is located in Poyang Lake wetland, Jiangxi province, China. The latitude and lon-
gitude are 115°47′ to 116°45′E, 28°22′ to 29°15′N (Fig. 1). The climate is characterized as a
subtropical, humid monsoon climate with 1620 mm mean annual precipitation and about 17°C
annual average temperature. Poyang Lake exhibits large interannual variations in water level. In
summer, it is the largest freshwater body in China and extends up to 3500 km2 by the end of the
rainy, wet season (June to September). In the dry season (November to April), Poyang Lake can
be less than 1000 km2 in extent, with only several wandering water courses remaining. In 2007,
the fluctuation of the water level was up to 8.37 m (Fig. 2). In the dry season, wetland vegetation
emerges above water and starts to grow rapidly from early spring, with the aboveground biomass
reaching the highest level in April.19 In the wet season, wetland vegetation is flooded and hardly
grows except at the lakesides with higher ground level. Therefore aboveground biomass is
relatively low. In November, the water recedes and vegetation starts to grow again. In general,
the biomass dynamics present positive correlations with variations of water level.

The predominant vegetation in Poyang Lake is mostly carex and reed, which account for
>90% of the vegetation coverage.19 The biophysical properties of vegetation vary in different
hydrological stages from April to November. In April, plants grow rapidly with green leaves up
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Fig. 1 Spatial location and extent of the study area of Poyang Lake, Jiangxi province, People’s
Republic of China, with the sample points for April and November 2007.

Fig. 2 Water level variation of Poyang Lake in 2007.
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to 50 to 70 cm in length. By July, plants are submerged under water. In November, they turn to
senescent stage with low water contents.

2.2 SAR Data

Four scenes of ENVISATASAR alternating polarization (AP) precision image (PRI) mode data,
with range and azimuth pixel spacing of 12.5 and 12.5 m, were collected over this area in three
periods of 2007: April, July, and November (Table 1). The ASAR images were radiometrically
corrected with the BEST toolbox provided by the European Space Agency. All images were
georeferenced with respect to a topographic map. The data in April were composed of two differ-
ent scenes (April 4 and 6, 2007), each covering part of the test site, and mosaicked together.
These two scenes have the same HH/VV polarization and incidence angle (39 to 43 deg), with
different overpass directions.

2.3 Field Measurements

Field measurements of biophysical parameters of wetland vegetation standing above water were
collected during two field campaigns coinciding with satellite overpasses in April and
November. Both time periods are in the growing stages of wetland vegetation. Taking the acces-
sibility into account, 46 (in April) and 45 (in November) sampling sites with with intersite spac-
ings >50 m (four times the pixel size) were randomly selected over the study area. Due to the
different ground status in April and November, caused by the flood from July to September
(Fig. 2), there are few sample points with the exactly same locations for these two field
campaigns. Ground data, including plant water content, aboveground biomass, and plant height,
were collected during the field campaign. For biomass measurements at each sampling site, we
clipped the total standing biomass above water or above ground within an area of 0.5 × 0.5 m2.
The sites are covered with water or very wet soil. The clipped samples were weighed in situ and
oven dried (at 120°C for 24 h) to calculate the wet and dry total biomass (WTB and DTB, respec-
tively). The DTB is referred to as biomass in the following sections. The weight of plant water
per unit area was calculated as the difference between WTB and DTB.

The plant height was measured three to five times at each sampling site using a meterstick,
then the mean value was calculated as the truth data. According to ground data, the DTB was
correlated with plant height, with a correlation coefficient of 0.65 in a 90% confidence
interval (Fig. 3).

3 Methodology

The neural network is composed of a large number of highly interconnected processing elements
(neurons) working in unison to solve complex problems. This structure makes NNA inherently
suitable for solving nonlinear problems. In this study, we tested the feasibility of biomass
estimation with combined analysis of canopy-scattering model and neural network process.
By comparing with ASAR images, we simulated radar backscatter in herbaceous wetland
environments with a modified canopy-scattering model. A rich amount of training data
were simulated from the model and fed into NNA, with which biomass was estimated via
model inversion. The modeled results were finally validated with ground measurements.

Table 1 ENVISAT ASAR data used in the study.

Imaging date Products Incident angle mode (deg) Polarization Ascending/descending

April 4, 2007 AP PRI IS6 (39 to 43) HH∕VV Ascending

April 6, 2007 AP PRI IS6 (39 to 43) HH∕VV Descending

July 28, 2007 AP PRI IS2 (18 to 26) HH∕VV Descending

November 27, 2007 APP PRI IS2 (18 to 26) HH∕VV Descending

Liao, Shen, and Dong: Biomass estimation of wetland vegetation in Poyang Lake area. . .

Journal of Applied Remote Sensing 073579-4 Vol. 7, 2013



3.1 Canopy-Scattering Model and Backscatter Simulation

The Michigan Microwave Canopy Scattering (MIMICS) model20 has been widely used for the
tree canopy comprising a crown layer, a trunk layer, and rough-surface ground boundary. The
model assumes that total backscatter is a linear composition of the following four scattering
components: direct scattering from vegetation canopy, backscatter from multiple-path scattering
between surface and vegetation canopy, double-bounce trunk–ground interactions, and backscat-
ter from the ground surface.

Because the MIMICS model requires so many input parameters, some assumptions must be
made to use the model. For ENVISAT ASAR data, the radar’s parameters (frequency and look
angle) are known. For wetland applications in our study area, there is no woody layer in
herbaceous vegetation but only two layers: ground surface and grass canopy. Thus, we modified
the MIMICS model input files, turning off the parameters about trunk, primary branch, and
secondary branches. The simulated backscatter included ground-surface scattering, multipath
scattering between the ground surface and vegetation canopy, and canopy volume scattering.
Because the study area is wetland with high soil moisture (especially between April and
October), the ground is mostly flooded, covered by water. By changing the settings, the param-
eters about ground parameters (soil and snow) are turned off, so there is no backscatter from the
ground surface. Finally, the parameters about radar (frequency and look angle), leaf (gravimetric
moisture, dry density, number density, diameter, thickness, and temperature), ground standing
water (salinity and temperature), and crown (layer height) were used by the MIMICS model as
input parameters. Some of the parameters were treated as constant or replaced by the average of
survey data, e.g., standing water salt content, dry density of leaf material, leaf thickness, temper-
ature for vegetation and standing water (Table 2). Wetland vegetation consists primarily of carex,
grass, and reed and was modeled as a cluster of vertical dielectric cylinders that were uniformly
distributed.20

In flooded wetlands, radar backscatter is mostly attributed to vegetation properties. With the
modified MIMICS model, we simulated backscatter coefficients responding to increases in a set
of vegetation biophysical parameters, including plant height [Fig. 4(a)] and plant water content
[Fig. 4(b)]. Figure 4(c) shows that the incidence angle has little impact on backscatter at all
polarizations (HH, VV, and HV) owing to the limited double-bounce in the absent trunk
layer in wetland vegetation. Due to the dense coverage of vegetation, the total C-band back-
scatter is mainly from canopy volume scattering and canopy–ground multiple interaction,21

which are not strongly affected by the variation of incidence angle. The incidence angle has
only a little effect on canopy–ground interaction, but less microwave energy can penetrate
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Fig. 3 Relationship between dry biomass and plant height from the ground measurements.
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the dense canopy layer to reach the ground and be reflected by the ground to produce canopy–
ground interaction. Put simply, the incidence angle has little impact on the backscatter due to the
dense canopy layer and the absence of the trunk–ground and canopy–ground interactions.
Figure 4(c) agrees with the simulation of the flooded forest at C-band.22 Figure 4(d) describes
the MIMICS simulation as a function of biomass. Backscatter in all polarizations increases with
the increase of biomass.

Table 2 Major input parameters and corresponding values of MIMICSmodel used for backscatter
simulation.

Backscatter’s contributor Parameters Data value or range

Radar Frequency (GHz) 5.331

Look angle (deg) 10 to 50

Leaf Plant water content (%) 10 to 90

Dry density (g cm−3) 0.315

Number density (Nm−3) 4000 to 22,000

Diameter (cm) 3.5

Thickness (cm) 0.026

Temperature (°C) 16

Ground standing water Salinity (ppt) 2.5

Temperature (°C) 16

Crown Layer height (m) 0.1 to 1.2
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After simulating the backscatter coefficient (σ0) using the MIMICS model, we take the
results from April 2007 for accuracy evaluation by comparing it with that from ENVISAT
ASAR image through the root mean square error (RMSE). The RMSE is 1.86 dB for VV polari-
zation and 1.42 dB for HH polarization, which is smaller compared to the actual dynamic range
(6.84 dB for VV polarization, 4.52 dB for HH polarization). Figure 5 also shows that the coef-
ficient of determination (r2) between the backscatter coefficients from the ASAR images and
simulated by the MIMICSmodel is 0.9271 for VV polarization and 0.94961 for HH polarization.

3.2 Generating Training Data for the Neural Network

Training data, as prior knowledge of the network, are very important and mainly determine the
accuracy of the training results. To estimate aboveground biomass of wetland vegetation, the
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training data need to satisfy the following conditions:23 (1) the training data should consist of a
wide range of biomass from different plant growth stages; (2) the change of backscatter with
biomass, height, plant moisture content, and system factors should be consistent with ground
measurements and ASAR images; and (3) highly correlated data should be removed to reduce
data redundancy and improve simulation accuracy and efficiency.

Training data meeting the above conditions could not be easily obtained from ground mea-
surements owing to limitations in time, labor, and large random errors introduced in field. In this
study, we apply the MIMICS model to simulate backscattering coefficients with a set of system
factors (polarization, incidence angle, etc.) and biophysical parameters (plant height, water con-
tent, biomass, etc.). Training data between biophysical parameters and backscattering coeffi-
cients are thus generated. Here we first determine the range of the training data based on
ground measurements to cover all biomass levels in the study area (Table 3). Then, a set of
50 training data pairs were generated using the MIMICS model, with each pair matching bio-
mass, plant water content, and height to HH and VV backscattering coefficients, respectively
(Fig. 6). The HV polarization is not considered because it is not recorded in the ASAR imagery.

3.3 Training the Neural Network

Figure 7 presents the topology of the neural network used in this study. The neural network is a
one-hidden-layer back propagation network with two input elements (HH, VV) and three output
elements (biomass, plant height, plant water content). There are eight neurons in the hidden
layer. The activation function of each input element in the hidden layer is a sine function,
and a logistic function of the output element is defined as

fðxÞ ¼ 1

1þ e−x
; (1)

where x represents the input element.
The NNA is trained with the data generated from the MIMICS model. The HH and VV

backscatter can also be extracted from the ASAR images acquired in April, July, and
November. Therefore, the neural network could be applied to estimate biomass in the study
area in an inverted process.

Table 3 Range of the training data used in the neural network.

Parameters Lower limit Upper limit

Biomass (gm−2) 125 1350

Plant water content (%) 40 90

Plant height (cm) 20 120

  Water
Content

Height

MIMICS

HH

VV

Biomass

Fig. 6 MIMICS model for training data generation.
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4 Results

4.1 Biomass Maps of the Poyang Lake Wetland

Biomass distributions of Poyang Lake wetlands in April, July, and November 2007 were mapped
using ENVISAT ASAR data and MIMICS-fed neural network analysis (Fig. 8). These maps
clearly depict the development phases of wetland plants with the changes of water level of
the lake. In April, water level starts to rise but most of the wetland is visible. The vegetation
is mainly distributed in the southern areas of the lake. In July, the water level is about 17 m, close
to the peak level for this year. Therefore most areas of the lake are flooded except the shorelines
on higher ground in the south. In November, the lake reaches the lowest water level, which
results in the smallest area of water body. Therefore most areas of the lake are covered with
wetland vegetation.

Table 4 summarizes the biomass level distributions in the three periods. In April, total dry
biomass of the wetland was 1.09 × 109 kg. In the middle of the growing season, 23.66% of the
biomass in April is at the level of 200 to 500 gm−2 and 39.27% at the level of 500 to 800 gm−2.
In July, the percent of high biomass level increases because the plants grow to maturation in this
period. However, with higher water level, most of the wetland is flooded, so the total biomass
decreased to 1.86 × 108 kg. In November, as plants wither and leaves dry up, the high-level
biomass starts to decrease. About 72.68% of the biomass was in the range of 200 to
800 gm−2. The total biomass in this period was nearly the same as that in April. The average
biomass in the three periods was nearly consistent. In April and November, the wetland areas are
widespread but most plants have low biomass. In July, plants grow very well and reach high
biomass, although most of the area is flooded.

4.2 Accuracy Assessment

Ground data collected in April and November were used to examine the accuracy of NNA-esti-
mated biomass. Figure 9 shows the scatterplots between ground truth and estimated biomass in
April [Fig. 9(a)] and November [Fig. 9(b)]. The estimated biomass in July is not evaluated due to
the lack of ground measurements in this period. When all data samples are considered, the r2

between ground-measured and estimated biomass in April was 0.718, and in November, 0.5579.
The intermediate level of biomass between 400 and 800 gm−2 appeared to be better simulated,
whereas the high and low biomass estimation results were not satisfactory. According to the
MIMICS simulations, vegetation in high biomass levels (>1800 gm−2) has backscattering
values similar to those of vegetation at intermediate biomass, resulting in underestimation in
the high biomass level. Another reason for the underestimation is that the NNA has been trained
for biomass values in the range of 125 to 1300 gm−2 (as shown in Table 3), so the NNA

Biomass

Water 
Content

Height

HH

VV

Fig. 7 Neural network training model.
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Fig. 8 Abovewater dry biomass maps of Poyang Lake derived from ENVISAT ASAR data; black
areas in November present no ASAR data coverage.
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approach cannot estimate biomass above this value. In future work, the NNA should also be
trained for higher biomass. In the two scatterplots in Fig. 9, there are a few sample points
in the top left that demonstrate apparent overestimation, which may result from the low
plant density in April and November. The total backscatter was strongly influenced by surface
backscatter from wet soil ground, which was not taken into account in the modified
MIMICS model.

The overall RMSE of biomass estimation in the study area was 141 gm−2 in April and
104 gm−2 in November. In the intermediate biomass level, it reached an RMSE of 117 and
91 gm−2. This indicates the potential of the NNA approach combined with a MIMICS herba-
ceous wetland scattering model in large-area, multitemporal biomass estimation.

5 Discussion

This study developed an integrated approach to estimating wetland biomass by combining
MIMICS model, NNA, and ASAR HH/VV radar images. With the MIMICS-simulated radar
backscatter from varying biophysical properties, the neural network was trained to estimate bio-
mass in an inversion process with ASAR images. The results clearly show that seasonal var-
iations in water level have strong influences on the biomass of wetland vegetation. During
the low-water-level period, vegetation grows rapidly, so the total biomass is high. During
the high-water-level period, most vegetation is flooded and the total biomass decreases.
Therefore, it would make more sense to choose a low-water-level period to monitor the changes
in biomass from year to year. Furthermore, the low-water-level period is also the vegetation
growing season in the Poyang Lake. Therefore data in this period are important in understanding
the wetland ecosystem and its functions in leveraging water balance and environmental change
in this region. Soil properties are not considered in this study, as the wetland is flooded or satu-
rated with water during image acquisition. However, during field trips we found that some the
sample points were not saturated although soil moisture was still high. In this case, ground-sur-
face backscatter was strong, which resulted in overestimation in biomass retrieval. If soil proper-
ties were considered in the modeling process, the accuracy of the biomass inversion would be
much higher. At the same time, the fluctuation in water levels also affects radar backscatter.
Areas at higher water levels tend to have lower accuracy of model simulation owing to the effects
of stalk lodging in flooded vegetation.

In comparison with ground measurements in Fig. 9, our results in low biomass level are
overestimated and those in high biomass level are underestimated. But for intermediate biomass
levels, the modeled results reach a better agreement with ground measurements. For most veg-
etation in the study area, especially in periods of low water levels such as April and November,
total biomass estimated from the ASAR images is in a reasonable range. Hence, to some extent,
Fig. 9 could represent the real distribution of the biomass. But uncertainties in biomass mea-
surements have several sources: errors in random sample selection, visual estimates of biomass

Table 4 Biomass level distribution and statistics in April to November 2007.

Biomass level (gm−2) April (%) July (%) November (%)

200 to 500 23.66 10.73 36.49

500 to 800 39.27 43.49 36.19

800 to 1100 24.06 29.93 22.8

1100 to 1500 10.15 12.3 1.73

1500 to 1900 2.86 3.55 2.8

Average (gm−2) 744.9 780.6 726.2

Total biomass (kg) 1.09 × 109 1.86 × 108 9.87 × 108
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categories performed during field campaigns, and errors in weighing and drying operations. The
RMSEs of overall biomass estimation are similar to those with the ERS SAR data in other
studies.9

6 Conclusions

This study focused on the application of NNA combined with the MIMICS model to retrieve
wetland vegetation biomass with ENVISAT ASAR alternative polarization data. The training
data of the neural network was simulated from the MIMICS model, in accordance with the
bounding parameters obtained during field trips in wetland environments. A trained NNA
was used in inversion process to estimate aboveground dry biomass with ASAR data. In general,
the inversion model has RMSEs of 18.9% in April and 14.3% in November. The total biomass of
the Poyang Lake Wetland reached a level of 1.09 × 109, 1.86 × 108, and 9.87 × 108 kg in April,
July, and November 2007, respectively. The results indicate the potential of biomass estimation
in wetland environments with combined radar imagery, radiative transfer model, and general
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Fig. 9 Comparison between ground-measured and estimated biomass in April and November
2007.
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classification models. Further investigation will be conducted in the near future to improve the
accuracy of model simulation.

A general problem of neural networks is their ability in global-scale usage. In future work,
efforts for better understanding the model to make it globally useful are of great worth.
Furthermore, future RADARSAT-2 polarimetric data should be used to verify how different
polarizations could optimize the estimation of wetland vegetation biomass.

Acknowledgments

The work is supported by the Open Fund of State Key Laboratory of Remote Sensing Science
(Grant No. OFSLRSS201205), the Director Foundation of CEODE, CAS (Grant
No. Y1ZZ05101B), the Knowledge Innovation Program of Chinese Academy of Sciences
(Grant No. KZCX2-YW-313-2) and the National High Technology Program of China (Grant
No. 2006AA12Z122). The authors thank Ren Shengming from MRL Office of Jiangxi
Province for the help in field survey and the anonymous reviewers for their insightful and helpful
comments.

References

1. Y. Pan et al., “Measurement of ecological capital of Chinese terrestrial ecosystem based on
remote sensing,” Sci. China Ser. D Earth Sci. 48(6), 786–796 (2005), http://dx.doi.org/10
.1360/03yd0264.

2. D. Lu, “The potential and challenge of remote sensing-based biomass estimation,” Int. J.
Rem. Sens. 27(7), 1297–1328 (2006), http://dx.doi.org/10.1080/01431160500486732.

3. R. Li and J. Liu, “An estimation of wetland vegetation biomass in the poyang lake using
landsat ETM data,” Acta Geograph. Sinica 56(5), 532–540 (2001).

4. J. Li, X. Shu, and S. Chen, “Establishment of wetland vegetation biomass model by in-situ
and remote sensing observation in Poyang Lake area,” J. Guangzhou Univ. (Nat. Sci. Ed.)
4(6), 494–498 (2005), http://dx.doi.org/10.3969/j.issn.1671-4229.2005.06.005.

5. T. Le Toan et al., “Rice crop mapping and monitoring using ERS-1 data based on experi-
ment and modeling results,” IEEE Trans. Geosci. Rem. Sens. 35(1), 41–56 (1997), http://dx
.doi.org/10.1109/36.551933.

6. S. Paloscia, G. Macelloni, and P. Pampaloni, “The relations between backscattering coef-
ficient and biomass of narrow and wide leaf crops,” in Proc. IEEE Int. Geosci. and Remote
Sens. Symp., Vol. 1, pp. 100–102, IEEE, Seattle, Washington (1998).

7. F. Ribbes and L. T. Thuy, “Coupling radar data and rice growth model for yield estimation,”
in Proc. IEEE Int. Geosci. and Remote Sens. Symp., Vol. 4, pp. 2336–2338, IEEE, Hamburg
(1999).

8. Y. Shao, J. Liao, and C. Wang, “Analysis of temporal radar backscatter of rice: A compari-
son of SAR observations with modeling results,” Can. J. Rem. Sens. 28(2), 128–138 (2002),
http://dx.doi.org/10.5589/m02-019.

9. S. Moreau and T. Le Toan, “Biomass quantification of andean wetland forages using
ERS satellite SAR data for optimizing livestock management,” Rem. Sens. Environ. 84(4),
477–492 (2003), http://dx.doi.org/10.1016/S0034-4257(02)00111-6.

10. E. S. Kasischke et al., “Effects of seasonal hydrologic patterns in south Florida wetlands
on radar backscatter measured from ERS-2 SAR imagery,” Rem. Sens. Environ. 88(4),
423–441 (2003), http://dx.doi.org/10.1016/j.rse.2003.08.016.

11. M. P. F. Costa et al., “Biophysical properties and mapping of aquatic vegetation during the
hydrological cycle of the Amazon floodplain using JERS-1 and Radarsat,” Int. J. Rem. Sens.
23(7), 1401–1426 (2002), http://dx.doi.org/10.1080/01431160110092957.

12. F. D. Frate and D. Solimini, “On neural network algorithms for retrieving forest biomass
from SAR data,” IEEE Trans. Geosci. Rem. Sens. 42(1), 24–34 (2004), http://dx.doi.org/10
.1109/TGRS.2003.817220.

13. M. C. Dobson et al., “Dependence of radar backscatter on coniferous forest biomass,” IEEE
Trans. Geosci. Rem. Sens. 30(2), 412–415 (1992), http://dx.doi.org/10.1109/36.134090.

Liao, Shen, and Dong: Biomass estimation of wetland vegetation in Poyang Lake area. . .

Journal of Applied Remote Sensing 073579-13 Vol. 7, 2013

http://dx.doi.org/10.1360/03yd0264
http://dx.doi.org/10.1360/03yd0264
http://dx.doi.org/10.1360/03yd0264
http://dx.doi.org/10.1360/03yd0264
http://dx.doi.org/10.1080/01431160500486732
http://dx.doi.org/10.1080/01431160500486732
http://dx.doi.org/10.1080/01431160500486732
http://dx.doi.org/10.1080/01431160500486732
http://dx.doi.org/10.3969/j.issn.1671-4229.2005.06.005
http://dx.doi.org/10.3969/j.issn.1671-4229.2005.06.005
http://dx.doi.org/10.3969/j.issn.1671-4229.2005.06.005
http://dx.doi.org/10.3969/j.issn.1671-4229.2005.06.005
http://dx.doi.org/10.3969/j.issn.1671-4229.2005.06.005
http://dx.doi.org/10.3969/j.issn.1671-4229.2005.06.005
http://dx.doi.org/10.3969/j.issn.1671-4229.2005.06.005
http://dx.doi.org/10.3969/j.issn.1671-4229.2005.06.005
http://dx.doi.org/10.3969/j.issn.1671-4229.2005.06.005
http://dx.doi.org/10.1109/36.551933
http://dx.doi.org/10.1109/36.551933
http://dx.doi.org/10.1109/36.551933
http://dx.doi.org/10.1109/36.551933
http://dx.doi.org/10.1109/36.551933
http://dx.doi.org/10.5589/m02-019
http://dx.doi.org/10.5589/m02-019
http://dx.doi.org/10.5589/m02-019
http://dx.doi.org/10.5589/m02-019
http://dx.doi.org/10.1016/S0034-4257(02)00111-6
http://dx.doi.org/10.1016/S0034-4257(02)00111-6
http://dx.doi.org/10.1016/S0034-4257(02)00111-6
http://dx.doi.org/10.1016/S0034-4257(02)00111-6
http://dx.doi.org/10.1016/j.rse.2003.08.016
http://dx.doi.org/10.1016/j.rse.2003.08.016
http://dx.doi.org/10.1016/j.rse.2003.08.016
http://dx.doi.org/10.1016/j.rse.2003.08.016
http://dx.doi.org/10.1016/j.rse.2003.08.016
http://dx.doi.org/10.1016/j.rse.2003.08.016
http://dx.doi.org/10.1016/j.rse.2003.08.016
http://dx.doi.org/10.1016/j.rse.2003.08.016
http://dx.doi.org/10.1080/01431160110092957
http://dx.doi.org/10.1080/01431160110092957
http://dx.doi.org/10.1080/01431160110092957
http://dx.doi.org/10.1080/01431160110092957
http://dx.doi.org/10.1109/TGRS.2003.817220
http://dx.doi.org/10.1109/TGRS.2003.817220
http://dx.doi.org/10.1109/TGRS.2003.817220
http://dx.doi.org/10.1109/TGRS.2003.817220
http://dx.doi.org/10.1109/TGRS.2003.817220
http://dx.doi.org/10.1109/TGRS.2003.817220
http://dx.doi.org/10.1109/36.134090
http://dx.doi.org/10.1109/36.134090
http://dx.doi.org/10.1109/36.134090
http://dx.doi.org/10.1109/36.134090
http://dx.doi.org/10.1109/36.134090


14. E. S. Kasischke, Jr., N. L. Christensen, and L. L. Bourgeau-Chavez, “Correlating radar
backscatter with components of biomass in loblolly pine forests,” IEEE Trans. Geosci.
Rem. Sens. 33(3), 643–659 (1995), http://dx.doi.org/10.1109/36.387580.

15. P. F. Polatin, K. Sarabandi, and F. T. Ulaby, “An iterative inversion algorithm with appli-
cation to the polarimetric radar response of vegetation canopies,” IEEE Trans. Geosci. Rem.
Sens. 32(1), 62–71 (1994), http://dx.doi.org/10.1109/36.285189.

16. E. Rignot et al., “Radar estimates of aboveground biomass in boreal forests of interior
Alaska,” IEEE Trans. Geosci. Rem. Sens. 32(5), 1117–1124 (1994), http://dx.doi.org/10
.1109/36.312903.

17. F. D. Frateand and L. F. Wang, “Sunflower biomass estimation using a scattering model and
a neural network algorithm,” Int. J. Rem. Sens. 22(7), 1235–1244 (2001), http://dx.doi.org/
10.1080/01431160151144323.

18. S. Wang and D. Guan, “Remote sensing method of forest biomass estimation by artificial
neural network models,” Ecol. Environ. 16(1), 108–111 (2007), http://dx.doi.org/10.3969/j
.issn.1674-5906.2007.01.020.

19. Y. Peng, Y. Jian, and R. Li, “Community diversity of aquatic plants in the lakes of Poyang
plain district of China,” J. Cent. South Forest. Univ. 23(4), 22–27 (2003), http://dx.doi.org/
10.3969/j.issn.1673-923X.2003.04.014.

20. F. T. Ulaby et al., “Michigan microwave canopy scattering model,” Int. J. Rem. Sens.
11(7), 1223–1253 (1990), http://dx.doi.org/10.1080/01431169008955090.

21. C. Xie et al., “Analysis of ALOS PALSAR INSAR data for mapping water level changes in
Yellow River delta wetlands,” Int. J. Rem. Sens. 34(6), 2047–2056 (2013), http://dx.doi.org/
10.1080/01431161.2012.731541.

22. Y. Wang et al., “Understanding the radar backscattering from flooded and nonflooded
Amazonian forests: results from canopy backscatter modeling,” Rem. Sens. Environ. 54(3),
324–332 (1995), http://dx.doi.org/10.1016/0034-4257(95)00140-9.

23. M. S. Dawson, A. K. Fung, and M. T. Manry, “Surface parameter retrieval using fast learn-
ing neural networks,” Rem. Sens. Rev. 7(1), 1–18 (1993), http://dx.doi.org/10.1080/
02757259309532163.

Jingjuan Liao received the BS and MS degrees in geosciences from
Nanjing University, respectively in 1987 and 1990, and the PhD degree
in geophysics from the Institute of Geophysics, Chinese Academy of
Sciences in 1993. Since 1993, she has been working on radar remote sens-
ing applications as a researcher at Institute of Remote Sensing
Applications, Chinese Academy of Sciences. She has rendered the institute
great service in a number of research projects. She is also the major
researcher in the international cooperation, such as the SIR-C/X-SAR,
GlobeSAR, Radarsat, ERS-1/2, JERS-1 SAR, and Envisat EO/CAT-1 proj-

ects. In these projects in China, she worked on radar data for vegetation discrimination and
classification, and biomass estimation, and related radar backscatter modeling. Her current
research interests are focused on the microwave remote sensing for surface parameters estima-
tion, and on the integration of remote sensing observations in wetland and lake.

Guozhuang Shen now works in Center for Earth Observation and Digital
Earth, Chinese Academy of Sciences after receiving PhD from Institute of
Remote Sensing Applications, Chinese Academy of Sciences. Now he
mainly does research on flood inundation information extraction and wet-
land ecosystem.

Lei Dong: Biography and photograph is not available.

Liao, Shen, and Dong: Biomass estimation of wetland vegetation in Poyang Lake area. . .

Journal of Applied Remote Sensing 073579-14 Vol. 7, 2013

http://dx.doi.org/10.1109/36.387580
http://dx.doi.org/10.1109/36.387580
http://dx.doi.org/10.1109/36.387580
http://dx.doi.org/10.1109/36.387580
http://dx.doi.org/10.1109/36.387580
http://dx.doi.org/10.1109/36.285189
http://dx.doi.org/10.1109/36.285189
http://dx.doi.org/10.1109/36.285189
http://dx.doi.org/10.1109/36.285189
http://dx.doi.org/10.1109/36.285189
http://dx.doi.org/10.1109/36.312903
http://dx.doi.org/10.1109/36.312903
http://dx.doi.org/10.1109/36.312903
http://dx.doi.org/10.1109/36.312903
http://dx.doi.org/10.1109/36.312903
http://dx.doi.org/10.1080/01431160151144323
http://dx.doi.org/10.1080/01431160151144323
http://dx.doi.org/10.1080/01431160151144323
http://dx.doi.org/10.1080/01431160151144323
http://dx.doi.org/10.1080/01431160151144323
http://dx.doi.org/10.3969/j.issn.1674-5906.2007.01.020
http://dx.doi.org/10.3969/j.issn.1674-5906.2007.01.020
http://dx.doi.org/10.3969/j.issn.1674-5906.2007.01.020
http://dx.doi.org/10.3969/j.issn.1674-5906.2007.01.020
http://dx.doi.org/10.3969/j.issn.1674-5906.2007.01.020
http://dx.doi.org/10.3969/j.issn.1674-5906.2007.01.020
http://dx.doi.org/10.3969/j.issn.1674-5906.2007.01.020
http://dx.doi.org/10.3969/j.issn.1674-5906.2007.01.020
http://dx.doi.org/10.3969/j.issn.1674-5906.2007.01.020
http://dx.doi.org/10.3969/j.issn.1673-923X.2003.04.014
http://dx.doi.org/10.3969/j.issn.1673-923X.2003.04.014
http://dx.doi.org/10.3969/j.issn.1673-923X.2003.04.014
http://dx.doi.org/10.3969/j.issn.1673-923X.2003.04.014
http://dx.doi.org/10.3969/j.issn.1673-923X.2003.04.014
http://dx.doi.org/10.3969/j.issn.1673-923X.2003.04.014
http://dx.doi.org/10.3969/j.issn.1673-923X.2003.04.014
http://dx.doi.org/10.3969/j.issn.1673-923X.2003.04.014
http://dx.doi.org/10.3969/j.issn.1673-923X.2003.04.014
http://dx.doi.org/10.3969/j.issn.1673-923X.2003.04.014
http://dx.doi.org/10.1080/01431169008955090
http://dx.doi.org/10.1080/01431169008955090
http://dx.doi.org/10.1080/01431169008955090
http://dx.doi.org/10.1080/01431169008955090
http://dx.doi.org/10.1080/01431161.2012.731541
http://dx.doi.org/10.1080/01431161.2012.731541
http://dx.doi.org/10.1080/01431161.2012.731541
http://dx.doi.org/10.1080/01431161.2012.731541
http://dx.doi.org/10.1080/01431161.2012.731541
http://dx.doi.org/10.1080/01431161.2012.731541
http://dx.doi.org/10.1080/01431161.2012.731541
http://dx.doi.org/10.1016/0034-4257(95)00140-9
http://dx.doi.org/10.1016/0034-4257(95)00140-9
http://dx.doi.org/10.1016/0034-4257(95)00140-9
http://dx.doi.org/10.1016/0034-4257(95)00140-9
http://dx.doi.org/10.1080/02757259309532163
http://dx.doi.org/10.1080/02757259309532163
http://dx.doi.org/10.1080/02757259309532163
http://dx.doi.org/10.1080/02757259309532163
http://dx.doi.org/10.1080/02757259309532163

