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Abstract. Remotely sensed spectral indices are used in a range of environments for estimating
properties of vegetation, soil, atmospheric, and water features. Here, the development of an index
sensitive to the amount of live coral, using in situ spectral reflectance data from Australia and
Hawaii is outlined. From an initial spectral reflectance library of common reef benthic features,
linear spectral mixing was used to create mixed reflectance signatures that represented image
pixels in a reef environment. The correlation between the proportion of total live coral and the
mixed reflectance signal at each wavelength was calculated to determine the wavelengths sen-
sitive to variations in the amount of live coral. First and second derivatives of the reflectance
spectra, in addition to simple band ratios, were also tested. The same processing and analysis
procedures were then followed after simulating the spectral mixtures under different depths and
levels of suspended organic content using a radiative transfer model (Hydrolight 4.1). Results
show that the second derivative of reflectance at 564 nm was one of the wavelength regions most
sensitive to variations in live coral cover and least sensitive to variations in water depth and
quality. Subsequent research will present the applicability of this technique to hyperspectral
image data. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported
License. Distribution or reproduction of this work in whole or in part requires full attribution of the origi-
nal publication, including its DOI. [DOI: 10.1117/1.JRS.7.073590]
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1 Introduction

With global predictions of continuing mass coral bleaching events, increasing calls for govern-
ment monitoring of reef environments and the question of coral adaptability, vulnerability, and
change,1,2 it is imperative that methods to map, monitor, and manage reef environments be devel-
oped. The extensive areas covered by coral reefs in Australia alone mean that routine field
monitoring can be conducted on only a very small subset of reefs. The long-term monitoring
program at the Australian Institute of Marine Science annually surveys only 48 of the
3000-odd reefs that make up the Great Barrier Reef (GBR), a coverage representing just
1.6% of the reefs. Reef Check surveys are also conducted globally,3 but they cannot provide
continuous and synoptic reef benthos information. Remote sensing is the only practical way
to increase this coverage.

1.1 Mapping Coral Reef Benthic Features

The progression of remote sensing in reef environments has been to (1) discriminate broad
habitats or geomorphic zones with the available high and moderate spatial resolution multi-
spectral data;4–10 (2) to determine differences in spectral response between common coral
reef benthic features in situ using field spectrometers;11–18 (3) to evaluate spectral mixing
and unmixing;19–21 and (4) to investigate the potential of object-based mapping approaches
in these highly heterogeneous environments.22 As the development of coral reef spectral libraries

Journal of Applied Remote Sensing 073590-1 Vol. 7, 2013

http://dx.doi.org/10.1117/1.JRS.7.073590
http://dx.doi.org/10.1117/1.JRS.7.073590
http://dx.doi.org/10.1117/1.JRS.7.073590
http://dx.doi.org/10.1117/1.JRS.7.073590
http://dx.doi.org/10.1117/1.JRS.7.073590


led to an increased understanding of the controlling factors of reflection and absorption of light
in reef environments, we are now in a better position to use this information to address the critical
question of reef health through spatial and temporal variations in spectral reflectance across
a reef.

Coral reefs can be classified into broad habitat, benthic features, or geomorphic classes on a
per-object basis using both high (<5 m) and moderate (5 to 100 m) spatial resolution image
data.4 However, the considerable heterogeneity of reef environments also means that despite
the high spatial resolution image data now available, attempting to map benthic features will
generally present an L-resolution problem (i.e., where the feature of interest is smaller than
the spatial resolution of the sensor).23 Pixel-based image classification routines assume an
H-resolution image (i.e., the target is larger than the spatial resolution), where pixels are domi-
nated by one cover type. This challenge has been faced in many terrestrial and aquatic envi-
ronments where the goal is to map a continuous biophysical property or a portion of it,
rather than place each pixel in a discrete category. This led to the development of spectral indices
and spectral unmixing approaches.24

1.2 Coral Reef Health Mapping

To use remote sensing effectively as an environmental monitoring tool, it is necessary to first
determine features that are able to be mapped and indicative of the health of the environment in
question. Environmental indicators have been successfully established in a number of globally
important ecosystems, such as tropical forests, rangelands, wetlands, and oceanic areas.25

According to Hughes and Connell,26 indicators of stress on a reef include abundances of
key organisms, population structures, species composition, and physical and chemical variables
(i.e., salinity, turbidity, or nutrients). They also stress the difficulty in determining baseline values
for these parameters across spatial and temporal scales, suggesting that more long-term studies
are required to assess patterns of change and stability over time. Theirs was one of the few long-
term studies of reef dynamics (see also Refs. 27 and 28). Such studies provide significant detail
in a highly localized area, but they lack the large area or regional synoptic view of change that
may be extracted from a temporal sequence of remotely sensed data such as the Landsat
Thematic Mapper or SPOT Multispectral series of sensors.

Holden et al. and LeDrew et al.29–31 argue that a measure of reef health may be extracted from
moderate spatial resolution multispectral satellite image data (e.g., SPOT) through the use of
spatial statistics. They suggest that phase shifts (e.g., coral to algal domination) may be extracted
from a time series of data based on changes in benthos heterogeneity. This assumes that within
the processed images, there will be known areas of “no change” to be used as a baseline, and that
changes in the spectral values of benthos (and hence spatial heterogeneity) are great enough to be
detected in one spectral band (in this case, a SPOT green band).

An example of a potentially rapid change in reef/coral health is the onset of coral bleaching
events. Mass bleaching has been successfully documented using IKONOS high-resolution
multispectral data in the southern GBR.32 Indeed, the use of potential bleaching hot spots with
sea surface temperature data and degree heating week indices are effective indirect uses of
remote sensing in determining or predicting coral reef health.33 These methods have a common
thread in that they all point to detecting changes in coral reef benthos, which in turn indicates
reef health or stress. Therefore, if changes in reef benthic features can be detected or pre-
dicted using remote sensing products, programs can be developed for ongoing, remote mon-
itoring of these ecosystems. This is similar in concept to the Ecological Health Monitoring
Program for Moreton Bay (in southeast Queensland, Australia) where seagrass distribution
and depth range is used as an indicator of ecosystem health based on the response to water
column turbidity.34

Several indicators of reef health, status, or conservation value are documented,26,35 but few of
these are appropriately simple or directly observable from remotely sensed data. Reef growth or
deterioration over time is of global interest,1,36,37 and the amount of live coral cover may be used
as a simple indicator of coral reef ecosystem health. Therefore, we propose that if the amount of
live coral cover could be assessed using a spectral index, similar to vegetative indices in ter-
restrial environments, then this could be an ecosystem health indicator. If the amount of live
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coral cover and more specifically, its change over time in any location, can be accurately
mapped, then an effective and quantitative assessment may be provided for reef conditions.

1.3 Mapping and Monitoring Using Spectral Indices

Spectral indices (e.g., the Normalized Difference Vegetative Index, or NDVI) are among the
most common data transformations for mapping vegetation’s structural or physiological attrib-
utes. Part of the strength of these indices is that they are simple and relatively easy to implement
from multispectral and hyperspectral data sets. The spectral band selection for these indices has
been based on knowledge of the radiative transfer interactions in leaves and vegetation cano-
pies.38 However, the indices are not deterministic models, although they rely on measured
absorption (red) and scattering (NIR) processes, which are strongly negatively and positively
correlated (respectively) to the chemical and structural properties of the vegetation present.
Significant recent works have established the operational domain and improvements to ensure
that they function in sparse to dense canopies, and in areas with significant atmospheric con-
tamination.39 Although radiative transfer-based models provide accurate means to quantify bio-
physical properties (e.g., LIBERTY),40 they require the collection of specific atmospheric
properties and complex algorithms and software. Indices offer a less complex method for esti-
mating biophysical properties and may have potential for widespread use in coral reef environ-
ments if the environmental conditions (e.g., depth and benthic feature types) to which they are
sensitive are established.

If derived and applied appropriately, remotely sensed indices can provide a more easily and
widely applicable method for mapping and monitoring environmental parameters than determin-
istic models. This is because they (1) do not require the user to implement complex radiative
transfer equations (e.g., canopy-leaf scale or hydrologic optical); (2) can be applied with entry-
level image processing software; (3) can be developed for multispectral and easily available data
sets; and (4) only require preprocessing to at-surface radiance or reflectance values. As user
expertise, computer processing capabilities, and cost effectiveness have been highlighted as chal-
lenges for remote sensing in coral reef management,41 a spectral index for mapping live coral
cover may be a viable option.

Within known limits and when using calibration data, indices are also a valuable method for
determining and monitoring change and can be more sensitive in detailing fine-scale changes
than categorical per-pixel classifications. This is because an index may identify radiometric
change via an increase or decrease in value before that change is large enough to create a cat-
egorical change. For example, index values could indicate a decrease in forest biomass, where a
categorical classification may require the forest to change completely to a cleared area for change
to be noted. Hence, it is critical to ensure that the limits, or ranges of environmental conditions in
which remote sensing indices work, are clearly defined. An example where this process has been
followed is the development of vegetation spectral indices. These have been developed in
response to mapping vegetation attributes and addressing environmental and temporal limita-
tions to remotely sensed spectral response such as atmospheric and soil variations.42 While
the use of spectral indices is commonplace for mapping and monitoring many different envi-
ronments (e.g., SeaWiFS color products and AVHRR/MODIS/TM vegetation indices), to date,
comparative indices that are sensitive to live coral cover or any other form of submerged aquatic
vegetation have not been rigorously tested in the scientific literature.

1.4 Potential for Spectral Indices in Coral Reef Mapping

Spectral indices provide a method for mapping continuous variables. In a coral reef environment,
benthic features vary across the reef according to numerous environmental conditions, including
hydrodynamics, light quality, predation, and human influences. Changes in benthic cover pat-
terns may therefore reflect a change in any of these environmental conditions. An effective spec-
tral index will exhibit a direct response to relatively small changes in coral cover, across a range
from low to high cover levels. The index will be more sensitive to small changes than a cat-
egorical per-pixel classification, which only reveals information about the most spectrally dom-
inant benthic feature type, and assumes a discontinuous spatial distribution of the parameter of
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interest. Spectral indices are also very simple to implement, requiring minimal computer capac-
ity or user expertise. However, they are usually bound by a certain range of applications.43

The survey completed by Joyce et al.41 and more recently by Roelfsema and Phinn44 indi-
cated that the majority of reef scientists and managers are processing multispectral data at a
simple level. Implementation of a spectral index would thus be appropriate. In addition, a
large fraction of world’s reefs are in developing countries, so a useful index should ideally
be able to be used with commercially available, cost-effective data and applied with minimal
technical infrastructure. Due to this required simplicity, an effective index is more likely to be
widely used than the deterministic/radiative transfer approach (e.g., spectral unmixing) and
approaches requiring significant field-based training (e.g., classification).

Spectral band ratios derived from image data have been used previously in reef environments
to map bottom cover.45,46 However, when based on SPOT and Landsat TM∕ETMþ image data,
they are restricted to clear, shallow waters, especially when utilizing the red channel. Dustan
et al.46 used 20 TM images of Key Largo, Florida, to calculate visible ratios in a time series
to look at changes in bottom albedo over 14 years that showed a trend consistent with patterns
of coral to algal domination, but the results were not statistically significant. Minghelli-Roman et
al.17 documented discrimination of 14 coral genera based on simple band ratios from field spec-
trometer data, but they did not assess the discrimination between coral and other benthic cover
types or test the applicability with image data. Early work by Hochberg and Atkinson12 also
considered the separation of coral, algae, and sand based on linear discriminant function analysis
with field spectrometry data, and then applied this to airborne hyperspectral imagery, with prom-
ising results. Each of these studies has laid the foundation for the work developed herein, where
we build on past results by including spectral mixtures and water column simulations.

Analysis of an image-based index does not require end-member identification (as per spectral
unmixing) or complex ancillary data (as per hydro-optical models). Indices will function in both
H- and L-resolution images, allowing areas to be described on a continuous and quantifiable
(albeit relative) scale. A useful coral cover index must be robust and function in a range of typical
conditions, considering atmospheric attenuation, varying water depths, clarity, and air-sea inter-
face conditions. This paper describes preliminary analysis leading to index development for live
coral mapping through the use of a spectral reflectance library obtained in situ from various
locations in the southern and northern Great Barrier Reef (GBR), Australia,47,48 and
Hawaii.49 The objective was to develop and test an index of live coral cover from in situ spectral
reflectance data, and in doing so, determine its domain of application (limitations due to water
depth and optical properties). This provides the basis for an image-based live coral mapping
method to be described and rigorously tested in a follow-up paper.

2 Data and Methods

2.1 Spectral Reflectance Data Collection

Between 1999 and 2002, four field trips to Heron, Lizard, Yonge, and Eagle Reefs in the GBR
were used to collect a substantial spectral reflectance library of common coral reef benthic fea-
tures. The equipment and methods used for spectral collection have been detailed elsewhere.48

Reflectance spectra obtained at Lizard, Yonge, and Eagle Reefs (northern GBR) were recorded
with both the target and sensor above the water’s surface. The remaining measurements were
obtained below the surface, with negligible distance between the sensor, target, and reference. To
supplement these data, the spectral reflectance libraries that were collected on Pandora and
Orpheus Reef in the northern GBR47 and Hawaii49 were included (Table 1). All measurements
are considered as reflectance, with negligible water or atmospheric contribution.

2.2 Spectral Reflectance Data Preprocessing

All spectral reflectance libraries were resampled to match the University of Queensland’s
Analytical Spectral Devices (ASD) UV-VNIR spectrometer’s band centers n ¼ 435) and band-
widths (full width and half maximum ¼ 1.5 nm) between 400 and 700 nm by using the spectral
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resampling function of ENVI (Exelis Visual Information Solutions, Boulder, Colorado) and
assuming a Gaussian distribution for each bandpass function. All reflectance spectra were
then viewed in spectral space using the n-dimensional visualizer in ENVI to determine where
clusters of similar reflectance spectra occurred that could be used to represent their respective
benthic features. It became evident that there were six distinctive clusters, which corresponded to
“blue” coral, “brown” coral,19 brown algae, green algae, sediment, and rock. Average spectra
were then calculated from the reflectance spectra constituting each cluster, neglecting any reflec-
tance spectra lying outside the dominant clusters. This method was considered preferable to
simply calculating the average spectra of a particular category, as it meant that “spectral outliers”
(possibly due to instrument or environment noise) could be discarded, and the selected “end-
members” were representative of the majority of the input. For the purposes of developing a
simple index, blue and brown corals were later combined to create the “live coral” category.
The resultant representative signatures were considered comparable in form and magnitude
to those published extensively in the literature (e.g., Refs. 13, 14, and 16). The index is intended
to be used to map live coral cover, and in doing so, that which is not “live coral”may be any other
benthic feature found on a reef (e.g., dead coral, algae, sediment, rock, or rubble).

Once the reduced library of six representative reflectance spectra (endmembers) was com-
piled, a linear mixing sequence was constructed with interactive data language (IDL)50 using the
following equation:

Rj ¼
Xn

i¼1

fi � ρij; (1)

where Rj is the mixed reflectance signal in band j, n is the number of endmembers, ρij is the
endmember i reflectance in band j, and fi is the proportion of endmember i; where

Xn

i¼1

fi ¼ 1: (2)

The resultant mixed reflectance spectra were linear combinations containing between one
and six input endmembers. Input proportions of endmembers or reef benthic feature types varied
from 0% to 100%, in 5% increments. The simulated mixtures of benthic feature types represent
the spectral reflectance signal recorded by a sensor with no water coverage or atmospheric con-
tamination. Linear mixing may be a simplification of reality, but initial studies in this field have
shown positive results for benthos discrimination thus far without employing nonlinear
techniques.19,20

2.3 Spectral Transformations and Live Coral Index Development

The library of synthesized mixed reflectance spectra were resampled to match the spectral
dimensions of several imaging sensors that will eventually be used for evaluating the live
coral index at Heron Reef, southern GBR, Australia. These data sets included IKONOS,
Landsat ETMþ (Enhanced Thematic Mapper Plus), and a CASI-2 image data set containing

Table 1 Spectral library samples used for modeling mixtures.

Location

Number of samples (n)

Coral Algae Sediment Rock

Heron 97 38 32

Lizard, Yonge, Eagle 39

Pandora, Orpheus47 84 8 5 17

Hawaii49 147 13 20
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19 and 30 bands of image data between 400 and 800 nm. Resampling significantly reduced file
size and enabled further analyses with spectral dimensions to match that of the CASI-2 image
data acquired over Heron Reef at 1-m spatial resolution, which will be presented in a follow-
up paper.

With the exception of the IKONOS and Landat ETMþ resampled spectra, data were trans-
formed to estimate their first and second derivatives. An exhaustive series of simple ratios
(BandX∕BandYÞ, where X and Y may be any band combination in the spectral reflectance
domain of the synthesized mixed reflectance spectra library) and normalized difference ratios
½ðBandX − BandYÞ∕ðBandX þ Band YÞ� were then applied to the resampled data only, for use
in determining the ratio band combination that was most sensitive to variations in live coral
cover. Ratios for all possible band combinations (in the non-infrared bands) were computed
in this manner, resulting in 240 band combinations.51

Band ratios could not be calculated for the full resolution spectra due to the large number of
possible combinations. Thus, the results for band ratios and normalized band ratios will be pre-
sented only for the resampled CASI-2, IKONOS, and Landsat ETMþ spectra.

The synthesized spectral library containing original bands and their transformations (deriv-
atives and ratios) for each spectral mixture was then used to determine wavelength regions most
sensitive to modeled increases and decreases in live blue, brown, and total coral cover. This was
done by individually calculating the linear correlation coefficient (Pearson’s r) between coral
cover values and reflectance in each waveband or derivative/simple ratio/normalized ratio. Each
r was then plotted as the dependent variable against the individual waveband to create a correlo-
gram. The band transformation or transformations with the highest correlation coefficient were
then selected as the most sensitive to changes in live coral cover.

2.4 Water Column Optical Modeling

Research into coral reef remote sensing since the late 1990s has resulted in numerous studies
seeking to characterize the spectral reflectance profiles of common reef benthic features (e.g.,
coral, algae, sediment). Further testing has been conducted to determine (1) the capabilities of
different simulated sensors in detecting differences between benthic features;13,19,47 (2) how field
spectra may be used to train image classifiers;52 and (3) theoretical mixing and unmixing sce-
narios.19,20 These past studies utilized high-spectral-resolution field spectrometer data obtained
in situ, with little or no intervening water column. However in reality, satellite and airborne
remote sensing of a reef without the effects of water column attenuation is not achievable.
Light is absorbed and scattered throughout the water column due to dissolved and suspended
material and the water itself. This acts to obscure the signal received from the benthos, making
the retrieval of information about feature properties difficult. To address the effects of water
column attenuation on benthos spectral separability, image classifiers, mixing, unmixing,
and spectral indices, each of the aforementioned research projects could be repeated under vary-
ing water quality conditions and depths. Alternatively, it is possible to simulate these conditions
based on optical radiative-transfer models such as Hydrolight53 Yamano and Tamura54 use
Hydrolight to determine the limits for coral bleaching detection based on simulating changes
in water quality (chlorophyll a), solar zenith angle, and atmospheric visibility. Here, a similar
approach is used with Hydrolight 4.1 to ascertain the environmental limitations to the coral
cover index.

The six “endmembers” identified earlier were used as a basis for the modeling. The param-
eters of depth and water column chlorophyll content were varied to reflect values that could be
reasonably expected across the reef. The testing here helped assess how robust the selected
wavelengths were with respect to variations in water quality (represented by varying chlorophyll
concentrations) and depth.

Chlorophyll values representative of reef water variability on the GBR were taken from
Brodie et al.,55 who reported mean and standard deviation concentrations from several locations
with latitudinal and cross-shelf differences. In the absence of depth profiles of chlorophyll con-
centration, the average-depth weighted water column chlorophyll concentrations were used. The
lowest concentration (0.33 μg∕L) represented Outer Shelf waters from Lizard Island–Cooktown,
while the highest concentration (0.91 μg∕L) represented inshore waters from Whitsunday

Joyce and Phinn: Spectral index development for mapping live coral cover

Journal of Applied Remote Sensing 073590-6 Vol. 7, 2013



Island–Pompey Reefs. These values were taken for input to Hydrolight to represent extreme
scenarios of water quality for testing the soundness of the coral cover index.

Hydrolight 4.1 allows the user to specify one of six different inherent optical property (IOP)
models to describe the water body. The chlorophyll-based model for sea water optical properties
was selected.56 This required user input of chlorophyll only, suggesting that colored dissolved
organic matter (concentrations of humic and fulvic acids) and two concentrations of suspended
scattering particles (concentrations of terrigenic and biogenic particles) co-vary with the speci-
fied chlorophyll concentration. This assumption of covariance is a model limitation in this envi-
ronment, where resuspended calcium carbonate sediment could also play a role. While keeping
all other parameters constant (Table 2), the Hydrolight model was run six times, with all possible
combinations of water depth (1, 5, and 10 m) and water column chlorophyll (0.33 and
0.91 mg∕m3), with the resultant signatures representing subsurface irradiance reflectance (R0−).

3 Results and Discussion

3.1 Spectral Processing and Live-Coral Index Development

The library of synthesized linearly mixed spectra contained 53,130 samples, each of which con-
sisted of linear mixtures in varying amounts of the six identified endmembers (Fig. 1). For the

Table 2 Hydrolight parameters used as input for modeling of spectral signatures at depth with
changes in water column chlorophyll. Location was selected as Heron Reef, GBR, Australia, as
this information will be used later with image data over this area. Similarly, the date and time was
set to be within the image acquisition timing. Water depth was selected to cover a range of depths
found on Heron Reef. Chlorophyll values are based on research in this region by Brodie et al.55

Cloud cover and wind speed were set to zero for simplicity.

Parameter Detail

IOP model Haltrin56

Location 23°27’S, 151°55E

Date 1 July 02

Time 1000 AEST

Cloud cover 0

Sky model Radtran

Water depth 1, 5, 10 m

Chlorophyll 0.33 mg∕m3, 0.91 mg∕m3

Wind speed 0 m∕s

Fig. 1 Spectral reflectance curve for the selected endmembers.
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purpose of this work, it was assumed that endmembers were entirely representative of their
respective benthic features. It was also recognized that the data set could not cover all of
the variability possible in the spectral mixtures likely to be encountered on coral reefs. In addi-
tion, the analysis presented in this paper does not consider the effects of target geometry/struc-
ture, water column (both of which may produce nonlinear mixing), air-sea interface conditions,
or atmospheric attenuation. The latter three effects will be the subjects of ongoing research.
These simulations therefore represent a best-case scenario for live coral index development
using in situ spectral reflectance data.

A summary of the various spectral resolutions, transformations, and the wavelength at which
spectral reflectance was most significantly related to variations in live coral cover is presented in
Table 3. This table also details the wavelengths that are most sensitive to variations in all benthic
features used in this analysis. The general trend shows that derivatives and band ratios were
consistently more sensitive to variations in the endmember composition than nontransformed
reflectance spectra. It is also apparent that the correlation coefficient decreases with decreasing
spectral dimensions (number of bands and increasing bandwidth) and that the most significant
results are seen for the relationship between spectral data (reflectance or transformed reflectance)
and sediment or rock. This information will prove useful in the future for mapping benthic fea-
tures other than live coral. However, as the objective of this paper was to develop a live coral
index, the results presented in the following sections will focus on the relationships between
percent of live coral cover, derivative analysis, and band ratios.

It is difficult to definitively determine the controlling factors of benthic feature spectral sig-
natures. One of the main controls is the biological or pigment composition of the target; however,
this does not account for all variability in the observed reflectance or absorption signatures.57

Nevertheless, Hochberg19 presented the results of a “pigment model” that simulated a spectral
signature of a “brown” coral, taking into account the absorption maxima of chlorophyll a,
chlorophyll c, β-carotene, diadinoxanthin, and peridinin. Their predicted signature was very
similar to their measured spectra. This accounted for the absorption of light by primary photo-
synthetic pigments but discounted fluorescence, scattering, and transmission controls.
Considering only the absorption controls, the two documented pigments that occur only in zoox-
anthellae (corals) and not in red, green, or brown fleshy algae are peridinin and dinoxanthin.
These pigments have absorption maxima at 475 and 570 nm58 (peridinin) and 418, 442, and
470 nm (dinoxanthin) (see Ref. 57 for a summary). Brown corals have been shown to have
a reflectance peak near 570 nm as part of the “triple peak” reflectance pattern, whereas blue
corals strongly absorb in the 580-nm region.13

Coral reflectance spectra are not only a product of their absorption controls. Fluorescence has
been noted for its potential contribution to coral spectral signatures and may arise either from
zooxanthellae or ectodermal tissue in the coral skeleton.59–61 Dove et al.62 suggest that much of
the color attributed to reef building corals is due to green fluorescent proteins (GFPs), some of
which play a role in the fluorescence contribution to the signature, while others are responsible
for absorbing light. In contrast, however, Hochberg et al.14 suggest that there is little evidence in
their data to suggest that fluorescence affects the basic shape of a coral spectral profile, but that it
may act to enhance certain features. The functions of fluorescent tissue in the skeleton are not
completely understood, and due to the infancy of florescence research, it is possible that there are
still other pigments that have not yet been described chemically or spectrally.60 In addition, while
pigments may be described within coral tissue, skeleton, and zooxanthellae, it has also been
shown that morphology of corals and their interaction with sensor-viewing and illumination
geometries alter the magnitude of the spectral signal received by a sensor.63 This is due to internal
shadowing and light scattering within a coral colony. Thus, it can be seen that the relationship
between coral spectra, index descriptions, and the controlling factors of light interactions is not
simple.

3.1.1 Derivative analysis

Using both full-resolution spectra and those resampled to CASI-2 19 band resolution, it is clear
that first- and second-order derivatives have a consistently stronger (higher correlation coeffi-
cient) and statistically significant relationship with the proportion of live coral contributing to the
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mixed signature than untransformed reflectance data (Fig. 2). When the combination of blue and
brown corals is considered, the most sensitive transformations to variations in composition were
the second derivative at 644, 625, 529, and 564 nm (r ¼ −0.87, −0.76, −0.73, and 0.71, respec-
tively). Mumby et al.64 also document a high level of distinction between living and nonliving
corals around 562 nm and suggest this may be due to a fluorescence peak around 575 nm in coral
spectral reflectance curves, though Hochberg et al.14 do not support a finding of fluorescence in
this region. However, they do concede that it may be possible for fluorescence to enhance the
spectral features. Compared with the full-resolution spectral data, the resampled 19-band CASI-
2 data does lose spectral form due to fewer bands, and this is transferred to the derivative curves,
resulting in the loss of small variations in peaks, troughs, and inflexion points. However, as the
image data to be analyzed in the follow-up paper to this study has only 19 bands, it was appro-
priate to analyze the simulated data with the same dimensions. Simulations conducted by Lubin
et al.65 suggest that due to atmospheric and water column attenuation, the most useful portion of
the spectrum is further reduced to 400 to 600 nm. This therefore excludes the use of the two
highest correlations that were found with second-derivative wavelengths (i.e., 644, 625 nm).

A complicating factor is that the correlation seen between coral composition and the band
ratios and derivative bands is not only controlled by light-absorbing pigments characteristic of
corals (i.e., coral skeleton, coral tissue, zooxanthellae), but by the gradual decreasing spectral
contribution of the other cover types. Therefore, to develop a repeatable index, it is necessary to
determine the biophysical controls on light absorption at these wavelengths and selectively
choose ratios or derivatives that will consistently produce a result based on unique differences
between corals and surrounding benthos. Hedley and Mumby57 provide a summary of the wave-
lengths of absorption maxima of pigments found in corals and algae, but as these overlap in some
cases, it is difficult to definitively determine causal factors of spectral form. A detailed analysis
of first- and second-derivative features of corals using the approach applied to sediments by
Louchard et al.66 would provide the required information.

As highlighted by Mumby et al.,64 it is very difficult to complete an exhaustive study on
derivative analysis based on the number of different derivative orders that may be used and
the start and end point of derivative calculation. Nevertheless, derivative analysis has been
used quite frequently in the coral reef remote sensing literature for discriminating between
common benthic feature types. Holden and LeDrew16 developed a decision tree using first-
derivative analysis for detecting sand, macroalgae, and bleached and healthy coral. Despite con-
clusive evidence that coral spectral characteristics remain unchanged regardless of geographic
location,13,14,16 the decision tree did not appear to be universally applicable.67 This technique was
also applied only to pure endmember field spectra and did not incorporate the spectral mixing
considered here. Fourth-derivative analysis has also been used in a similar fashion for identifying
spectral features;12,18 however, this technique required highly smoothed spectral data that is not
often obtained in a field environment.67

Many of the characteristic pigments found in corals exhibit absorption features in short wave-
lengths (<500 nm; see Ref. 57 for a summary). The shorter wavelengths are less affected by

Fig. 2 Correlogram detailing the linear correlation coefficient between percent of live coral and
in situ spectral reflectance; first derivative; and second derivative at wavelengths corresponding
to 19 band CASI-2 image data.
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water column absorption, but they also present a problem with both atmospheric and water col-
umn scattering.68 Water column attenuation is evident in all regions of the electromagnetic spec-
trum; the shorter wavelengths are more prone to scattering, while the longer wavelengths are
affected more by absorption. Ideal band combinations will therefore lie somewhere between the
extremes of scattering and absorption properties of atmosphere and water.

3.1.2 Band ratios

Band ratios produced similar results in terms of relationships to live coral cover, as did the analy-
sis of derivative bands. A ratio of 594∶625 nm proved the most sensitive for estimating live coral
cover composition (r ¼ −0.75) when using field spectral data resampled to CASI-2 19 band
spectral resolution [Fig. 3(a)]. The CASI-2 sensor has a flexible bandset, and the band centers
and bandwidths used for the image acquisition were selected to be useful for aquatic environ-
ments, so this analysis is somewhat biased in that the band ratios do not consider all the band
centers of the full spectral resolution image data. However, as it was not possible to process the
full-resolution field spectrometer data for all possible band ratios, analysis of the resampled 19
band data was considered appropriate.

Fig. 3 Linear correlation coefficients for the relationship between coral cover and all possible band
ratio combinations for (a) spectra without water column influence; (b) simulated 1 m depth,
0.33 mg∕m3 chlorophyll; (c) simulated 1 m depth, 0.91 mg∕m3 chlorophyll; (d) simulated 5 m
depth, 0.33 mg∕m3 chlorophyll; (e) simulated 5 m depth, 0.91 mg∕m3 chlorophyll; (f) simulated
10 m depth, 0.33 mg∕m3 chlorophyll; and (g) simulated 10 m depth, 0.91 mg∕m3 chlorophyll.
Note that while the axes are evenly spaced, the bandwidths are not all equal; they are based
on CASI-2 band positioning.
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When using (resampled) broadband multispectral data such as IKONOS and Landsat TM, it
can be seen that the highest correlation with live coral occurs within the blue and red bands.
These are also the visible wavelengths most susceptible to scattering and absorption, respec-
tively; thus, use of this broadband combination would be most effective on clear days with little
atmospheric contaminants (cloud < 10%, visibility > 50 km) and in areas of shallow water
(<5 m). Using these same bands, a variation of this ratio has been applied successfully for dis-
criminating patch reefs from surrounding deeper lagoonal waters in Landsat ETMþ data.6 The
ratio was effective, as it significantly increased the contrast between deep water and patch reefs
in the Heron Reef lagoon.

A number of projects have used band ratios to map features in relatively shallow, clear-water
environments. Mumby45 has successfully applied band ratios to quantify seagrass standing crop
over sand. Seagrass chlorophyll content and light absorption by chlorophyll were used to justify
the wavebands in the ratio. Chlorophyll content and (far) red light absorption were also found to
be significantly related in coral, though this relationship could be used only for exposed or very
shallow corals due to water column absorption at longer wavelengths.67 Predictably, this band
ratio combination would also be affected by variations in water column chlorophyll when the
benthos was submerged. Absorption of light by chlorophyll does not provide unique discrimi-
nation between corals and other benthos due to its presence in all photosynthesizing organisms
(e.g., macroalgae, microalgae, seagrasses, clams, etc.).

The scientific literature documents the wide degree of variability between coral spectral sig-
natures. Past studies have shown that variations in measured spectral signatures will occur within
a colony when measured at different locations on the colony,14 or from different viewing
angles,63 though Minghelli-Roman et al.17 suggest that coral tissue pigment content influences
the spectral signal more than coral morphology. However, it is also noted that differences at this
scale are primarily seen in reflectance magnitude rather than spectral form. Band ratios and
derivative indices are not affected by reflectance intensity variation, so long as the variation
is consistent within the selected wavebands.

3.2 Water Column Optical Modeling

To test the effects of different water column properties on the index-based method for mapping
live coral cover, changes in depth and water column chlorophyll were simulated. In the reflec-
tance domain, addition of up to 10 m of water and 0.91 mg∕m3 chlorophyll made little change to
the correlation coefficients observed for the relationship with live coral cover [Fig. 4(a)].
Regardless of the combination of depths and water column chlorophyll, the correlation coef-
ficients per wavelength remained negative and low. The only exception to this pattern was
seen at a depth of 10 m, where the chlorophyll content had a more noticeable effect at wave-
lengths greater than 600 nm.

3.2.1 Derivative analysis

When considering the relationship between first derivatives and live coral cover, it can be seen
that simulating increased water depth and water column chlorophyll produced a noticeable effect
in the wavelength region of 520 to 610 nm [Fig. 4(b)]. While the first-derivative spectra that had
not been passed through the Hydrolight simulation predominantly exhibited a negative corre-
lation with live coral cover in this region, all Hydrolight-simulated data followed different pat-
terns. The correlation of live coral with the spectral derivative is considerably reduced by the
addition of water. Addition of both depth (1 m) and chlorophyll (0.33 mg∕m3) produced a
change in correlation over all wavelengths; however, by increasing depth (5, 10 m) and chloro-
phyll (0.91mg∕m3) further, no further correlation change was observed. In summary, at a depth
of 1 m with the lowest simulated chlorophyll (0.33 mg∕m3), the correlation between coral cover
and the first derivative was the same as at a depth of 10 m and the highest chlorophyll
(0.91 mg∕m3). Therefore, first-derivative analysis is relatively insensitive to water depth and
quality variations once the feature is submerged.

Analysis of the second-derivative correlations with live coral cover indicated that the corre-
lations between reflectance/derivatives and coral cover decreased with the water column addition
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as shown in Fig. 4(c). However, some wavelengths were more affected than others. At wave-
lengths less than 490 nm, the addition of water and chlorophyll made little difference to the
correlation curve. However, addition of the maximum chlorophyll changed the correlation coef-
ficient to a positive value around 529 nm, regardless of the simulated depth. With either no water
column or minimal chlorophyll addition, the correlation coefficient remained negative. The sec-
ond derivative of 529 nm was previously identified as demonstrating a strong relationship with
coral cover. However, due to the water column, chlorophyll-induced confusion, where the cor-
relation coefficient changed from negative to positive, this wavelength was eliminated from the
list of potentially useful data for mapping coral cover.

The region around 564 nm was also identified as being sensitive to coral cover variations.
After the Hydrolight simulations, the correlation with coral cover observed was weaker (lower
correlation coefficient). After the initial addition of 1 m water depth and minimal chlorophyll,
very little change was produced in the correlogram. This held true for the simulated maximum
depths and water column chlorophyll. Selection of a wavelength or wavelengths that remained
relatively insensitive to depth variations means that the index can be applied to an entire image
without prior knowledge of water depth or quality. If a detailed and accurate bathymetric chart is
available, it may be more appropriate and effective to first stratify the image and use the wave-
lengths most sensitive to coral cover at each depth. However, this would require considerably
more processing time, and the increase in accuracy may not be significant.

Fig. 4 Linear correlation coefficients for the relationship between coral cover and (a) reflectance;
(b) first derivative; and (c) second derivative using hydrolight 4.1 simulations of 1 m depth,
0.33 mg∕m3 chlorophyll; 1 m depth, 0.91 mg∕m3 chlorophyll; 5 m depth, 0.33 mg∕m3 chlorophyll;
5 m depth, 0.91 mg∕m3 chlorophyll; 10 m depth, 0.33 mg∕m3 chlorophyll; 10 m depth,
0.91 mg∕m3 chlorophyll.
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3.2.2 Band ratios

The effect of Hydrolight simulations on band ratios was also noticeable with band ratio corre-
lations. The increase in water depth considerably reduced band ratio sensitivity at wavelengths
less than 590 nm in the numerator, though curiously provided a region of increased correlation
for numerators greater than 590 nm with denominators less than 516 nm. At 1 m depth, the
increase in chlorophyll has little effect, with the pattern in band ratio correlations very similar
between these two simulations [Fig. 3(b) and 3(c)]. At 5-m depths [Fig. 3(d) and 3(e)], the pat-
tern is also very similar to that displayed for the 1-m simulations; however, the relationship with
live coral cover is weaker (lower correlation coefficient).

With the 10-m simulations for both values of chlorophyll [Fig. 3(f) and 3(g)], a similar pat-
tern is evident, but the presence of regions of higher correlation coefficients (529∶479 and
529∶516) is apparent. This may suggest that the stronger relationship in these wavelength
regions is an artifact of the water column addition; i.e., the chlorophyll increase over the
10-m water column is enough to change the signature sufficiently so that it is once again con-
fused with coral at this depth.

3.3 Considerations for Development of an Image-Based Index

The results presented in the preceding sections will be of use for regional and/or global mapping
and monitoring of coral reef ecosystems only if the information can be translated to the scale of
an airborne or satellite image pixel. This introduces several more challenges to be considered
when scaling from field to image spectra. These challenges can be broadly defined as either
environmental- or sensor-specific.

3.3.1 Environmental considerations for index development

Atmospheric effects: Atmospheric attenuation is primarily prevalent in the scattering of shorter
wavelengths. Lubin et al.65 and others suggest that atmospheric scattering (particularly at wave-
lengths shorter than 500 nm) produces additive path radiance effects that obscure many spectral
features from satellite image data that are apparent in in situ field spectrometer data of reef sub-
strates and benthic features. Nevertheless, several models are available for correcting images for
these attenuating effects, and the derivative bands suggested here are not within the region of
highly attenuated wavelengths.

Variations in sea-state and distribution of sun glitter at the surface of the water.
Sun glitter results in reflection of large amounts of insolation at all wavelengths and obscures
benthic features. This is particularly noticeable with high-resolution image data (e.g., nearly 50%
of the IKONOS images received by Andréfouët et al.4 were significantly affected by surface sun
glitter) and will saturate any index applied to affected data. Image-based correction is relatively
simple and effective with both multispectral and hyperspectral data, provided that it contains a
wavelength long enough to provide information on the sea surface only, rather than subsurface
features, i.e., a near-infrared (NIR) wavelength that is absorbed at the water’s surface.48,69

Refraction at the air-sea interface. As with atmospheric effects, the effects of refraction
at the air-sea interface can be accounted for during image processing using a top-down approach,
where a calibration factor is used.70 From an image perspective, the refraction factor can be
incorporated post atmospheric corrections and may be a considered a constant value, as any
variations due to temperature and salinity are negligible.71 Failure to account for air-sea interface
refraction should not affect the relative scale of the index, though it may produce errors in the
absolute calibration.

Variability of dissolved and suspended organic and inorganic matter in the water
column. The spatial variability in water column optical properties is a function of local and
regional biological productivity and hydrodynamics.34 Optical properties may be affected by

Joyce and Phinn: Spectral index development for mapping live coral cover

Journal of Applied Remote Sensing 073590-14 Vol. 7, 2013



resuspension of sediments and circulation of nutrients due to tides, wind, and ocean swells. The
effects of changing water column optical properties on index calculation have been addressed
here in a simplistic manner through varying chlorophyll concentration in the Hydrolight model,
though the spatial variability across a reef is unknown and assumptions of optical homogeneity
are likely to be unfounded.72

Water depth. Several image-based models are available in the literature for extracting bathy-
metric information from both hyperspectral and multispectral image data.66,73–76 The multispec-
tral models tend to be relatively simple to implement and are based on the exponential decay of
light with increasing water depths. The effects of water depth on band ratio and derivative cor-
relations have been addressed to a degree within the scope of this project and led to the selection
of a wavelength that is relatively robust for depth variations up to 10 m.

Substrate topography and structure. Reef systems are inherently structurally complex
and heterogeneous.77 Structural variability on reefs occurs across all scales of image pixels and
will be particularly apparent with decreasing spatial resolution data. This means that individual
pixels may contain not only benthic feature heterogeneity (corals, algae, sediment), but also
different structures. This produces small-scale water depth variations and shadowing (e.g.,
within and between patch reefs/bommies) that have not been accounted for in the development
of the index. These effects should not be too pronounced in high-spatial-resolution data (<5 m);
however, the degree of variability in moderate spatial resolution data is a greater challenge.

A useful and robust index must use wavebands that are least sensitive to variations in the
above environmental effects. Alternatively, image data can be stratified accordingly using cur-
rently available simple models. However, the latter option is less favorable, as it involves addi-
tional processing routines, thus increasing the complexity of processing. This is contrary to the
idea of a simple, easy-to-implement index. The extent to which each of the factors outlined above
will affect the accuracy and effectiveness is not known, and it is suggested that further studies
assess their contributions.

3.3.2 Sensor specific considerations for index development

All of the above environmental effects can vary both within and between image pixels. The
degree to which the effects are observed will be a function of sensor spatial, spectral, and radio-
metric dimensions, in addition to viewing geometry. Within-pixel variations will be increasingly
prominent with increasing pixel size, while between-pixel variations may be noticeable over all
spatial dimensions.

4 Conclusions and Future Research

By using simulated linear mixtures of in situ field reflectance data to examine the relationship
between live coral and spectral reflectance, second derivatives were shown to be the most sen-
sitive to variations in live coral contributions to a mixed signal. While the second derivative at
644 nm returned the highest correlation (r ¼ −0.87), this wavelength is more susceptible to
absorption by the water column than shorter wavelengths. The second derivative at 529 nm
(r ¼ −0.73) appeared a viable alternative with initial mixture and correlation testing; however,
Hydrolight 4.1 simulations of up to 10 m water depth and additional water column chlorophyll
suggested that second derivatives within this wavelength region were no longer suitable for sub-
merged features. Therefore, the second derivative at 564 nm was considered a more suitable
spectral band placed within a suitable window of visibility through the water column with min-
imal scattering and absorption of light due to water, dissolved organic matter, suspended organic
matter, and suspended inorganic matter.

Derivatives require a higher level of data processing than simple band ratios and were shown
to be only marginally more sensitive to variations in live coral cover than individual bands and
ratios. After testing all possible band combinations for simple band ratios, the combination of
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594:625 nm was shown to be the most effective (r ¼ −0.74) when using data resampled to 19-
band CASI-2 spectral dimensions. Decreasing spectral dimensions (decreasing number of bands
and increasing bandwidth) resulted in decreasing sensitivity to live coral variations.

The focus of this work has been on index development using in situ spectral reflectance data
and simulated water column optical properties. This work will be followed by further quanti-
tative testing and image analysis using hyperspectral CASI-2 image data of Heron Reef, in com-
bination with detailed integration of field survey data for calibration and validation. The
modeling results of this work have shown that the types of reef cover that are mixed within
a pixel do affect the ability of different techniques to estimate live coral cover. For example,
mixtures of sand with coral work well with our technique. Further work is required to identify
in which mixtures can be resolved by empirical approaches, classification, and radiative transfer
models. The final output of continuing study will be a fully refined live coral index that is tested
for cost-effectiveness, accuracy, and ease of use with other currently available techniques for
mapping reef environments.
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